首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The initiation region of the SV40 VP1 gene.   总被引:13,自引:0,他引:13  
The sequence of 15 nucleotides located at the 5' terminus of the plus strand of the SV40 Hind K fragment has been determined as (5') A-G-C-T-T-A-T-G-A-A-G-A-T-G-G (3'). The 3' on OH terminal G of this segment is part of the G-C-C codeword for the N terminal alanine of the VP1 protein. This region therefore presumably corresponds to a ribosome binding site on the 16S late mRNA. Complementarily to the 3' OH of eucaryotic 18S ribosomal RNA and homology with the BMV coat ribosome binding site are discussed.  相似文献   

2.
C Wychowski  S van der Werf  M Girard 《Gene》1985,37(1-3):63-71
The poliovirus cDNA fragment coding for capsid polypeptide VP1 was inserted between the EcoRI and BamHI sites of SV40 DNA, generating a chimaeric gene in which the sequence of the 302 amino acids (aa) of poliovirus capsid polypeptide VP1 was placed downstream from that of the 94 N-terminal aa of SV40 capsid polypeptide VP1. The resulting defective, hybrid virus, SV40-delta 1 polio, was propagated in CV1 cells using an early SV40 mutant, am404, as a helper. Cells doubly infected by SV40-delta 1 polio and am404 expressed a 50-kDal fusion protein which was specifically immunoprecipitated by polyclonal and/or monoclonal antibodies raised against poliovirus capsids or against poliovirus polypeptide VP1. Examination of the infected cells by immunofluorescence after staining with anti-poliovirus VP1 immune sera revealed that the fusion protein was mostly located in the intra- and perinuclear space of the cells, in contrast to the exclusively intracytoplasmic location of genuine poliovirus VP1 polypeptide that was observed in poliovirus-infected cells. This suggests that the N-terminal part of the SV40-VP1 polypeptide could contain an important sequence element acting as a migration signal for the transport of proteins from the cytoplasm to the nucleus.  相似文献   

3.
Rabbits were immunized with a synthetic heptapeptide of the sequence Arg-Asn-Arg-Ser-Ser-Arg-Ser corresponding to the carboxy-terminal region of the SV40 viral proteins VP2 and VP3. The raised antibodies recognize the viral proteins in enzyme-linked immunosorbent (ELISA) and Western blot assay. Specificity of the antibodies were confirmed by competition experiments. The antibodies recognize VP2 and VP3 in infected cells by immunofluorescence and in subcellular fractions by ELISA. No interaction with virions was observed.  相似文献   

4.
将鹅细小病毒(GPV)和番鸭细小病毒(MPV)主要结构蛋白(VP2-VP3)基因克隆到核酸疫苗质粒pIRESlneo载体上,构建了核酸疫苗重组质粒pIGVP1和pIMVP,通过脂质体转染法分别将重组质粒到鹅胚成纤维细胞和番鸭胚成纤维细胞中,核酸疫苗重组质粒pIGVP1和pIMVP分别转染鹅胚成纤维细胞和番鸭成纤维细胞中,于转染后72h收取细胞,细胞裂解液裂解后,经Western blot检测其表达产物可出现特异性反应带,证明表达产物具有很好的反应原性。  相似文献   

5.
DNA restriction fragments that are stably curved are usually identified by polyacrylamide gel electrophoresis because curved fragments migrate more slowly than normal fragments containing the same number of basepairs. In free solution, curved DNA molecules can be identified by transient electric birefringence (TEB) because they exhibit rotational relaxation times that are faster than those of normal fragments of the same size. In this article, the results observed in free solution and in polyacrylamide gels are compared for a highly curved 199-basepair (bp) restriction fragment taken from the VP1 gene in Simian Virus 40 (SV40) and various sequence mutants and insertion derivatives. The TEB method of overlapping fragments was used to show that the 199-bp fragment has an apparent bend angle of 46 +/- 2 degrees centered at sequence position 1922 +/- 2 bp. Four unphased A- and T-tracts and a mixed A3T4-tract occur within a span of approximately 60 bp surrounding the apparent bend center; for brevity, this 60-bp sequence element is called a curvature module. Modifying any of the A- or T-tracts in the curvature module by site-directed mutagenesis decreases the curvature of the fragment; replacing all five A- and T-tracts by random-sequence DNA causes the 199-bp mutant to adopt a normal conformation, with normal electrophoretic mobilities and birefringence relaxation times. Hence, stable curvature in this region of the VP1 gene is due to the five unphased A- and T- tracts surrounding the apparent bend center. Discordant solution and gel results are observed when long inverted repeats are inserted within the curvature module. These insertion derivatives migrate anomalously slowly in polyacrylamide gels but have normal, highly flexible conformations in free solution. Discordant solution and gel results are not observed if the insert does not contain a long inverted repeat or if the long inverted repeat is added to the 199-bp fragment outside the curvature module. The results suggest that long inverted repeats can form hairpins or cruciforms when they are located within a region of the helix backbone that is intrinsically curved, leading to large mobility anomalies in polyacrylamide gels. Hairpin/cruciform formation is not observed in free solution, presumably because of rapid conformational exchange. Hence, DNA restriction fragments that migrate anomalously slowly in polyacrylamide gels are not necessarily stably curved in free solution.  相似文献   

