首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuronal response in a cortical slab isolated from the cat during surface application of strychnine was investigated in experiments on immobilized unanesthetized animals by means of intracellular recording techniques. Protracted depolarizing potentials (PDP) were found to occur spontaneously and in response to a single intracortical electrical stimulus in a proportion of the neurons. These potentials could be triggered by transformation of response along the lines of "paroxysmal depolarizing shift" (PDS) — hyperpolarization, with hyperpolarization replaced by depolarizing potentials. A further increase in depolarizing after-potentials resulted in the generation of PDP. These changes were normally accompanied by enhanced summated epileptiform activity in the isolated cortical slab. It is postulated that PDP were triggered by increased calcium conductance at the neuronal membrane during intensification of paroxysmal response in the isolated cortical slab.I. I. Mechnikov University, Odessa. Translated from Neirofiziologiya, Vol. 22, No. 1, pp. 19–23, January–February, 1990.  相似文献   

2.
Neuronal response to single stimuli was investigated in a cortical slab isolated from immobilized cats before, during, and after onset of induced epileptic states. Neurons of the isolated cortical slab were found to generate EPSP and paroxysmal depolarizing shifts (PDS) in membrane potential (MP) during the development of generalized epileptoid activity; these occurred together with refractory periods. Duration of the latter corresponds with the PDS plateau and repolarizing shifts in MP. Single electrical stimuli induced gradual alteration in PDS as these shifts developed. Neurons still maintain their ability to generate PDS arising in response to presentation of single stimuli once ictal activity has ceased. Postsynaptic response is not thought to play a decisive role in the genesis of epileptoid activity. Nonspecific factors and especially alterations in the concentration of electrogenic ions apparently contribute to this phenomenon.I. I. Mechnikov State University, Odessa. Translated from Neirofiziologiya, Vol. 21, No. 2, pp. 198–204, March–April, 1989.  相似文献   

3.
4.
Neuronal responses in an isolated slab (area AI) to intracortical pulsed electrical stimulation at the level of layer IV were investigated extracellularly in acute experiments on cats immobilized with D-tubocurarine. Responding neurons were found in all layers of the slab. The character of their distribution by depth in the slab depended on the distance between recording and stimulating electrodes. The latent period of responses of different neurons ranged from 0.8 to 25 msec. With interelectrode distances of 0.5–2 mm most neurons responded mono- and disynaptically. However, responses of many neurons had a latent period of over 4 msec, i.e., they were polysynaptic. This indicates the complex character of interneuronal interactions, even in a limited area of the cortex. After intracortical stimulation no after-discharges with a latent period of over 40 msec could be recorded in the isolated slab of auditory cortex.I. I. Mechnikov Odessa State University. Translated from Neirofiziologiya, Vol. 14, No. 1, pp. 85–93, January–February, 1982.  相似文献   

5.
Neuronal responses of an isolated slab of auditory cortex (area AI) to intracortical stimulation at the level IV were studied in curarized cats by extracellular recording 3 weeks after isolation. Dispersion of response latencies in the isolated slab was reduced (compared with that observed soon after isolation); the predominant responses were mono- and disynaptic, and the number of discharges consisting of bursts of spikes increased. However, despite simplification of the structural and functional organization of the chronically isolated slab of auditory cortex, the conditions for complex polysynaptic interaction between neurons of all layers were preserved in it, and in each layer the character of such interaction depended on the distance of the neuron from the focus of origin of the excitation. [In the chronically isolated slab of auditory cortex, just as in the acutely isolated slab, late reponses of over 40 msec were absent.]I. I. Mechnikov Odessa State University. Translated from Neirofiziologiya, Vol. 14, No. 5, pp. 462–469, September–October, 1982.  相似文献   

