首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Upright posture, standing up from a chair, and gait were analyzed in patients after one-sided total hip replacement and in healthy subjects (control). It was found that the patients predominantly loaded the unoperated leg when they stood quietly or rose from a chair. Subjects’ walking on a 10-m podograph treadmill showed that their walking speed was slower than that of healthy subjects and the swing phase on the side of hip replacement was longer than on the unoperated side. It was assumed that the unequal load on legs during walking, standing, and sit-to-stand performance in patients with total hip replacement was related to the sensory deficit of the artificial joint, leading to the overstrain of the unoperated leg and coxarthrosis in it.  相似文献   

2.
To examine how walking patterns are adapted to changes in load, we recorded leg movements and muscle activities when cockroaches (Periplaneta americana) walked upright and on an inverted surface. Animals were videotaped to measure the hindleg femoro-tibial joint angle while myograms were taken from the tibial extensor and flexor muscles. The joint is rapidly flexed during swing and extended in stance in upright and inverted walking. When inverted, however, swing is shorter in duration and the joint traverses a range of angles further in extension. In slow upright walking, slow flexor motoneurons fire during swing and the slow extensor in stance, although a period of co-contraction occurs early in stance. In inverted walking, patterns of muscle activities are altered. Fast flexor motoneurons fire both in the swing phase and early in stance to support the body by pulling the animal toward the substrate. Extensor firing occurs late in stance to propel the animal forward. These findings are discussed within the context of a model in which stance is divided into an early support and subsequent propulsion phase. We also discuss how these changes in use of the hindleg may represent adaptations to the reversal of the effects of gravity.  相似文献   

3.
4.
The turning movement of a bug, Mesocerus marginatus, is observed when it walks upside-down below a horizontal beam and, at the end of the beam, performs a sharp turn by 180 degrees . The turn at the end of the beam is accomplished in three to five steps, without strong temporal coordination among legs. During the stance, leg endpoints (tarsi) run through rounded trajectories, rotating to the same side in all legs. During certain phases of the turn, a leg is strongly depressed and the tarsus crosses the midline. Swing movements rotate to the same side as do leg endpoints in stance, in strong contrast to the typical swing movements found in turns or straight walk on a flat surface. Terminal location is found after the search through a trajectory that first moves away from the body and then loops back to find substrate. When a leg during stance has crossed the midline, in the following swing movement the leg may move even stronger on the contralateral side, i.e. is stronger depressed, in contrast to swing movements in normal walking, where the leg is elevated. These results suggest that the animals apply a different control strategy compared to walking and turning on a flat surface.  相似文献   

5.
Walking in insects and most six-legged robots requires simultaneous control of up to 18 joints. Moreover, the number of joints that are mechanically coupled via body and ground varies from one moment to the next, and external conditions such as friction, compliance and slope of the substrate are often unpredictable. Thus, walking behaviour requires adaptive, context-dependent control of many degrees of freedom. As a consequence, modelling legged locomotion addresses many aspects of any motor behaviour in general. Based on results from behavioural experiments on arthropods, we describe a kinematic model of hexapod walking: the distributed artificial neural network controller walknet. Conceptually, the model addresses three basic problems in legged locomotion. (I) First, coordination of several legs requires coupling between the step cycles of adjacent legs, optimising synergistic propulsion, but ensuring stability through flexible adjustment to external disturbances. A set of behaviourally derived leg coordination rules can account for decentralised generation of different gaits, and allows stable walking of the insect model as well as of a number of legged robots. (II) Second, a wide range of different leg movements must be possible, e.g. to search for foothold, grasp for objects or groom the body surface. We present a simple neural network controller that can simulate targeted swing trajectories, obstacle avoidance reflexes and cyclic searching-movements. (III) Third, control of mechanically coupled joints of the legs in stance is achieved by exploiting the physical interactions between body, legs and substrate. A local positive displacement feedback, acting on individual leg joints, transforms passive displacement of a joint into active movement, generating synergistic assistance reflexes in all mechanically coupled joints.  相似文献   

6.
We studied the mechanisms underlying support of body load in posture and walking in serially homologous legs of cockroaches. Activities of the trochanteral extensor muscle in the front or middle legs were recorded neurographically while animals were videotaped. Body load was increased via magnets attached to the thorax and varied through a coil below the substrate. In posture, tonic firing of the slow trochanteral extensor motoneuron (Ds) in each leg was strongly modulated by changing body load. Rapid load increases produced decreases in body height and sharp increments in extensor firing. The peak of extensor activity more closely approximated the maximum velocity of body displacement than the body position. In walking, extensor bursts in front and middle legs were initiated during swing and continued into the stance phase. Moderate tonic increases in body load elicited similar, specific, phase dependent changes in both legs: extensor firing was not altered in swing but was higher after foot placement in stance. These motor adjustments to load are not anticipatory but apparently depend upon sensory feedback. These data are consistent with previous findings in the hind legs and support the idea that body load is countered by common motor mechanisms in serially homologous legs.  相似文献   

