首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Penicillin-binding proteins (PBPs) are enzymes responsible for the polymerization of the glycan strand and the cross-linking between glycan chains as well as the target proteins for β-lactam antibiotics. Mutational alterations in PBPs can confer resistance either by reducing binding of the antibiotic to the active site or by evolving a β-lactamase activity that degrades the antibiotic. As no systematic studies have been performed to examine the potential of all PBPs present in one bacterial species to evolve increased resistance against β-lactam antibiotics, we explored the ability of fifteen different defined or putative PBPs in Salmonella enterica to acquire increased resistance against penicillin G. We could after mutagenesis and selection in presence of penicillin G isolate mutants with amino-acid substitutions in the PBPs, FtsI, DacB and DacC (corresponding to PBP3, PBP4 and PBP6) with increased resistance against β-lactam antibiotics. Our results suggest that: (i) most evolved PBPs became ‘generalists” with increased resistance against several different classes of β-lactam antibiotics, (ii) synergistic interactions between mutations conferring antibiotic resistance are common and (iii) the mechanism of resistance of these mutants could be to make the active site more accessible for water allowing hydrolysis or less binding to β-lactam antibiotics.  相似文献   

2.
The extensive use and misuse of antibiotics during the last seven decades has led to the evolution and global spread of a variety of resistance mechanisms in bacteria. Of high medical importance are β-lactamases, a group of enzymes inactivating β-lactam antibiotics. Metallo-β-lactamases (MBLs) are particularly problematic because of their ability to act on virtually all classes of β-lactam antibiotics. An engineered MBL (evMBL9) characterized by low level activity with several β-lactam antibiotics was constructed and employed as a parental MBL in an experiment to examine how an enzyme can evolve toward increased activity with a variety of β-lactam antibiotics. We designed and synthesized a mutant library in which the substrate activity profile was varied by randomizing six active site amino acid residues. The library was expressed in Salmonella typhimurium, clones with increased resistance against seven different β-lactam antibiotics (penicillin G, ampicillin, cephalothin, cefaclor, cefuroxime, cefoperazone, and cefotaxime) were isolated, and the MBL variants were characterized. For the majority of the mutants, bacterial resistance was significantly increased despite marked reductions in both mRNA and protein levels relative to those of parental evMBL9, indicating that the catalytic activities of these mutant MBLs were highly increased. Multivariate analysis showed that the majority of the mutant enzymes were generalists, conferring increased resistance against most of the examined β-lactams.  相似文献   

3.
Our investigations show that nonlethal concentrations of nitric oxide (NO) abrogate the antibiotic activity of β-lactam antibiotics against Burkholderia pseudomallei, Escherichia coli and nontyphoidal Salmonella enterica serovar Typhimurium. NO protects B. pseudomallei already exposed to β-lactams, suggesting that this diatomic radical tolerizes bacteria against the antimicrobial activity of this important class of antibiotics. The concentrations of NO that elicit antibiotic tolerance repress consumption of oxygen (O2), while stimulating hydrogen peroxide (H2O2) synthesis. Transposon insertions in genes encoding cytochrome c oxidase-related functions and molybdenum assimilation confer B. pseudomallei a selective advantage against the antimicrobial activity of the β-lactam antibiotic imipenem. Cumulatively, these data support a model by which NO induces antibiotic tolerance through the inhibition of the electron transport chain, rather than by potentiating antioxidant defenses as previously proposed. Accordingly, pharmacological inhibition of terminal oxidases and nitrate reductases tolerizes aerobic and anaerobic bacteria to β-lactams. The degree of NO-induced β-lactam antibiotic tolerance seems to be inversely proportional to the proton motive force (PMF), and thus the dissipation of ΔH+ and ΔΨ electrochemical gradients of the PMF prevents β-lactam-mediated killing. According to this model, NO generated by IFNγ-primed macrophages protects intracellular Salmonella against imipenem. On the other hand, sublethal concentrations of imipenem potentiate the killing of B. pseudomallei by NO generated enzymatically from IFNγ-primed macrophages. Our investigations indicate that NO modulates the antimicrobial activity of β-lactam antibiotics.  相似文献   