6.
Characteristics of neuronal activity in an isolated cortical slab were investigated during the onset of seizure spikes induced by frequent and powerful stimulation of the slab during experiments on unanesthetized immobilized cats. A high degree of coordination between the activity of cellular elements was found in the focus of epileptiform activity studied: convulsive shifts in membrane potential exactly corresponding to electrocorticograms of convulsive activity waves were observed in all neurons studied using intracellular techniques. No action potentials occurred in the soma of any of these neurons, moreover. Bursting spike discharges were recorded from neurons of the isolated slab at the same time. Findings from extra- and intracellular recordings of activity in the same neurons showed that action potentials are generated during convulsive activity at certain trigger zones remote from the cell in question without involving the soma, from which convulsive shifts in membrane potentials were recorded simultaneously. Mechanisms possibly underlying the generation of spike activity in neurons of the isolated slab undergoing development of generalized convulsive state are discussed.I. I. Mechnikov State University, Odessa. Translated from Neirofiziologiya, Vol. 20, No. 3, pp. 357–365, May–June, 1988.  相似文献   

7.
Neuronal responses of an isolated slab of cortex to intracortical stimulation were studied intracellularly. The predominant responses were primary IPSPs. Their latent periods did not exceed 10 msec. Within the volume of cortex studied, neurons inhibited in response to stimulation were most numerous in the upper layers (II, III). Predominance of disynaptic IPSPs is evidence of the important role of cortical interneurons in their genesis. It is concluded from the results that primary IPSPs limit the spread of excitation primarily in the activated area of cortex. Since involvement of neurons of the isolated slab in the inhibition process takes place for only 10 msec after stimulation, neurons giving spike responses to intracortical stimulation with a longer latent period can transmit information into other brain zones. The role of duration of IPSP in the dynamics of interneuronal interaction in the cerebral cortex is discussed.I. I. Mechnikov Odessa State University. Translated from Neirofiziologiya, Vol. 16, No. 1. pp. 42–49, January–February, 1984.  相似文献   

8.
Small numbers of short- and long-axon cholinergic interneurons were revealed on a slab of association cortex three weeks after (neuronal) isolation from the cat by means of a histochemical acetylcholinesterase reaction. Short-axon neurons are located at layers II–VI and take the form of mainly spindle-shaped medium sized cells with their axons forming synaptic terminals on pyramidal and stellate neurons of the isolated section. Typical positioning of cholinergic terminals on the perikaryon and proximal portions of cholinoceptive neuron dendrites was noted. Pyramidal cholinoceptive cells may be classed as noncholinergic cells, whereas stellate cells may be either cholinergic or noncholinergic. Long-axon cholinergic interneurons of different shapes and sizes are situated at layers I and VI. Neuronal axons located in these layers run within fibers of the first and subcortical layers, establishing intracortical connections beyond the confines of the isolated section.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 1, pp. 60–66, January–February, 1989.  相似文献   

9.
Neuronal response in the caudate nucleus to presentation of a wide variety of visual and other sensory stimuli was investigated in waking cats. Pronounced discrepancies in background activity of unknown origin as well as differing neuronal activity level were noted in adjacent sections of the nucleus. Of the neurons from which readings of response to sensory stimulation could be made, some reacted to presentation of exclusively visual and others to tactile stimuli; a third group responded to a combination of visual and somatic stimulation only. Response could only be produced in cells of all types by a high level of activity in the animal. Visual stimuli attracting the animal's interest proved to be the most effective form of stimulation. Ipsi- and contralateral sides of the animal's body were both represented in the caudate nucleus of each hemisphere. Neuronal response in the caudate nucleus may be compared with that produced by application of similar stimuli in cells belonging to different cortical areas.Institute for Research on Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 1, pp. 3–10, January–February, 1990.  相似文献   

10.
Summation was studied by a procedure close to that used in producing a conditioned reflex. Subthreshold electrical stimulation, which gave rise to a dominant focus in the cat motor cortex, was applied after photic stimulation. Under these conditions, summation occurred both when the two stimuli were applied simultaneously and when the weaker stimulus preceded the stronger one by a very short interval (tens of milliseconds). Increased excitability was characteristic of the dominant focus. An excessive increase in excitability weakened the summation reflex. Electrographically, this type of conditioning was reflected in an increase in amplitude of the primary negative wave of the direct cortical response, recorded in the motor area at a distance of 2–3 mm from the stimulation point. It is concluded from analysis of this electrophysiological phenomenon and comparison of the results with data in the literature that different mechanisms are involved in the summation process during different sequences of stimulation ("photic+electrical" and "electrical+photic").Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 1, No. 3, pp. 293–302, November–December, 1969.  相似文献   

