首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytotoxicities of two platinum(IV) complexes of formula [PtX2(eddp)].nH2O (eddp=ethylenediamine-N,N'-di-3-propionate, X=chloro [I] or bromo [II], n=1 or 1.24) are reported. The complexes have been obtained by direct reaction of potassium hexahaloplatinate(IV) with H2eddp.2HCl followed by addition of a base (LiOH). The crystal and molecular structure has confirmed that the complex with bromo ligands, similarly to the complex with chloro ligands previously reported, has trans configuration of the halogens. In both the chloro and bromo complexes there appear to be intramolecular N-H...X interactions which account for a narrowing of the corresponding X-Pt-N angles below 90degrees. The trans isomer (configuration index OC-6-13, two nitrogens and two oxygens of eddp bound in the equatorial plane) is the only one obtained in the reaction of hexahaloplatinate(IV) with the eddp ligand while a similar reaction performed with ethylenediamine-N,N'-diacetate (edda) affords exclusively the symmetrical cis-isomer (configuration index OC-6-33, equatorial nitrogen and axial oxygen atoms of edda). The longer chain of the propionato groups (as compared to the acetato ones) is responsible for such a change in preferred configuration. NMR data have revealed a very large diastereotopic splitting of the propionato methylene protons to the nitrogens (0.88 ppm). The trans disposition of the halogen ligands in the compounds with eddp leads to deactivation of platinum(IV) complexes in comparison to those with edda having cis disposition of the leaving chlorides (human ovarian cancer cell line A2780, IC50 [muM] of 92.6 +/- 12 and 30.3 +/- 7.5 for [I] and [II], respectively).  相似文献   

2.
The complexes CuX2L2 (X = Cl, Br; L = 2-aminobenzophenone) were prepared and characterized by means of magnetic and spectroscopic measurements. For the Cl compound the crystal structure was also determined. Crystals are triclinic, space group P1, with a = 13.397(3), b = 10.752(2), c = 9.205(2) Å, α = 72.26(1)°, β = 91.58(1)°, γ = 106.86(1)°, and Z = 2. The structure was solved by the heavy-atom method and refined by least-squares calculations to R = 0.034 for 2581 counter data. It consists of discrete CuX2L2 monomers showing distorted trigonal bipyramidal coordination geometry about the copper ion. The amino nitrogens are axial ligands, with the equatorial positions occupied by two chlorine atoms and a carbonyl oxygen from one L molecule acting as a bidentate ligand. Infrared and ligand field spectroscopies and magnetic measurements, interpreted on the basis of the known crystal structure, also suggest a similar structure for the related Br compound.  相似文献   

3.
The first crystal and molecular structure of a transition metal complex containing 1,2-dithiocroconate (1,2-dtcr, dianion of 1,2-dimercaptocylopent-1-ene-3,4,5-trione), [Cu(bpca)(H2O)]2[Cu(1,2-dtcr)2]·2H2O (where bpca is the bis(2-pyrdidylcarbonyl)amide anion), has been determined by single crystal X-ray diffraction methods. The compound crystallizesin the monoclinic syste, space group P21/c, with a = 11.661(3), b = 20.255(6), c = 8.265(3) Å, ß = 107.26(2)° and Z = 2. The structure is formally built of [Cu(1,2-dtcr)2]2− and [Cu(bpca)(H2O)]+ ions and water of hydration. The copper atom of the anion is situated at a crystallographic inversion centre, bonded to four sulfur atoms in a planar, approximately square arrangement. In the cation the copper equatorial plane is formed by the three nitrogen atoms of the bpca ligand and a water oxygen atom. In addition there is a very weak axial bond to one of the sulfur atoms of a 1,2-dtcr ligand in the anion. Through these latter weak bonds each anion is connected to, and sandwiched between, two cations, resulting in neutral, trinuclear, centrosymmetric formula units. The triple-decker molecules are arranged in stacks along the crystallographic a-axis creating close contacts between the terminal copper atoms and bpca groups of the neighbouring molecules. This intermolecular interaction is, however, too weak to define the structure as a chain compound. The distance between adjacent copper atoms within the trinuclear unit is 4.189(1) Å, while the shortest intra-stack metal-metal separation between terminal copper atoms is 5.281(1) Å. Variable-temperature magnetic susceptibility measurements in the temperature r.2–140 K reveal that a Curie law is followed; with three non-interacting copper(II) ions in the formula unit.  相似文献   

