首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The generation of morphological, such as left-right, asymmetry during development is an integral part of the establishment of a body plan. Until recently, the molecular basis of left-right asymmetry was a mystery, but studies indicate that Nodal and the Lefty proteins, transforming growth factor-beta-related molecules, have a central role in generating asymmetric signals. Although the initial mechanism of symmetry breaking remains unknown, developmental biologists are beginning to analyse the pathway that leads to left-right asymmetry establishment and maintenance.  相似文献   

3.
Nodal flow and the generation of left-right asymmetry   总被引:3,自引:0,他引:3  
Hirokawa N  Tanaka Y  Okada Y  Takeda S 《Cell》2006,125(1):33-45
The establishment of left-right asymmetry in mammals is a good example of how multiple cell biological processes coordinate in the formation of a basic body plan. The leftward movement of fluid at the ventral node, called nodal flow, is the central process in symmetry breaking on the left-right axis. Nodal flow is autonomously generated by the rotation of cilia that are tilted toward the posterior on cells of the ventral node. These cilia are built by transport via the KIF3 motor complex. How nodal flow is interpreted to create left-right asymmetry has been a matter of debate. Recent evidence suggests that the leftward movement of membrane-sheathed particles, called nodal vesicular parcels (NVPs), may result in the activation of the non-canonical Hedgehog signaling pathway, an asymmetric elevation in intracellular Ca(2+) and changes in gene expression.  相似文献   

4.
Regulation of left-right asymmetry by thresholds of Pitx2c activity   总被引:3,自引:0,他引:3  
Although much progress has been made in understanding the molecular mechanisms regulating left-right asymmetry, the final events of asymmetric organ morphogenesis remain poorly understood. The phenotypes of human heterotaxia syndromes, in which organ morphogenesis is uncoupled, have suggested that the early and late events of left-right asymmetry are separable. The Pitx2 homeobox gene plays an important role in the final stages of asymmetry. We have used two new Pitx2 alleles that encode progressively higher levels of Pitx2c in the absence of Pitx2a and Pitx2b, to show that different organs have distinct requirements for Pitx2c dosage. The cardiac atria required low Pitx2c levels, while the duodenum and lungs used higher Pitx2c doses for normal development. As Pitx2c levels were elevated, the duodenum progressed from arrested rotation to randomization, reversal and finally normal morphogenesis. In addition, abnormal duodenal morphogenesis was correlated with bilateral expression of Pitx2c. These data reveal an organ-intrinsic mechanism, dependent upon dosage of Pitx2c, that governs asymmetric organ morphogenesis. They also provide insight into the molecular events that lead to the discordant organ morphogenesis of heterotaxia.  相似文献   

5.
Current models of left-right asymmetry hold that an early asymmetric signal is generated at the node and transduced to lateral plate mesoderm in a linear signal transduction cascade through the function of the Nodal signaling molecule. The Pitx2 homeobox gene functions at the final stages of this cascade to direct asymmetric morphogenesis of selected organs including the heart. We previously showed that Pitx2 regulated an asymmetric pathway that was independent of cardiac looping suggesting a second asymmetric cardiac pathway. It has been proposed that in the cardiac outflow tract Pitx2 functions in both cardiac neural crest, as a target of canonical Wnt-signaling, and in the mesoderm-derived cardiac second lineage. We used fate mapping, conditional loss of function, and chimera analysis in mice to investigate the role of Pitx2 in outflow tract morphogenesis. Our findings reveal that Pitx2 is dispensable in the cardiac neural crest but functions in second lineage myocardium revealing that this cardiac progenitor field is patterned asymmetrically.  相似文献   

6.
7.
Handed asymmetry of the shape and position of the internal organs is found in all vertebrates, and is essential for normal cardiac development. Recent genetic and embryological experiments in mouse embryos have demonstrated that left-right asymmetry is established by directional flow of extraembryonic fluid surrounding the node, which is driven by motile monocilia.  相似文献   

