首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
孟璐  孙亮  谭龙涛 《遗传》2018,40(1):33-43
锌(zinc, Zn)和铁(iron, Fe)是水稻(Oryza sativa L.)生长必需的矿质元素,也是人体必需的微量元素。水稻体内Zn、Fe含量维持在适宜水平有利于提高其产量和品质,提高稻米中Zn、Fe含量能够在一定程度上解决人体Zn、Fe营养缺乏的问题。因此,研究水稻中Zn和Fe等微量元素转运蛋白的具体功能对于提高水稻产量和稻米品质具有重要意义。锌铁转运蛋白(zinc-regulated transporters and iron-regulated transporter-like protein, ZIP)负责Zn和Fe等离子的吸收、转运和分配,是维持水稻中Zn和Fe平衡的重要转运蛋白,其表达水平受Zn和Fe水平影响。ZIP基因家族在自然群体中具有丰富的等位变异,而且某些单倍型存在明显的籼粳分化,这可能造成了不同品种间籼、粳稻中Zn和Fe积累的差异。目前,已有大量关于ZIP基因家族的研究,但只有OsZIP3的作用机制研究的较为清楚。另外,对Zn、Fe在籽粒中的积累机制研究和自然群体中ZIP基因的等位变异研究还不够深入。因此,ZIP转运蛋白家族仍存在较大的研究空间。本文详细介绍了ZIP转运蛋白在水稻体内的亚细胞定位、表达模式、转运机制以及在自然群体中的等位变异等,以期为研究水稻稻米微量元素的积累提供理论基础,为提高稻米品质提供借鉴。  相似文献   

2.
Functionally important amino acids in rice sucrose transporter OsSUT1   总被引:2,自引:0,他引:2  
Sun Y  Lin Z  Reinders A  Ward JM 《Biochemistry》2012,51(15):3284-3291
Six conserved, charged amino acids within membrane spans in rice sucrose transporter OsSUT1 were identified using a three-dimensional structural model based on the crystal structures of three major facilitator superfamily (MFS) proteins: LacY, GlpT, and EmrD. These positions in OsSUT1 were selected for mutagenesis and biochemical assays. Among the six mutants, D177N completely lost transport function, D331N retained only a small fraction of sucrose uptake activity (2.3% of that of the wild type), and R335H and E336Q also displayed a substantial decrease in transport activity. D329N functioned as well as wild-type OsSUT1. R188K did not transport sucrose but showed a H(+) leak that was inhibited by sucrose, indicating that R188K had uncoupled sucrose and H(+) translocation. This demonstrates that charged amino acids within membrane spans are important for the transport mechanism of OsSUT1 as they are in lactose permease.  相似文献   

3.
We report the isolation and characterization of two sucrose transporter cDNAs (CitSUT1 and CitSUT2) from citrus. CitSUT1 and CitSUT2 encode putative proteins (CitSUT1 and CitSUT2) of 528 and 607 amino acids, respectively. CitSUT1 and CitSUT2 share high similarities with sucrose transporters isolated from other plants. The expression of CitSUT1 in mature leaf discs is repressed by exogenous sucrose, glucose, mannose, and the glucose analog 2-deoxyglucose but not by another glucose analog 3-O-methylglucose, indicating a hexokinase (HXK)-mediated signaling pathway. CitSUT2 expression is not affected by exogenous sugars. Whereas CitSUT1 expresses strongly in source, sugar exporting organs, CitSUT2 expresses more strongly in sink, sugar importing organs, suggesting different physiological roles for these sucrose transporters.  相似文献   

4.
5.
6.
The monosaccharide transporter(-like) gene family in Arabidopsis   总被引:4,自引:0,他引:4  
Büttner M 《FEBS letters》2007,581(12):2318-2324
The availability of complete plant genomes has greatly influenced the identification and analysis of phylogenetically related gene clusters. In Arabidopsis, this has revealed the existence of a monosaccharide transporter(-like) gene family with 53 members, which play a role in long-distance sugar partitioning or sub-cellular sugar distribution and catalyze the transport of hexoses, but also polyols and in one case also pentoses and tetroses. An update on the currently available information on these Arabidopsis monosaccharide transporters, on their sub-cellular localization and physiological function will be given.  相似文献   

7.
We analyzed the function of a rice sucrose transporter, OsSUT1, by using antisense rice. There was no difference between antisense and wild-type plants in carbohydrate content and photosynthetic ability of the flag leaves in the vegetative growth stage, suggesting that OsSUT1 may not play an important role in carbon metabolism, at least in these materials.  相似文献   