11.
Neuronal responses of an acutely isolated slab of auditory cortex (area AI) to intracortical electrical stimulation were studied intracellularly in cats anesthetized with pentobarbital. It was found that 77% of responses were primary IPSPs, and allowing for secondary inhibitory responses, an inhibitory response was observed in 92% of neurons. All types of neuronal responses in the slab were short-latency. The maximal response latency did not exceed 5 msec. Neurons responding to stimulation by IPSPs were found at all depths in the slab, with a maximum in layers II–III. Nearly all primary IPSPswere mono- and disynaptic. Pentobarbital increased the duration of individual neuronal inhibitory responses in the isolated slab of auditory cortex without affecting maximal duration of the IPSP. The mechanisms of the effect of pentobarbital on the amplitude and duration of IPSPs are discussed.I. I. Mechnikov Odessa State University. Translated from Neirofiziologiya, Vol. 16, No. 2, pp. 147–152, March–April, 1984.  相似文献   

12.
Vertically oriented bundles of apical dendrites in the cat motor cortex were studied by methods of light and electron microscopy. The presence of desmosome-like and dendro-dendritic contacts in the bundles is regarded as the structural basis for electrotonic interaction between neurons in the same column. Axo-spinous "en passant" contacts between the descending axon of the pyramids of layer III and the apical dendrite of pyramids in layer V, possibly serving to regulate the activity of the principal cortical output elements, are described.A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 8, No. 5, pp. 455–458, September–October, 1976.  相似文献   

13.
The early positive cortical evoked potential to somatosensory stimuli is regularly increased in amplitude in patients receiving lithium carbonate treatment. This may reflect a unique neurochemical effect of lithium since similar changes have not been observed in humans following other drugs. To investigate this finding, cortical evoked potentials to peripheral somatosensory stimulation were obtained in rats and cats with implanted epidural electrodes. In rats, increasing doses of oral lithium chloride, up to 5 meq/kg/d which approached the LD 50, produced no reliable change in the early positive evoked response amplitude. In cats, an increased amplitude of the early positive-negative cortical potential was observed in every instance and the serum lithium levels were within the range used clinically in humans. The increased cortical evoked response amplitude in cats did not directly correlate with serum lithium levels but was delayed 1 to 5 days after serum lithium levels reached their peak. The findings in cats are similar to the human studies. The negative results observed in rats may reflect important species differences regarding lithium.  相似文献   

14.
Neuronal response in the cat association cortex (area 5) to conditioned and non-conditioned acoustic stimulation was investigated. Numbers of neurons responding to a conditioned acoustic stimulus according to the traditional reflex pattern were twice as high. Numbers of inhibitory neuronal responses to the stimulus increased when instrumental reflex occurred. Neurons were found which only reacted to a conditioned acoustic stimulus in the absence of conditioned reflex movement occurring with instrumental food reflex. Although findings do not exclude the possibility of this cortical area contributing to the analysis of sensory signals and evaluation of their biological significance, it might be supposed that its main functional property lies in its involvement in the process of initiating behavioral response to a conditioned response.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 5, pp. 637–645, September–October, 1988.  相似文献   

15.
Responses of 46 neurons of the CA1 field, of the dorsal hippocampus to visual stimuli were investigated during acute experiments on awake cats following pretrigeminal brainstem action. The receptive field was small in size in 71% of hippocampal neurons. The cells responded both tonically (34%) and phasically (66%) to the presentation of immobile stimuli. All the test cells of the CA1 field of the dorsal hippocampus responded to moving visual stimuli and 27% of these neurons were directionally tuned. A group of 7% of the neurons displayed particular sensitivity to the movement of a dark spot across the receptive field; these cells frequently reacted more to a moving dark spot than to a bar. Findings indicate the presence of highly specific sensory neurons within the hippocampus.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 17, No. 6, pp. 779–786, November–December, 1985.  相似文献   