4.
An integrative approach combining biophysical and microbiological methods was used to characterize the antibiotic translocation through the outer membrane of Providencia stuartii. Two novel members of the General Bacterial Porin family of Enterobacteriaceae, named OmpPst1 and OmpPst2, were identified in P. stuartii. In the presence of ertapenem (ERT), cefepime (FEP), and cefoxitin (FOX) in growth media, several resistant derivatives of P. stuartii ATCC 29914 showed OmpPst1-deficiency. These porin-deficient strains showed significant decrease of susceptibility to β-lactam antibiotics. OmpPst1 and OmpPst2 were purified to homogeneity and reconstituted into planar lipid bilayers to study their biophysical characteristics and their interactions with β-lactam molecules. Determination of β-lactam translocation through OmpPst1 and OmpPst2 indicated that the strength of interaction decreased in the order of ertapenem ≫ cefepime > cefoxitin. Moreover, the translocation of these antibiotics through OmpPst1 was more efficient than through OmpPst2. Heterologous expression of OmpPst1 in the porin-deficient E. coli strain BL21(DE3)omp8 was associated with a higher antibiotic susceptibility of the E. coli cells to β-lactams compared with expression of OmpPst2. All our data enlighten the involvement of porins in the resistance of P. stuartii to β-lactam antibiotics.  相似文献   

5.
To resist to β-lactam antibiotics Eubacteria either constitutively synthesize a β-lactamase or a low affinity penicillin-binding protein target, or induce its synthesis in response to the presence of antibiotic outside the cell. In Bacillus licheniformis and Staphylococcus aureus, a membrane-bound penicillin receptor (BlaR/MecR) detects the presence of β-lactam and launches a cytoplasmic signal leading to the inactivation of BlaI/MecI repressor, and the synthesis of a β-lactamase or a low affinity target. We identified a dipeptide, resulting from the peptidoglycan turnover and present in bacterial cytoplasm, which is able to directly bind to the BlaI/MecI repressor and to destabilize the BlaI/MecI-DNA complex. We propose a general model, in which the acylation of BlaR/MecR receptor and the cellular stress induced by the antibiotic, are both necessary to generate a cell wall-derived coactivator responsible for the expression of an inducible β-lactam-resistance factor. The new model proposed confirms and emphasizes the role of peptidoglycan degradation fragments in bacterial cell regulation.  相似文献   

6.
β-Lactams are mainstream antibiotics that are indicated for the prophylaxis and treatment of bacterial infections. The AcrA-AcrD-TolC multidrug efflux system confers much stronger resistance on Escherichia coli to clinically relevant anionic β-lactam antibiotics than the homologous AcrA-AcrB-TolC system. Using an extensive combination of chimeric analysis and site-directed mutagenesis, we searched for residues that determine the difference in β-lactam specificity between AcrB and AcrD. We identified three crucial residues at the “proximal” (or access) substrate binding pocket. The simultaneous replacement of these residues in AcrB by those in AcrD (Q569R, I626R, and E673G) transferred the β-lactam specificity of AcrD to AcrB. Our findings indicate for the first time that the difference in β-lactam specificity between AcrB and AcrD relates to interactions of the antibiotic with residues in the proximal binding pocket.  相似文献   