4.
The synthesis, structure and spectroscopic properties on complexes with the formula [Cu(Lm)2] (1) and Cu(NO3)2(HLm)2 (2), where HLm = thiophene-2-carbaldehyde thiosemicarbazone, have been developed. The molecular structure of compound 1 consists of monomeric entities. The copper(II) ions exhibit distorted square-planar geometry with both bidentate thiosemicarbazone ligands placed in a centrosymmetric way. Metal to ligand pi-backdonation is proposed to explain several structural and spectroscopic features in these complexes. The EPR spectra of compound 1 show an orthorhombic g tensor indicating the presence of weak magnetic exchange interactions. The reaction of compound 1 with glutathione causes the reduction of the metal ion and the substitution of the thiosemicarbazone ligand by the thiol ligand. This mechanism seems to be related to the cytotoxicity of this complex against Friend Erithroleukemia cells (FLC) and melanome B16F10 cells.  相似文献   

5.
Five-coordinate technetium(V) complexes of the form TcO(L)Cl where L is one of the two tridentate Schiff base ligands N-(2-oxidophenyl)salicylideneiminate or N-(2-mercaptophenyl)salicylideneiminate have been synthesized and characterized. These neutral complexes precipitate from methanol upon reaction of the Schiff base ligand with TcOCl4?. A single crystal X-ray structure determination shows that the chloro [[N-(2-oxidophenyl)salicylideneiminato](2?)-N,O,O′]oxotechnetium(V) complex, [TcO(C13H9NO2)Cl], formula weight 362, has a distorted square pyramidal coordination geometry with the oxo ligand in the axial position. The steric requirements of the oxo group cause the Tc atom to be displayed 0.67 Å out of the mean equatorial plane of the other four donor atoms. This complex crystallizes in the monoclinic space group P21/a with a = 13.423(6) Å, b = 12.570(5) Å, c = 7.769(3) Å, β = 106.53(5)°, V = 1256.7(9) Å3, and Z = 4. The structure has been refined to R = 0.047 for 1775 observed reflections.  相似文献   

6.
The crystal structure, magnetic, redox and spectroscopic properties of a novel unsymmetrical dinuclear copper(II) complex, prepared by the reaction between copper(II) perchlorate, sodium acetate and the unsymmetrical, binucleating ligand HTPPNOL, where HTPPNOL is N,N,N′-tris-(2-pyridylmethyl)-1,3-diaminopropan-2-ol, is reported. HTPPNOL (1 equiv.) reacted with 1 equiv. of copper(II) ion, in methanol, and produced the mononuclear copper complex [Cu(TPPNOL)](ClO4)(BPh4) (1). On the other hand, the reaction of 1 equiv. of HTPPNOL with 2 equiv. each of copper (II) ion and acetate, in methanol, produced the dinuclear complex [Cu2(TPPNOL)(OOCCH3)](ClO4)2 (2), whose structure has been determined by X-ray diffraction. In complex 2, as a result of the inherent asymmetry of the ligand HTPPNOL, one copper ion is five-coordinated (distorted trigonal-bipyramidal) while the other copper is four-coordinated (distorted square-planar). Then, as a result of the presence of distinct geometries for the metal centres, complex 2 exhibits a ferromagnetic coupling (J=+25.41 cm−1). Titration experiments carried out on the dinuclear complex suggest a pKa=8.0, which was related to the aquo/hydroxo equilibrium. Complex 2 is able to oxidise 3,5-di-tert-butylcatechol to the respective o-quinone. The oxidation reaction was studied by following the appearance of the quinone spectrophotometrically, at pH 8.0 and 25 °C.  相似文献   