6.
Infectious pancreatic necrosis virus (IPNV), a member of the family Birnaviridae, infects young salmon, with a severe impact on the commercial sea farming industry. Of the five mature proteins encoded by the IPNV genome, the multifunctional VP3 has an essential role in morphogenesis; interacting with the capsid protein VP2, the viral double-stranded RNA (dsRNA) genome and the RNA-dependent RNA polymerase VP1. Here we investigate one of these VP3 functions and present the crystal structure of the C-terminal 12 residues of VP3 bound to the VP1 polymerase. This interaction, visualized for the first time, reveals the precise molecular determinants used by VP3 to bind the polymerase. Competition binding studies confirm that this region of VP3 is necessary and sufficient for VP1 binding, while biochemical experiments show that VP3 attachment has no effect on polymerase activity. These results indicate how VP3 recruits the polymerase into birnavirus capsids during morphogenesis.  相似文献   

7.
For nonenveloped viruses such as Simian Virus 40, the mechanism used to translocate viral components across membranes is poorly understood. Previous results indicated that the minor structural proteins, VP2 and VP3, might act as membrane proteins during infection. Here, purified VP2 and VP3 were found to form pores in host cell membranes. To identify possible membrane domains, individual hydrophobic domains from VP2 and VP3 were expressed in a model protein and tested for their ability to integrate into membranes. Several domains from the late proteins supported endoplasmic reticulum membrane insertion as transmembrane domains. Mutations in VP2 and VP3 were engineered that inhibited membrane insertion and pore formation. When these mutations were introduced into the viral genome, viral propagation was inhibited. This comprehensive approach revealed that the viroporin activity of VP2 and VP3 was inhibited by targeted disruptions of individual hydrophobic domains and the loss of membrane disruption activity impaired viral infection.  相似文献   

8.
Presentation of linear epitopes of the B19 parvovirus capsid proteins as peptides might be a useful vaccine strategy. We produced overlapping fusion proteins to span the viral capsid sequence, inoculated rabbits, and determined whether the resulting antisera contained antibodies that neutralized the ability of the virus to infect human erythroid progenitor cells. Antibodies that bound to virus in an enzyme-linked immunosorbent assay were present in antisera raised against 10 of 11 peptides; strongest activity was found for antisera against the carboxyl-terminal half of the major capsid protein. However, strong neutralizing activity was elicited in animals immunized with peptides from the amino-terminal portion of the unique region of the minor capsid protein and peptides containing the sequence of the junction region between the minor and major capsid proteins. The development of neutralizing activity in animals was elicited most rapidly with the fusion peptide from the first quarter of the unique region. A 20-amino-acid region of the unique region of the minor capsid protein was shown to contain a neutralizing epitope. Multiple antigenic peptides, based on the sequence of the unique region and produced by covalent linkage through a polylysine backbone, elicited strong neutralizing antibody responses. Synthetic peptides and fusion proteins containing small regions of the unique portion of the minor capsid protein might be useful as immunogens in a human vaccine against B19 parvovirus.  相似文献   