7.
Active efflux of antimicrobial agents is a primary mechanism by which bacterial pathogens can become multidrug resistant. The combined use of efflux pump inhibitors (EPIs) with pump substrates is under exploration to overcome efflux-mediated multidrug resistance. Phenylalanine-arginine β-naphthylamide (PAβN) is a well-studied EPI that is routinely combined with fluoroquinolone antibiotics, but few studies have assessed its utility in combination with β-lactam antibiotics. The initial goal of this study was to assess the efficacy of β-lactams in combination with PAβN against the opportunistic pathogen, Pseudomonas aeruginosa. PAβN reduced the minimal inhibitory concentrations (MICs) of several β-lactam antibiotics against P. aeruginosa; however, the susceptibility changes were not due entirely to efflux inhibition. Upon PAβN treatment, intracellular levels of the chromosomally-encoded AmpC β-lactamase that inactivates β-lactam antibiotics were significantly reduced and AmpC levels in supernatants correspondingly increased, potentially due to permeabilization of the outer membrane. PAβN treatment caused a significant increase in uptake of 8-anilino-1-naphthylenesulfonic acid, a fluorescent hydrophobic probe, and sensitized P. aeruginosa to bulky antibiotics (e.g. vancomycin) that are normally incapable of crossing the outer membrane, as well as to detergent-like bile salts. Supplementation of growth media with magnesium to stabilize the outer membrane increased MICs in the presence of PAβN and restored resistance to vancomycin. Thus, PAβN permeabilizes bacterial membranes in a concentration-dependent manner at levels below those typically used in combination studies, and this additional mode of action should be considered when using PAβN as a control for efflux studies.  相似文献   

8.
β-lactamase mediated antibiotic resistance is an important health issue and the discovery of new β-lactam type antibiotics or β-lactamase inhibitors is an area of intense research. Today, there are about a thousand β-lactamases due to the evolutionary pressure exerted by these ligands. While β-lactamases hydrolyse the β-lactam ring of antibiotics, rendering them ineffective, Penicillin-Binding Proteins (PBPs), which share high structural similarity with β-lactamases, also confer antibiotic resistance to their host organism by acquiring mutations that allow them to continue their participation in cell wall biosynthesis. In this paper, we propose a novel approach to include ligand sharing information for classifying and clustering β-lactamases and PBPs in an effort to elucidate the ligand induced evolution of these β-lactam binding proteins. We first present a detailed summary of the β-lactamase and PBP families in the Protein Data Bank, as well as the compounds they bind to. Then, we build two different types of networks in which the proteins are represented as nodes, and two proteins are connected by an edge with a weight that depends on the number of shared identical or similar ligands. These models are analyzed under three different edge weight settings, namely unweighted, weighted, and normalized weighted. A detailed comparison of these six networks showed that the use of ligand sharing information to cluster proteins resulted in modules comprising proteins with not only sequence similarity but also functional similarity. Consideration of ligand similarity highlighted some interactions that were not detected in the identical ligand network. Analysing the β-lactamases and PBPs using ligand-centric network models enabled the identification of novel relationships, suggesting that these models can be used to examine other protein families to obtain information on their ligand induced evolutionary paths.  相似文献   

9.
Bacterial resistance to β-lactam antibiotics is a global issue threatening the success of infectious disease treatments worldwide. Mycobacterium tuberculosis has been particularly resilient to β-lactam treatment, primarily due to the chromosomally encoded BlaC β-lactamase, a broad-spectrum hydrolase that renders ineffective the vast majority of relevant β-lactam compounds currently in use. Recent laboratory and clinical studies have nevertheless shown that specific β-lactam–BlaC inhibitor combinations can be used to inhibit the growth of extensively drug-resistant strains of M. tuberculosis, effectively offering new tools for combined treatment regimens against resistant strains. In the present work, we performed combinatorial active-site replacements in BlaC to demonstrate that specific inhibitor-resistant (IRT) substitutions at positions 69, 130, 220, and/or 234 can act synergistically to yield active-site variants with several thousand fold greater in vitro resistance to clavulanate, the most common clinical β-lactamase inhibitor. While most single and double variants remain sensitive to clavulanate, double mutants R220S-K234R and S130G-K234R are substantially less affected by time-dependent clavulanate inactivation, showing residual β-lactam hydrolytic activities of 46% and 83% after 24 h incubation with a clinically relevant inhibitor concentration (5 μg/ml, 25 µM). These results demonstrate that active-site alterations in BlaC yield resistant variants that remain active and stable over prolonged bacterial generation times compatible with mycobacterial proliferation. These results also emphasize the formidable adaptive potential of inhibitor-resistant substitutions in β-lactamases, potentially casting a shadow on specific β-lactam–BlaC inhibitor combination treatments against M. tuberculosis.  相似文献   