7.
As in the preceding paper stick insects walk on a treadwheel and different legs are put on platforms fixed relative to the insect's body. The movement of the walking legs is recorded in addition to the force oscillations of the standing legs. The coordination between the different legs depends upon the number and arrangement of the walking legs and the legs standing on platforms. In most experimental situations one finds a coordination which is different from that of a normal walking animal.Supported by DFG (Cr 58/1)  相似文献   

8.
Leg positions during walking on a plane and on thin rods were recorded by photography, videorecording, and videokymography. Joint angles were reconstructed from the tibia-ending position, using a 3-D model of the body. Participation of leg joints in propulsion was analysed by calculating the partial derivatives of tibia end-point position on different joint angles. Adjustment to walking with a narrow ground base is achieved by additional femur depression and flexion of the tibia in the stance phase. In the swing phase, the leg is raised by the same amount as when walking on a plane, but not to the same superior position, as on a plane. The contribution of the subcoxal joint to body propulsion is 64-94% in fore-and middle legs and 22-49% in hind legs. The oblique alignment of the coxal pivot within the thorax helps maintain a long stride for variable ground bases. In Graphosoma , it is close to the optimal position: according to several criteria, the angle between the coxal axis and the body vertical shall be arctan π/2, or ∼ 57.5°.  相似文献   

9.
Gravity has a strong effect on gait and the speed of gait transitions. A gait has been defined as a pattern of locomotion that changes discontinuously at the transition to another gait. On Earth, during gradual speed changes, humans exhibit a sudden discontinuous switch from walking to running at a specific speed. To study the effects of altered gravity on both the stance and swing legs, we developed a novel unloading exoskeleton that allows a person to step in simulated reduced gravity by tilting the body relative to the vertical. Using different simulation techniques, we confirmed that at lower gravity levels the transition speed is slower (in accordance with the previously reported Froude number ~0.5). Surprisingly, however, we found that at lower levels of simulated gravity the transition between walking and running was generally gradual, without any noticeable abrupt change in gait parameters. This was associated with a significant prolongation of the swing phase, whose duration became virtually equal to that of stance in the vicinity of the walk-run transition speed, and with a gradual shift from inverted-pendulum gait (walking) to bouncing gait (running).  相似文献   

10.
During level walking, arm swing plays a key role in improving dynamic stability. In vivo investigations with a telemeterized vertebral body replacement showed that spinal loads can be affected by differences in arm positions during sitting and standing. However, little is known about how arm swing could influence the lumbar spine and hip joint forces and motions during walking. The present study aims to provide better understanding of the contribution of the upper limbs to human gait, investigating ranges of motion and joint reaction forces.A three-dimensional motion analysis was carried out via a motion capturing system on six healthy males and five patients with hip instrumented implant. Each subject performed walking with different arm swing amplitudes (small, normal, and large) and arm positions (bound to the body, and folded across the chest). The motion data were imported in a commercial musculoskeletal analysis software for kinematic and inverse dynamic investigation.The range of motion of the thorax with respect to the pelvis and of the pelvis with respect to the ground in the transversal plane were significantly associated with arm position and swing amplitude during gait. The hip external-internal rotation range of motion statistically varied only for non-dominant limb. Unlike hip joint reaction forces, predicted peak spinal loads at T12-L1 and L5-S1 showed significant differences at approximately the time of contralateral toe off and contralateral heel strike.Therefore, arm position and swing amplitude have a relevant effect on kinematic variables and spinal loads, but not on hip loads during walking.  相似文献   

11.
When insects turn from walking straight, their legs have to follow different motor patterns. In order to examine such pattern change precisely, we stimulated single antenna of an insect, thereby initiating its turning behavior, tethered over a lightly oiled glass plate. The resulting behavior included asymmetrical movements of prothoracic and mesothoracic legs. The mesothoracic leg on the inside of the turn (in the apparent direction of turning) extended the coxa-trochanter and femur-tibia joints during swing rather than during stance as in walking, while the outside mesothoracic leg kept a slow walking pattern. Electromyograms in mesothoracic legs revealed consistent changes in the motor neuron activity controlling extension of the coxa-trochanter and femur-tibia joints. In tethered walking, depressor trochanter activity consistently preceded slow extensor tibia activity. This pattern was reversed in the inside mesothoracic leg during turning. Also for turning, extensor and depressor motor neurons of the inside legs were activated in swing phase instead of stance. Turning was also examined in free ranging animals. Although more variable, some trials resembled the pattern generated by tethered animals. The distinct inter-joint and inter-leg coordination between tethered turning and walking, therefore, provides a good model to further study the neural control of changing locomotion patterns.  相似文献   