16.
Responses of 155 neurons 3 weeks after neuronal isolation of a slab of auditory cortex (area AI) to single intracortical stimulating pulses at the level of layer IV were studied in unanesthetized, curarized cats during paroxysmal electrical activity evoked by series of high-frequency (10–20 Hz) electrical stimulation by a current 2–5 times above threshold for the direct cortical response. In response to such stimulation a discharge of paroxysmal electrical activity, lasting from a few seconds to tens of seconds, appeared in the slab. As a rule it consisted of two phases — tonic and clonic. This indicates that cortical neurons can form both phases of paroxysmal cortical activity. Depending on behavior of the neurons during paroxysmal electrical activity and preservation of their ability to respond to intracortical stimulation at this time, all cells tested in the isolated slab were divided into four groups. Their distribution layer by layer and by duration of latent periods was studied. Two-thirds of the neurons tested were shown to generate spike activity during paroxysmal discharges whereas the rest exhibited no such activity. A special role of neurons in layer II in generation of paroxysmal activity in the isolated slab was noted. The view is expressed that at each moment functional neuronal circuits, independent of each other, exist in the slab and also, evidently in the intact cortex, which can interact with one another when conditions change.I. I. Mechnikov Odessa State University. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 3–11, January–February, 1984.  相似文献   

17.
Inhibitory components in the response evoked by presentation of mobile visual stimuli in neurons belonging to the lateral suprasylvian area of the cerebral cortex were investigated in cats. It was demonstrated by comparing poststimulus histograms of neuronal response to movement in two opposite directions that the location of discharge centers within the receptive fields changed in relation to movement direction. No spatial area giving rise to the inhibitory component of response could be found in any of the neurons with monotone stationary structure of their receptive fields. Findings from experiments involving techniques of stimulating a test area of the receptive field separately indicated that inhibitory components of response in neurons of the lateral suprasylvian area with monotone organization of the receptive field could represent inhibitory after-response following the neuronal excitation produced by the visual stimulus traveling across this field.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 19, No. 3, pp. 299–308, May–June, 1987.  相似文献   

18.
19.
It is well established that during cell secretion, membrane-bound secretory vesicles dock and fuse at the base of supramolecular cup-shaped structures at the cell plasma membrane called "porosomes", to expel intra-vesicular contents to the outside. In neurons, it has been demonstrated that 12-17 nm cup-shaped lipoprotein structure possessing a central plug are present at the presynaptic membrane, where 50 nm in diameter synaptic vesicles transiently dock and fuse to release neurotransmitter. In the past decade, the neuronal porosome has been isolated and its major chemical composition determined. Additionally, the porosome has been both structurally and functionally reconstituted into artificial lipid membrane, establishing its role as the secretory portal in neurons. Studies utilizing atomic force and electron microscopy, combined with electron density and 3D contour mapping, provide at the nanoscale, the structure and assembly of proteins within the neuronal porosome. In the current study, ultrahigh resolution imaging of the presynaptic membrane of isolated brains from both rats and cats, demonstrate for the first time, the presence of neuronal porosomes in cat brain, and further confirms the presence of porosomes at the presynaptic membrane in rat brain synaptosomes. Results from the present study further confirm the cup-shaped morphology of porosomes in the rat brain, and demonstrates their similar shape and size in the cat nerve terminal. The study also demonstrates for the first time, the universal presence of similar porosomes in different species of mammals.  相似文献   

20.
It is well established that during cell secretion, membrane-bound secretory vesicles dock and fuse at the base of supramolecular cup-shaped structures at the cell plasma membrane called “porosomes”, to expel intra-vesicular contents to the outside. In neurons, it has been demonstrated that 12–17 nm cupshaped lipoprotein structure possessing a central plug are present at the presynaptic membrane, where 50 nm in diameter synaptic vesicles transiently dock and fuse to release neurotransmitters. In the past decade, the neuronal porosome has been isolated and its major chemical composition determined. Additionally, the porosome has been both structurally and functionally reconstituted into artificial lipid membrane, establishing its role as the secretory portal in neurons. Studies utilizing atomic force and electron microscopy, combined with electron density and 3D contour mapping, provide at the nanoscale, the structure and assembly of proteins within the neuronal porosome. In the current study, ultrahigh resolution imaging of the presynaptic membrane of isolated brains from both rats and cats, demonstrate for the first time, the presence of neuronal porosomes in cat brain, and further confirms the presence of porosomes at the presynaptic membrane in rat brain synaptosomes. Results from the present study further confirm the cup-shaped morphology of porosomes in the rat brain, and demonstrates their similar shape and size in the cat nerve terminal. The study also demonstrates for the first time, the universal presence of similar porosomes in different species of mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号