10.
The combination of antibiotics is one of the strategies to combat drug-resistant bacteria, though only a handful of such combinations are in use, such as the β-lactam combinations. In the present study, the efficacy of a specific sub-inhibitory concentration of cefsulodin with other β-lactams was evaluated against a range of Gram-negative clinical isolates. This approach increased the sensitivity of the isolates, regardless of the β-lactamase production. The preferred target and mechanism of action of cefsulodin were identified in laboratory strains of Escherichia coli, by examining the effects of deleting the penicillin-binding protein (PBP) 1a and 1b encoding genes individually. Deletion of PBP1b was involved in sensitizing the bacteria to β-lactam agents, irrespective of its O-antigen status. Moreover, the use of a sub-inhibitory concentration of cefsulodin in combination with a β-lactam exerted an effect similar to that one obtained for PBP1b gene deletion. We conclude that the identified β-lactam/cefsulodin combination works by inhibiting PBP1b (at least partially) despite the involvement of β-lactamases, and therefore could be extended to a broad range of Gram-negative pathogens.  相似文献   

11.
The use of three classical β-lactamase inhibitors (Clavulanic acid, tazobactam and sulbactam) in combination with β-lactam antibiotics is presently the mainstay of antibiotic therapy against Gram-negative bacterial infections. However these inhibitors are unable to inhibit carbapenemase KPC-2 effectively. They being β-lactam derivatives behave as substrates for this enzyme instead of inactivating it. We have initiated our study to check the in vitro inhibition activity of the two novel screened inhibitors (ZINC01807204 and ZINC02318494) in combination with carbapenems against KPC-2 expressing bacterial strain and their effect on purified enzyme KPC-2. The MIC values of meropenem and ertapenem showed maximum reduction (8 folds) in combination with screened compounds (ZINC01807204 and ZINC02318494). CLSM images also depicted their strong antibacterial activity in comparison to conventional β-lactamase inhibitors. Moreover no toxic effect has been shown on HeLa cell line. Though the IC50 value of ZINC01807204 was high (200 µM), it exhibited fairly good affinity for KPC-2 (Ki = 43.82 µM). With promising results this study identifies ZINC01807204 as a lead molecule for further optimization and development of more potent non β-lactam inhibitors against KPC-2.  相似文献   

12.
Method for Isolation and Purification of Cyanobacteria   总被引:6,自引:2,他引:4       下载免费PDF全文
A method employing nutrient saturated glass fiber filters allowed the isolation of the same numbers of cyanobacteria from freshwater as were obtained with medium solidified with agar, while providing a 2- to 15-fold reduction in the number of accompanying heterotrophic bacteria. Imipenem, a broad-spectrum β-lactam antibiotic which inhibits peptidoglycan biosynthesis, was superior to some other β-lactam antibiotics for reducing the numbers of heterotrophic bacterial contaminants associated with freshly isolated cyanobacteria to a level which facilitated the production of axenic cyanobacterial cultures.  相似文献   