12.
Conventional designs of an above-knee prosthesis are based on mechanisms with mechanical properties (such as friction, spring and damping coefficients) that remain constant during changing cadence. These designs are unable to replace natural legs due to the lack of active knee joint control. Since the nonlinear and time-varying dynamic coupling between the thigh and the prosthetic limb is high during swing phase, an adaptive control is employed to control the knee joint motion. Two dimensional simulation indicates that the adaptive controller can improve the appearance of gait pattern. It is adaptable to walking speed and can compensate for the variations of hip moment, hip trajectory and toe-off conditions.  相似文献   

13.
To investigate the metabolic cost and muscular actions required for the initiation and propagation of leg swing, we applied a novel combination of external forces to subjects walking on a treadmill. We applied a forward pulling force at each foot to assist leg swing, a constant forward pulling force at the waist to provide center of mass propulsion, and a combination of these foot and waist forces to evaluate leg swing. When the metabolic cost and muscle actions were at a minimum, the condition was considered optimal. We reasoned that the difference in energy consumption between the optimal combined waist and foot force trial and the optimal waist force-only trial would reflect the metabolic cost of initiating and propagating leg swing during normal walking. We also reasoned that a lower muscle activity with these assisting forces would indicate which muscles are normally responsible for initiating and propagating leg swing. With a propulsive force at the waist of 10% body weight (BW), the net metabolic cost of walking decreased to 58% of normal walking. With the optimal combination, a propulsive force at the waist of 10% BW plus a pulling force at the feet of 3% BW the net metabolic cost of walking further decreased to 48% of normal walking. With the same combination, the muscle activity of the iliopsoas and rectus femoris muscles during the swing phase was 27 and 60% lower, respectively, but the activity of the medial gastrocnemius and soleus before swing did not change. Thus our data indicate that approximately 10% of the net metabolic cost of walking is required to initiate and propagate leg swing. Additionally, the hip flexor muscles contribute to the initiation and propagation leg swing.  相似文献   

14.
In the experiments presented here adult stick insects (Carausius morosus) walk on a treadwheel with various legs standing on platforms fixed relative to the body of the insect. These standing legs produce large forees directed towards the rear which are modulated in the rhythm of the walking legs. Neighbouring legs which both stand on a platform often oscillate in phase. Possible reasons for the occurrence of the force oscillations are discussed.Supported by DFG (Cr 58/1)  相似文献   

15.
Powered knee-ankle prostheses are capable of providing net-positive mechanical energy to amputees. Yet, there are limitless ways to deliver this energy throughout the gait cycle. It remains largely unknown how different combinations of active knee and ankle assistance affect the walking mechanics of transfemoral amputees. This study assessed the relative contributions of stance phase knee swing initiation, increasing ankle stiffness and powered plantarflexion as three unilateral transfemoral amputees walked overground at their self-selected walking speed. Five combinations of knee and ankle conditions were evaluated regarding the kinematics and kinetics of the amputated and intact legs using repeated measures analyses of variance. We found eliminating active knee swing initiation or powered plantarflexion was linked to increased compensations of the ipsilateral hip joint during the subsequent swing phase. The elimination of knee swing initiation or powered plantarflexion also led to reduced braking ground reaction forces of the amputated and intact legs, and influenced both sagittal and frontal plane loading of the intact knee joint. Gradually increasing prosthetic ankle stiffness influenced the shape of the prosthetic ankle plantarflexion moment, more closely mirroring the intact ankle moment. Increasing ankle stiffness also corresponded to increased prosthetic ankle power generation (despite a similar maximum stiffness value across conditions) and increased braking ground reaction forces of the amputated leg. These findings further our understanding of how to deliver assistance with powered knee-ankle prostheses and the compensations that occur when specific aspects of assistance are added/removed.  相似文献   

16.
A general, dynamic relationship between the data obtained from a force platform, center of gravity of the body on the platform and the time rate of change of moment of momentum of the body about its center of gravity was derived from principles of dynamics for a system of particles. The derived equations are useful for processing and interpreting the force platform data. Displacement and path of center of gravity of human body during standing on one foot and level walking were estimated by using the derived equations. An estimation of the time rate of change of moment of momentum of the body was also obtained. A biomechanical interpretation of point of application of the resultant of ground reactions was presented.  相似文献   