9.
Overlapping redundant short oligomers in DNA sequences of retroviruses and papovaviruses have been identified. For each sequence, a search procedure determines the 5% short oligomers of the same length with the highest ratios of observed to expected occurrences based on singlet composition of the sequence. These short oligomers are referred to as compositionally-assessed redundant sequence elements (COARSEs). A pair of COARSEs overlapping by at least one base is considered to be a COARSE overlap. Most COARSE overlaps of the 7th order (overlapping septuplets) are found in long terminal repeats of retroviruses and in the regulatory control regions of papovaviruses SV40, BK and JC. Many of the 7th order COARSE overlaps in HIV-1 and SV40 are identical with regulatory elements determined experimentally. On the contrary, very few of the most frequently occurring oligomer overlaps, which are defined differently from COARSE overlaps, are present in the regulatory regions of retroviruses and papovaviruses. Examining DNA sequences of other genomes by the COARSE overlap method may identify putative regulatory regions.  相似文献   

10.
Nonenveloped viruses such as Simian Virus 40 (SV40) exploit established cellular pathways for internalization and transport to their site of penetration. By analyzing mutant SV40 genomes that do not express VP2 or VP3, we found that these structural proteins perform essential functions that are regulated by VP1. VP2 significantly enhanced SV40 particle association with the host cell, while VP3 functioned downstream. VP2 and VP3 both integrated posttranslationally into the endoplasmic reticulum (ER) membrane. Association with VP1 pentamers prevented their ER membrane integration, indicating that VP1 controls the function of VP2 and VP3 by directing their localization between the particle and the ER membrane. These findings suggest a model in which VP2 aids in cell binding. After capsid disassembly within the ER lumen, VP3, and perhaps VP2, oligomerizes and integrates into the ER membrane, potentially creating a viroporin that aids in viral DNA transport out of the ER.  相似文献   

11.
SV40 T antigen binds to SV40 DNA. Using a series of purified SV40 DNA restriction fragments, we have obtained evidence indicating that the antigen preferentially binds to three specific regions. These binding regions are contained within Endo R-Hin d(II + III) A, B, and C.  相似文献   

12.
SV40 is a small, non enveloped DNA virus with an icosahedral capsid of 45 nm. The outer shell is composed of pentamers of the major capsid protein, VP1, linked via their flexible carboxy-terminal arms. Its morphogenesis occurs by assembly of capsomers around the viral minichromosome. However the steps leading to the formation of mature virus are poorly understood. Intermediates of the assembly reaction could not be isolated from cells infected with wt SV40. Here we have used recombinant VP1 produced in insect cells for in vitro assembly studies around supercoiled heterologous plasmid DNA carrying a reporter gene. This strategy yields infective nanoparticles, affording a simple quantitative transduction assay. We show that VP1 assembles under physiological conditions into uniform nanoparticles of the same shape, size and CsCl density as the wild type virus. The stoichiometry is one DNA molecule per capsid. VP1 deleted in the C-arm, which is unable to assemble but can bind DNA, was inactive indicating genuine assembly rather than non-specific DNA-binding. The reaction requires host enzymatic activities, consistent with the participation of chaperones, as recently shown. Our results demonstrate dramatic cooperativity of VP1, with a Hill coefficient of approximately 6. These findings suggest that assembly may be a concerted reaction. We propose that concerted assembly is facilitated by simultaneous binding of multiple capsomers to a single DNA molecule, as we have recently reported, thus increasing their local concentration. Emerging principles of SV40 assembly may help understanding assembly of other complex systems. In addition, the SV40-based nanoparticles described here are potential gene therapy vectors that combine efficient gene delivery with safety and flexibility.  相似文献   

13.
Using previously described technique of hybridization end-labeling, we analysed nucleosomal organization of the regulatory region of SV40 minichromosome. We showed that DNAase II, in spite of certain specificity observed on the naked DNA, cut the minichromosome in a highly specific manner with the major hypersensitive site inside the enhancer. This hypersensitivity and that to micrococcal nuclease were not found when the chromosome of mature SV40 virions was tested.  相似文献   