13.
The human pathogen Listeria monocytogenes is susceptible to the β-lactam antibiotics penicillin G and ampicillin, and these are the drugs of choice for the treatment of listerial infections. However, these antibiotics exert only a bacteriostatic effect on this bacterium and consequently, L. monocytogenes is regarded as β-lactam tolerant. It is widely accepted that the phenomenon of bacterial tolerance to β-lactams is due to the lack of adequate autolysin activity, but the mechanisms of L. monocytogenes tolerance to this class of antibiotics are poorly characterized. A ferritin-like protein (Fri) was recently identified as a mediator of β-lactam tolerance in L. monocytogenes, but its function in this process remains unknown. The present study was undertaken to improve our understanding of L. monocytogenes tolerance to β-lactams and to characterize the role of Fri in this phenomenon. A comparative physiological analysis of wild-type L. monocytogenes and a fri deletion mutant provided evidence of a multilevel mechanism controlling autolysin activity in cells grown under β-lactam pressure, which leads to a reduction in the level and/or activity of cell wall-associated autolysins. This is accompanied by increases in the amount of teichoic acids, cell wall thickness and cell envelope integrity of L. monocytogenes grown in the presence of penicillin G, and provides the basis for the innate β-lactam tolerance of this bacterium. Furthermore, this study revealed the inability of the L. monocytogenes Δ fri mutant to deplete autolysins from the cell wall, to adjust the content of teichoic acids and to maintain their D-alanylation at the correct level when treated with penicillin G, thus providing further evidence that Fri is involved in the control of L. monocytogenes cell envelope structure and stability under β-lactam pressure.  相似文献   

14.
The cell wall of budding yeast is a rigid structure composed of multiple components. To thoroughly understand its involvement in morphogenesis, we used the image analysis software CalMorph to quantitatively analyze cell morphology after treatment with drugs that inhibit different processes during cell wall synthesis. Cells treated with cell wall–affecting drugs exhibited broader necks and increased morphological variation. Tunicamycin, which inhibits the initial step of N-glycosylation of cell wall mannoproteins, induced morphologies similar to those of strains defective in α-mannosylation. The chitin synthase inhibitor nikkomycin Z induced morphological changes similar to those of mutants defective in chitin transglycosylase, possibly due to the critical role of chitin in anchoring the β-glucan network. To define the mode of action of echinocandin B, a 1,3-β-glucan synthase inhibitor, we compared the morphology it induced with mutants of Fks1 that contains the catalytic domain for 1,3-β-glucan synthesis. Echinocandin B exerted morphological effects similar to those observed in some fks1 mutants, with defects in cell polarity and reduced glucan synthesis activity, suggesting that echinocandin B affects not only 1,3-β-glucan synthesis, but also another functional domain. Thus our multivariate analyses reveal discrete functions of cell wall components and increase our understanding of the pharmacology of antifungal drugs.  相似文献   

15.
Pseudomonas aeruginosa is one of the most virulent and resistant non-fermenting Gram-negative pathogens in the clinic. Unfortunately, P. aeruginosa has acquired genes encoding metallo-β-lactamases (MβLs), enzymes able to hydrolyze most β-lactam antibiotics. SPM-1 is an MβL produced only by P. aeruginosa, while other MβLs are found in different bacteria. Despite similar active sites, the resistance profile of MβLs towards β-lactams changes from one enzyme to the other. SPM-1 is unique among pathogen-associated MβLs in that it contains “atypical” second sphere residues (S84, G121). Codon randomization on these positions and further selection of resistance-conferring mutants was performed. MICs, periplasmic enzymatic activity, Zn(II) requirements, and protein stability was assessed. Our results indicated that identity of second sphere residues modulates the substrate preferences and the resistance profile of SPM-1 expressed in P. aeruginosa. The second sphere residues found in wild type SPM-1 give rise to a substrate selectivity that is observed only in the periplasmic environment. These residues also allow SPM-1 to confer resistance in P. aeruginosa under Zn(II)-limiting conditions, such as those expected under infection. By optimizing the catalytic efficiency towards β-lactam antibiotics, the enzyme stability and the Zn(II) binding features, molecular evolution meets the specific needs of a pathogenic bacterial host by means of substitutions outside the active site.  相似文献   