8.
9.
10.
The heart is the first organ to form and function in the vertebrate embryo. Furthermore, differences between the left and right sides of the embryo become first detectable during cardiac development. We observed strong cardiac laterality phenotypes in medaka embryos by manipulating Groucho protein activity. The phenotypes produced by misexpressing Tle4 and the dominant-negative Aes reveal a general effect of these corepressor proteins on left-right (LR) development. With the help of an inducible expression system, we were able to define temporally different phases for these effects. In an early phase during gastrulation, Groucho proteins regulate Brachyury expression in the dorsal forerunner cells, which later gives rise to the Kupffer's vesicle (KV). The interference of endogenous Groucho proteins by misexpression of Aes leads to KVs of reduced size, whereas overexpression of Tle4 results in enlarged KVs. The expression level of the cilia marker Lrd was also affected both positively and negatively from these treatments. In the late phase during somitogenesis, Groucho proteins regulate the asymmetric activities of Nodal and Lefty genes. Altering canonical Wnt signaling produced similar results in late embryos, however, this did not affect KV morphogenesis or Lrd expression in early embryos. Therefore, changes in Kupffer's vesicle morphogenesis and the laterality of visceral organs following alterations in Groucho corepressor levels demonstrate two distinct phases in which Groucho proteins help establish LR asymmetry in medaka fish.  相似文献   

11.
12.
All vertebrates have directional asymmetries in the organization of their internal organs. In jawed vertebrates, development of asymmetry is controlled by a conserved molecular pathway that includes Pitx2, which is expressed by lateral plate mesoderm cells on the left side of the embryo. Pitx2 is a member of the Pitx homeobox gene family, the expression of which also marks stomodeal ectoderm and the adenohypophysis. Here we report the characterization of Pitx genes from Branchiostoma floridae (an amphioxus) and Ciona intestinalis (a urochordate), representatives of two basal chordate lineages and successively deeper outgroups to the vertebrates. Expression of B. floridae Pitx is similar to that reported from B. belcheri, a different amphioxus species. Expression of the Ciona Pitx ortholog in the embryonic primordial pharynx and adult neural complex leads us to propose the Ciona primordial pharynx and ciliated funnel are homologous to the adenohypophyseal placode and adenohypophysis, respectively. Additionally, in both species we identify asymmetrical left-sided expression of Pitx genes during embryonic development. This shows that asymmetrical Pitx gene expression, and by inference directional asymmetry, evolved before the radiation of living chordates and should be considered a chordate character.  相似文献   

13.
The spatiotemporally dynamic distribution of instructive ligands within embryonic tissue, and their feedback antagonists, including inherent stabilities and rates of clearance, are affected by interactions with cell surfaces or extracellular matrix (ECM). Nodal (here, Xnr1 or Nodal1 in Xenopus) and Lefty interact in a cross-regulatory relationship in mesendoderm induction, and are the conserved instructors of left-right (LR) asymmetry in early somitogenesis stage embryos. By expressing Xnr1 and Lefty proproteins that produce mature functional epitope-tagged ligands in vivo, we found that ECM is a principal surface of Nodal and Lefty accumulation. We detected Lefty moving faster than Nodal, with evidence that intact sulfated proteoglycans in the ECM facilitate the remarkable long distance movement of Nodal. We propose that Nodal autoregulation substantially aided by rapid ligand transport underlies the anteriorward shift of Nodal expression in the left LPM (lateral plate mesoderm), and speculate that the higher levels of chondroitin-sulfate proteoglycan (CSPG) in more mature anterior regions provide directional transport cues. Immunodetection and biochemical analysis showed transfer of Lefty from left LPM to right LPM, providing direct evidence that left-side-derived Lefty is a significant influence in ensuring the continued suppression of right-sided expression of Nodal, maintaining unilateral expression of this conserved determinant of asymmetry.  相似文献   

14.
15.
Cellular and molecular left-right differences that are present in the mesodermal heart fields suggest that the heart is lateralized from its inception. Left-right asymmetry persists as the heart fields coalesce to form the primary heart tube, and overt, morphological asymmetry first becomes evident when the heart tube undergoes looping morphogenesis. Thereafter, chamber formation, differentiation of the inflow and outflow tracts, and position of the heart relative to the midline are additional features of heart development that exhibit left-right differences. Observations made in human clinical studies and in animal models of laterality disease suggest that all of these features of cardiac development are influenced by the embryonic left-right body axis. When errors in left-right axis determination happen, they almost always are associated with complex congenital heart malformations. The purpose of this review is to highlight what is presently known about cardiac development and upstream processes of left-right axis determination, and to consider how perturbation of the left-right body plan might ultimately result in particular types of congenital heart defects.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号