14.
Virus-like particles (VLPs), a promising next-generation drug delivery vehicle, can be formed in vitro using a recombinant viral capsid protein VP1 from SV40. Seventy-two VP1 pentamers interconnect to form the T = 7d lattice of SV40 capsids, through three types of C-terminal interactions, alpha-alpha'-alpha', beta-beta' and gamma-gamma. These appear to require VP1 conformational switch, which involve in particular the region from amino acids 301-312 (herein Region I). Here we show that progressive deletions from the C-terminus of VP1, up to 34 amino acids, cause size and shape variations in the resulting VLPs, including tubular formation, whereas deletions beyond 34 amino acids simply blocked VP1 self-assembly. Mutants carrying in Region I point mutations predicted to disrupt alpha-alpha'-alpha'-type and/or beta-beta'-type interactions formed small VLPs resembling T = 1 symmetry. Chimeric VP1, in which Region I of SV40 VP1 was substituted with the homologous region from VP1 of other polyomaviruses, assembled only into small VLPs. Together, our results show the importance of the integrity of VP1 C-terminal region and the specific amino acid sequences within Region I in the assembly of normal VLPs. By understanding how to alter VLP sizes and shapes contributes to the development of drug delivery systems using VLPs.  相似文献   

15.
C Wychowski  D Benichou    M Girard 《The EMBO journal》1986,5(10):2569-2576
In order to identify the determinants responsible for the nuclear migration of simian virus 40 (SV40) polypeptide VP1, the 5'-terminal portion of the SV40 VP1 gene was fused with the complete cDNA sequence of poliovirus capsid polypeptide VP1 and the hybrid gene was inserted into an SV40 vector in place of the normal SV40 VP1 gene. Deletions of various length were generated in the SV40 VP1 portion of the hybrid gene, resulting in a set of truncated genes encoding 2-40 NH2-terminal amino acids from SV40 VP1, followed by poliovirus VP1. Monkey kidney cells were infected by the deleted hybrid viruses in the presence of an early SV40 amber mutant as helper, and the subcellular localization of the fusion proteins was determined by indirect immunofluorescence using an anti-poliovirus VP1 immune serum. The presence of the first 11 NH2-terminal amino acids from SV40 VP1 was found to be sufficient to target the fusion protein to the cell nucleus. Deletions extending from the NH2- towards the COOH-terminal end of the protein were next generated. Transport of the SV40 VP1-poliovirus VP1 fusion polypeptide to the nucleus was abolished when the first eight amino acids from SV40 VP1 were deleted. Thus the sequence of the first eight NH2-terminal amino acids of SV40 VP1 appears to contain a nuclear migration signal which is sufficient to target the protein to the cell nucleus.  相似文献   

16.
根据国外巳发表的鹅细小病毒(GPV)A株基因组核苷酸序列,设计并合成了一对用于GPV主要结构蛋白(VP2-VP3)基因表达的引物。利用合成的引物,扩增并鉴定了GPV中国长春株(GPV CC株)的VP2-VP3基因。将扩增的目的的基因插入到原核表达载体pET28(a)的多克隆位点,构建了表达GPV,VP2-VP3基因的原核载体pEGVP1。重组表达载体质粒转化BL21宿主菌,经IPTG诱导,SDS-PAGE检测到大小分别为75000和58000的表达蛋白带。Western blot分析表明,表达产物具有很好的特异性。  相似文献   

17.
We have determined the nucleotide sequence of the DNA of simian virus 40. The proceeding report (Dhar, R., Reddy, V.B., and Weissman, S.M. (1978) J. Biol. Chem. 253, 612-620) presents the sequence of a portion of the simian virus 40 DNA that overlaps the region encoding the 5' end of the minor structural protein VP2. We report here the sequence of the remainder of the genes for minor structural proteins VP2 and VP3. The results indicate that the mRNA for the two proteins is read in the same phase and the initiation site for VP3 lies within the structural gene of VP2. The codons of the COOH-terminal amino acids of VP2 and VP3 are read in a second phase as the codons of the NH2-terminal amino acids of VP1.  相似文献   

18.
19.
Studies of simian virus 40 DNA. VII. A cleavage map of the SV40 genome   总被引:91,自引:0,他引:91  
A physical map of the Simian virus 40 genome has been constructed on the basis of specific cleavage of Simian virus 40 DNA by bacterial restriction endonucleases. The 11 fragments produced by enzyme from Hemophilus influenzae have been ordered by analysis of partial digest products and by analysis of an overlapping set of fragments produced by enzyme from Hemophilus parainfluenzae. In addition, the single site in SV40 DNA cleaved by the Escherichia coli RI restriction endonuclease has been located. With this site as a reference point, the H. influenzae cleavage sites and the H. parainfluenzae cleavage sites have been localized on the map.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号