16.
Bifidobacteria have received significant attention due to their contribution to human gut health and the use of specific strains as probiotics. It is thus not surprising that there has also been significant interest with respect to their antibiotic resistance profile. Numerous culture-based studies have demonstrated that bifidobacteria are resistant to the majority of aminoglycosides, but are sensitive to β-lactams. However, limited research exists with respect to the genetic basis for the resistance of bifidobacteria to aminoglycosides. Here we performed an in-depth in silico analysis of putative Bifidobacterium-encoded aminoglycoside resistance proteins and β-lactamases and assess the contribution of these proteins to antibiotic resistance. The in silico-based screen detected putative aminoglycoside and β-lactam resistance proteins across the Bifidobacterium genus. Laboratory-based investigations of a number of representative bifidobacteria strains confirmed that despite containing putative β-lactamases, these strains were sensitive to β-lactams. In contrast, all strains were resistant to the aminoglycosides tested. To assess the contribution of genes encoding putative aminoglycoside resistance proteins in Bifidobacterium sp. two genes, namely Bbr_0651 and Bbr_1586, were targeted for insertional inactivation in B. breve UCC2003. As compared to the wild-type, the UCC2003 insertion mutant strains exhibited decreased resistance to gentamycin, kanamycin and streptomycin. This study highlights the associated risks of relying on the in silico assignment of gene function. Although several putative β-lactam resistance proteins are located in bifidobacteria, their presence does not coincide with resistance to these antibiotics. In contrast however, this approach has resulted in the identification of two loci that contribute to the aminoglycoside resistance of B. breve UCC2003 and, potentially, many other bifidobacteria.  相似文献   

17.
There is a critical need to better use existing antibiotics due to the urgent threat of antibiotic resistant bacteria coupled with the reduced effort in developing new antibiotics. β-lactam antibiotics represent one of the most commonly used classes of antibiotics to treat a broad spectrum of Gram-positive and -negative bacterial pathogens. However, the rise of extended spectrum β-lactamase (ESBL) producing bacteria has limited the use of β-lactams. Due to the concern of complex drug responses, many β-lactams are typically ruled out if ESBL-producing pathogens are detected, even if these pathogens test as susceptible to some β-lactams. Using quantitative modeling, we show that β-lactams could still effectively treat pathogens producing low or moderate levels of ESBLs when administered properly. We further develop a metric to guide the design of a dosing protocol to optimize treatment efficiency for any antibiotic-pathogen combination. Ultimately, optimized dosing protocols could allow reintroduction of a repertoire of first-line antibiotics with improved treatment outcomes and preserve last-resort antibiotics.  相似文献   

18.
The adverse impact of antibiotics on the gut microbiota has attracted extensive interest, particularly due to the development of microbiome research techniques in recent years. However, a direct comparison of the dynamic effects of various types of antibiotics using the same animal model has not been available. In the present study, we selected six antibiotics from four categories with the broadest clinical usage, namely, β-lactams (Ceftriaxone Sodium, Cefoperazone/Sulbactam and meropenem), quinolones (ofloxacin), glycopeptides (vancomycin), and macrolides (azithromycin), to treat BALB/c mice. Stool samples were collected during and after the administration of antibiotics, and microbial diversity was analyzed through Illumina sequencing and bioinformatics analyses using QIIME. Both α and β diversity analyses showed that ceftriaxone sodium, cefoperazone/sulbactam, meropenem and vancomycin changed the gut microbiota dramatically by the second day of antibiotic administration whereas the influence of ofloxacin was trivial. Azithromycin clearly changed the gut microbiota but much less than vancomycin and the β-lactams. In general, the community changes induced by the three β-lactam antibiotics showed consistency in inhibiting Papillibacter, Prevotella and Alistipes while inducing massive growth of Clostridium. The low diversity and high Clostridium level might be an important cause of Clostridium difficile infection after usage of β-lactams. Vancomycin was unique in that it inhibited Firmicutes, mainly the genus Clostridium. On the other hand, it induced the growth of Escherichia and effect lasted for months afterward. Azithromycin and meropenem induced the growth of Enterococcus. These findings will be useful for understanding the potential adverse effects of antibiotics on the gut microbiome and ensuring their better usage.  相似文献   