8.
Analysis of the sucrose synthase gene family in Arabidopsis   总被引:1,自引:0,他引:1  
The properties and expression patterns of the six isoforms of sucrose synthase in Arabidopsis are described, and their functions are explored through analysis of T-DNA insertion mutants. The isoforms have generally similar kinetic properties. Although there is variation in sensitivity to substrate inhibition by fructose this is unlikely to be of major physiological significance. No two isoforms have the same spatial and temporal expression patterns. Some are highly expressed in specific locations, whereas others are more generally expressed. More than one isoform is expressed in all organs examined. Mutant plants lacking individual isoforms have no obvious growth phenotypes, and are not significantly different from wild-type plants in starch, sugar and cellulose content, seed weight or seed composition under the growth conditions employed. Double mutants lacking the pairs of similar isoforms sus2 and sus3, and sus5 and sus6, are also not significantly different in these respects from wild-type plants. These results are surprising in the light of the marked phenotypes observed when individual isoforms are eliminated in crop plants including pea, maize, potato and cotton. A sus1/sus4 double mutant grows normally in well-aerated conditions, but shows marked growth retardation and accumulation of sugars when roots are subjected to hypoxia. The sucrose synthase activity in roots of this mutant is 3% or less of wild-type activity. Thus under well-aerated conditions sucrose mobilization in the root can proceed almost entirely via invertases without obvious detriment to the plant, but under hypoxia there is a specific requirement for sucrose synthase activity.  相似文献   

9.
In this study, we performed cloning and expression analysis of six putative sucrose transporter genes, designated TcSUT1, TcSUT2, TcSUT3, TcSUT4, TcSUT5 and TcSUT6, from the cacao genotype ‘TAS-R8’. The combination of cDNA and genomic DNA sequences revealed that the cacao SUT genes contained exon numbers ranging from 1 to 14. The average molecular mass of all six deduced proteins was approximately 56 kDa (range 52 to 66 kDa). All six proteins were predicted to exhibit typical features of sucrose transporters with 12 trans-membrane spanning domains. Phylogenetic analysis revealed that TcSUT2 and TcSUT4 belonged to Group 2 SUT and Group 4 SUT, respectively, and the other TcSUT proteins were belonging to Group 1 SUT. Real-time PCR was conducted to investigate the expression pattern of each member of the SUT family in cacao. Our experiment showed that TcSUT1 was expressed dominantly in pods and that, TcSUT3 and TcSUT4 were highly expressed in both pods and in bark with phloem. Within pods, TcSUT1 and TcSUT4 were expressed more in the seed coat and seed from the pod enlargement stage to the ripening stage. TcSUT5 expression sharply increased to its highest expression level in the seed coat during the ripening stage. Expression pattern analysis indicated that TcSUT genes may be associated with photoassimilate transport into developing seeds and may, therefore, have an impact on seed production.  相似文献   

10.
Current hypotheses of gene duplicate divergence propose that surviving members of a gene duplicate pair may evolve, under conditions of purifying or nearly neutral selection, in one of two ways: with new function arising in one duplicate while the other retains original function (neofunctionalization [NF]) or partitioning of the original function between the 2 paralogs (subfunctionalization [SF]). More recent studies propose that SF followed by NF (subneofunctionalization [SNF]) explains the divergence of many duplicate genes. In this analysis, we evaluate these hypotheses in the context of the large monosaccharide transporter (MST) gene families in Arabidopsis and rice. MSTs have an ancient origin, predating plants, and have evolved in the seed plant lineage to comprise 7 subfamilies. In Arabidopsis, 53 putative MST genes have been identified, with one subfamily greatly expanded by tandem gene duplications. We searched the rice genome for members of the MST gene family and compared them with the MST gene family in Arabidopsis to determine subfamily expansion patterns and estimate gene duplicate divergence times. We tested hypotheses of gene duplicate divergence in 24 paralog pairs by comparing protein sequence divergence rates, estimating positive selection on codon sites, and analyzing tissue expression patterns. Results reveal the MST gene family to be significantly larger (65) in rice with 2 subfamilies greatly expanded by tandem duplications. Gene duplicate divergence time estimates indicate that early diversification of most subfamilies occurred in the Proterozoic (2500-540 Myr) and that expansion of large subfamilies continued through the Cenozoic (65-0 Myr). Two-thirds of paralog pairs show statistically symmetric rates of sequence evolution, most consistent with the SF model, with half of those showing evidence for positive selection in one or both genes. Among 8 paralog pairs showing asymmetric divergence rates, most consistent with the NF model, nearly half show evidence of positive selection. Positive selection does not appear in any duplicate pairs younger than approximately 34 Myr. Our data suggest that the NF, SF, and SNF models describe different outcomes along a continuum of divergence resulting from initial conditions of relaxed constraint after duplication.  相似文献   

11.
12.
The high-affinity K+ (HAK) transporter gene family is the largest family in plant that functions as potassium transporter and is important for various aspects of plant life. In the present study, we identified 27 members of this family in rice genome. The phylogenetic tree divided the land plant HAK transporter proteins into 6 distinct groups. Although the main characteristic of this family was established before the origin of seed plants, they also showed some differences between the members of non-seed and seed plants. The HAK genes in rice were found to have expanded in lineage-specific manner after the split of monocots and dicots, and both segmental duplication events and tandem duplication events contributed to the expansion of this family. Functional divergence analysis for this family provided statistical evidence for shifted evolutionary rate after gene duplication. Further analysis indicated that both point mutant with positive selection and gene conversion events contributed to the evolution of this family in rice.  相似文献   