17.
This article describes basic parameters characterizing walking of the stick insect Aretaon asperrimus to allow a comparative approach with other insects studied. As in many other animals, geometrical parameters such as step amplitude and leg extreme positions do not vary with walking velocity. However, the relation between swing duration and stance duration is quite constant, in contrast to most insects studied. Therefore, velocity profiles during swing vary with walking velocity whereas time course of leg trajectories and leg angle trajectories are independent of walking velocity. Nevertheless, A. asperrimus does not show a classical tripod gait, but performs a metachronal, or tetrapod, gait, showing phase values differing from 0.5 between ipsilateral neighbouring legs. As in Carausius morosus, the detailed shape of the swing trajectory may depend on the form of the substrate. Effects describing coordinating influences between legs have been found that prevent the start of a swing as long as the posterior leg performs a swing. Further, the treading on tarsus reflex can be observed in Aretaon. No hint to the existence of a targeting influence has been found. Control of rearward walking is easiest interpreted by maintaining the basic rules but an anterior-posterior reversal of the information flow.  相似文献   

18.
In walking, energy is wasted in the process of up-and-down movement of the center of gravity of the body during each step, as well as in the kinetic energy involved in the swinging forward of each extrèmity. In this paper the frictional loss in muscles is not considered. It is shown that for a prescribed available amount of metabolic power expenditure there exists an optimal size of the step and an optimal (maximal) speed of walking for the size of the step. Calculated values are of the correct order of magnitude. In walking uphill there exists a type of step for which there is no “lost” up-and-down motion of the center of gravity of the body. This step is optimal for walking up a hill of a given incline.  相似文献   

19.
Nordic Walking (NW) owes much of its popularity to the benefits of greater energy expenditure and upper body engagement than found in conventional walking (W). Muscle activation during NW is still understudied, however. The aim of the present study was to assess differences in muscle activation and physiological responses between NW and W in level and uphill walking conditions. Nine expert Nordic Walkers (mean age 36.8±11.9 years; BMI 24.2±1.8 kg/m2) performed 5-minute treadmill trials of W and NW at 4 km/h on inclines of 0% and 15%. The electromyographic activity of seven upper body and five leg muscles and oxygen consumption (VO2) were recorded and pole force during NW was measured. VO2 during NW was 22.3% higher at 0% and only 6.9% higher at 15% than during W, while upper body muscle activation was 2- to 15-fold higher under both conditions. Lower body muscle activation was similarly increased during NW and W in the uphill condition, whereas the increase in erector spinae muscle activity was lower during NW than W. The lack of a significant increase in pole force during uphill walking may explain the lower extra energy expenditure of NW, indicating less upper body muscle activation to lift the body against gravity. NW seemed to reduce lower back muscle contraction in the uphill condition, suggesting that walking with poles may reduce effort to control trunk oscillations and could contribute to work production during NW. Although the difference in extra energy expenditure between NW and W was smaller in the uphill walking condition, the increased upper body muscle involvement during exercising with NW may confer additional benefit compared to conventional walking also on uphill terrains. Furthermore, people with low back pain may gain benefit from pole use when walking uphill.  相似文献   

20.
Hermit crabs are decapod crustaceans that have adapted to life in gastropod shells. Among their adaptations are modifications to their thoracic appendages or pereopods. The 4th and 5th pairs are adapted for shell support; walking is performed with the 2nd and 3rd pereopods, with an alternation of diagonal pairs. During stance, the walking legs are rotated backwards in the pitch plane. Two patterns of walking were studied to compare them with walking patterns described for other decapods, a lateral gait, similar to that in many brachyurans, and a forward gait resembling macruran walking.Video sequences of free walking and restrained animals were used to obtain leg segment positions from which joint angles were calculated. Leading legs in a lateral walk generated a power stroke by flexion of MC and PD joints; CB angles often did not change during slow walks. Trailing legs exhibited extension of MC and PD with a slight levation of CB. The two joints, B/IM and CP, are aligned at 90° angles to CB, MC and PD, moving dorso-anteriorly during swing and ventro-posteriorly during stance. A forward step was more complex; during swing the leg was rotated forward (yaw) and vertically (pitch), due to the action of TC. At the beginning of stance, TC started to rotate posteriorly and laterally, CB was depressed, and MC flexed. As stance progressed and the leg was directed laterally, PD and MC extended, so that at the end of stance the dactyl tip was quite posterior. During walks of the animal out of its shell, the legs were extended more anterior-laterally and the animal often toppled over, indicating that during walking in a shell its weight stabilized the animal.An open chain kinematic model in which each segment was approximated as a rectangular solid, the dimensions of which were derived from measurements on animals, was developed to estimate the CM of the animal under different load conditions. CM was normally quite anterior; removal of the chelipeds shifted it caudally. Application of forces simulating the weight of the shell on the 5th pereopods moved CM just anterior to the thoracic-abdominal junction. However, lateral and vertical coordinates were not altered under these different load conditions. The interaction of the shell aperture with proximal leg joints and with the CM indicates that the oblique angles of the legs, due primarily to the rotation of the TC joints, is an adaptation that confers stability during walking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号