19.
The worldwide dissemination of CTX-M type β-lactamases is a threat to human health. Previously, we have reported the spread of bla CTX-M-15 gene in different clinical strains of Enterobacteriaceae from the hospital settings of Aligarh in north India. In view of the varying resistance pattern against cephalosporins and other β-lactam antibiotics, we intended to understand the correlation between MICs and catalytic activity of CTX-M-15. In this study, steady-state kinetic parameters and MICs were determined on E. coli DH5α transformed with bla CTX-M-15 gene that was cloned from Enterobacter cloacae (EC-15) strain of clinical background. The effect of conventional β-lactamase inhibitors (clavulanic acid, sulbactam and tazobactam) on CTX-M-15 was also studied. We have found that tazobactam is the best among these inhibitors against CTX-M-15. The inhibition characteristic of tazobactam is defined by its very low IC50 value (6 nM), high affinity (K i = 0.017 µM) and better acylation efficiency (k +2/K′ = 0.44 µM−1s−1). It forms an acyl-enzyme covalent complex, which is quite stable (k +3 = 0.0057 s−1). Since increasing resistance has been reported against conventional β-lactam antibiotic-inhibitor combinations, we aspire to design a non-β-lactam core containing β-lactamase inhibitor. For this, we screened ZINC database and performed molecular docking to identify a potential non-β-lactam based inhibitor (ZINC03787097). The MICs of cephalosporin antibiotics in combination with this inhibitor gave promising results. Steady-state kinetics and molecular docking studies showed that ZINC03787097 is a reversible inhibitor which binds non-covalently to the active site of the enzyme through hydrogen bonds and hydrophobic interactions. Though, it’s IC50 (180 nM) is much higher than tazobactam, it has good affinity for CTX-M-15 (K i = 0.388 µM). This study concludes that ZINC03787097 compound can be used as seed molecule to design more efficient non-β-lactam containing β-lactamase inhibitor that could evade pre-existing bacterial resistance mechanisms.  相似文献   

20.
Gram-negative bacteria possess stress responses to maintain the integrity of the cell envelope. Stress sensors monitor outer membrane permeability, envelope protein folding, and energization of the inner membrane. The systems used by gram-negative bacteria to sense and combat stress resulting from disruption of the peptidoglycan layer are not well characterized. The peptidoglycan layer is a single molecule that completely surrounds the cell and ensures its structural integrity. During cell growth, new peptidoglycan subunits are incorporated into the peptidoglycan layer by a series of enzymes called the penicillin-binding proteins (PBPs). To explore how gram-negative bacteria respond to peptidoglycan stress, global gene expression analysis was used to identify Escherichia coli stress responses activated following inhibition of specific PBPs by the β-lactam antibiotics amdinocillin (mecillinam) and cefsulodin. Inhibition of PBPs with different roles in peptidoglycan synthesis has different consequences for cell morphology and viability, suggesting that not all perturbations to the peptidoglycan layer generate equivalent stresses. We demonstrate that inhibition of different PBPs resulted in both shared and unique stress responses. The regulation of capsular synthesis (Rcs) phosphorelay was activated by inhibition of all PBPs tested. Furthermore, we show that activation of the Rcs phosphorelay increased survival in the presence of these antibiotics, independently of capsule synthesis. Both activation of the phosphorelay and survival required signal transduction via the outer membrane lipoprotein RcsF and the response regulator RcsB. We propose that the Rcs pathway responds to peptidoglycan damage and contributes to the intrinsic resistance of E. coli to β-lactam antibiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号