13.
14.
Sucrose synthase is a key enzyme in sucrose metabolism in plant cells, and it is involved in the synthesis of cell wall cellulose. Although the sucrose synthase gene (SUS) family in the model plants Arabidopsis thaliana has been characterized, little is known about this gene family in trees. This study reports the identification of two novel SUS genes in the economically important poplar tree. These genes were expressed predominantly in mature xylem. Using molecular cloning and bioinformatics analysis of the Populus genome, we demonstrated that SUS is a multigene family with seven members that each exhibit distinct but partially overlapping expression patterns. Of particular interest, three SUS genes were preferentially expressed in the stem xylem, suggesting that poplar SUSs are involved in the formation of the secondary cell wall. Gene structural and phylogenetic analyses revealed that the Populus SUS family is composed of four main subgroups that arose before the separation of monocots and dicots. Phylogenetic analyses associated with the tissue- and organ-specific expression patterns. The high intraspecific nucleotide diversity of two SUS genes was detected in the natural population, and the π nonsyn/π syn ratio was significantly less than 1; therefore, SUS genes appear to be evolving in Populus, primarily under purifying selection. This is the first comprehensive study of the SUS gene family in woody plants; the analysis includes genome organization, gene structure, and phylogeny across land plant lineages, as well as expression profiling in Populus.  相似文献   

15.
水稻SBP基因家族的生物信息学分析(英文)   总被引:2,自引:0,他引:2  
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE(SBP)转录因子家族是植物特有的一类转录因子。本文确定了20水稻基因组上编码的SBP基因。通过分类,染色体定位,保守区确定,亲缘关系,以及水稻SBP家族中的重复基因及该家族成员形成蛋白二聚体的可能性进行分析,其次利用了Affymetrix水稻基因组芯片数据,对所有这些基因的表达谱进行了分析。结果表明,水稻SBP基因在花和种子的发育过程中可能发挥重要作用,而其对环境胁迫却不敏感。这对进一步研究SBP的功能提供了有价值的线索和思路。  相似文献   

16.
Nitrogen (N) is one of the most important limiting factors for plant growth and development. Amino acids are the major source of organic N, which is converted from inorganic N absorbed by plant roots from the soil. Amino acid transporters are the principal mediators of organic N distribution and important regulators of resource allocation in plants. Although the complete genomic sequence of rice has already been released, there is still little known about amino acid transporter genes in rice. In this study, 79 OsAAT genes were identified by a database search of the rice genome based upon HMM profiles. A bioinformatics analysis of the complete set of OsAAT genes is presented, including chromosomal location, phylogenetic analysis, gene structure, protein analysis, conserved motifs, protein structures and cis-element analysis of the promoters. In addition, the comprehensive expression profile of OsAAT genes in rice tissues/organs under N starvation conditions was investigated by real-time PCR analysis. Diverse expression patterns of OsAAT genes indicated diverse biological functions of the amino acid transporters and the important roles of OsAAT genes in N uptake, metabolism and distribution during N starvation. The evaluation of yield and carbon (C) and N content of osaat knockout mutants also suggested the important roles of the OsAAT5, OsAAT7, OsAAT24, OsAAT49 and OsAAT60 genes in yield and biomass production and C and N metabolism and distribution in rice plants.  相似文献   

17.
18.
19.
20.
Little is known about the extent of allelic diversity of genes in the complex polyploid, sugarcane. Using sucrose phosphate synthase (SPS) Gene (SPS) Family III as an example, we have amplified and sequenced a 400 nt region from this gene from two sugarcane lines that are parents of a mapping population. Ten single nucleotide polymorphisms (SNPs) were identified within the 400 nt region of which seven were present in both lines. In the elite commercial cultivar Q165A, 10 sequence haplotypes were identified, with four haplotypes recovered at 9% or greater frequency. Based on SNP presence, two clusters of haplotypes were observed. In IJ76-514, a Saccharum officinarum accession, 8 haplotypes were identified with 4 haplotypes recovered at 13% or greater frequency. Again, two clusters of haplotypes were observed. The results suggest that there may be two SPS Gene Family III genes per genome in sugarcane, each with different numbers of different alleles. This suggestion is supported by sequencing results in an elite parental sorghum line, 403463-2-1, in which 4 haplotypes, corresponding to two broad types, were also identified. Primers were designed to the sugarcane SNPs and screened over bulked DNA from high and low Sucrose-containing progeny from a cross between Q165A and IJ76-514. The SNP frequency did not vary in the two bulked DNA samples, suggesting that these SNPs from this SPS gene family are not associated with variation in sucrose content. Using an ecotilling approach, two of the SPS Gene Family III haplotypes were mapped to two different linkage groups in homology group 1 in Q165A. Both haplotypes mapped near QTLs for increased sucrose content but were not themselves associated with any sugar-related trait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号