7.
A series of platinum(II) and (IV) monoadducts of the type [Pt(II)(DACH)LCl]NO3 and [Pt(IV)(DACH)trans-(X)2LCl]NO3 (where DACH=trans-1R,2R-diaminocyclohexane, L=adenine, guanine, hypoxanthine, cytosine, adenosine, guanosine, inosine, cytidine, 9-ethylguanine (9-EtGua), or 1-methylcytosine and X=hydroxo or acetato ligand) have been synthesized and characterized by elemental analysis and by 1H and 195Pt nuclear magnetic resonance (NMR) spectroscopy. The crystal structure of the model nucleobase complex [Pt(IV)(trans-1R,2R-diaminocyclohexane)trans-(acetate)2(9-EtGua)Cl]NO3.H2O was determined using a single crystal X-ray diffraction method. The compound crystallized in the monoclinic space group P2(1), with a=10.446(2) A, b=22.906(5) A, c=10.978(2) A, Z=4, and R=0.0718, based upon the total of 11,724 collected reflections. In this complex, platinum had a slightly distorted octahedron geometry owing to the presence of a geometrically strained five-member ring. The two adjacent corners of the platinum plane were occupied by the two amino nitrogen of DACH, whereas, the other two equatorial positions occupied by chloride ion and 9-ethylguanine. The remaining two axial positions were occupied by the oxygen atoms of acetato ligands. The DACH ring was in a chair configuration. An intricate network of intermolecular hydrogen bonds held the crystal lattice together. Some of these synthesized models of DACH-Pt-DNA adducts have good in vitro cytotoxic activity against the cisplatin-sensitive human cancer ovarian A2780 cell line (IC50=1-8 microM). Interestingly, a substituted nucleobase (9-ethylguanine) adduct was over 6-fold more potent than regular adducts. The cross-resistance factor against the 44-fold cisplatin-resistant 2780CP/clone 16 cells was about 3-9; thus, the cytotoxicity of adducts was indicative of low potency, but the resistance factors were also substantially low. These results suggest that DNA adducts of DACH-Pt are cytotoxic with low cross-resistance.  相似文献   

8.
We wish to report the synthesis of the Ru(II) crown thioether complex, (1,4,7,10,13-pentathiacyclopentadecane)chlororuthenium(II) hexafluorophosphate, [Ru([15]aneS5)Cl](PF6), and a study of its properties utilizing single crystal X-ray diffraction, electronic spectroscopy, NMR spectroscopy, density functional theory calculations and cyclic voltammetry. The crystal structure shows a single [15]aneS5 macrocycle and a chloro ligand coordinated in a distorted octahedral fashion around the ruthenium(II) center. A significant shortening (0.15 Å) of the trans Ru-S bond length occurs in this complex compared to the related PPh3 complex (2.4458(10) to 2.283(1) Å) due to the differences in the trans influence of the two ligands. 13C NMR spectroscopy demonstrates that the structure of [Ru([15]aneS5)Cl]+ is retained in solution. As expected for a Ru(II) complex, the electronic absorption spectrum shows two d-d transitions at 402 and 331 nm. These are red-shifted compared to hexakis(thioether)ruthenium(II) complexes and consistent with the weaker ligand field effect of the chloro ligand. The electrochemical behavior of the complex in acetonitrile shows a single one-electron reversible oxidation-reduction at +0.722 V versus Fc/Fc+ which is assigned as the Ru(II)/Ru(III) couple. DFT calculations for [Ru([15]aneS5)Cl]+ show a HOMO with orbital contributions from a t2g type orbital of the Ru ion, a π component from a p orbital of the axial S atom of [15]aneS5, and a p orbital of the chloro ligand while the LUMO consists of orbital contributions of dx2-y2 orbital of the Ru center and p orbitals of the four equatorial S donors.  相似文献   

9.
《Inorganica chimica acta》2004,357(5):1457-1464
We have carried out the synthesis of the cadmium coordination compounds [Cd(NO3)2(PyTT)(H2O)] (1) and [CdCl2{(μ-Cl)2CdCl(μ-Cl)(μ-PyTT)Cd}2]n (2), together with their structural determination by means of X-ray diffraction. The compounds were also characterized through elemental analysis and infrared spectroscopy. The first complex presents a distorted pentagonal bipyramidal geometry with the axial positions occupied by one oxygen atom from a water molecule and a second one from a nitrate ion which acts as a monodentate ligand, whereas the equatorial plane contains three nitrogen atoms from the organic moiety and two oxygen atoms coming from the other nitrate group, which is bidentate. The structure of the second complex consists of parallel sheets linked by van der Waals forces, each one made up of structural units [CdCl2{(μ-Cl)2CdCl(μ-Cl)(μ-PyTT)Cd}2], which possesses two PyTT ligands, 10 bridging chloro ligands and 5 cadmium(II) centres belonging to three environment types: octahedral CdN2Cl4, octahedral CdCl6, on which a centre of symmetry is located, and tetrahedral CdNCl3, present in a 2:1:2 ratio.  相似文献   

10.
Previous investigations of the potential of metal-organic compounds as inhibitors of human immunodeficiency virus type I protease (HIV-1 PR) showed that the copper(II) complex diaqua [bis(2-pyridylcarbonyl)amido] copper(II) nitrate dihydrate and the complex bis[N2-(2,3,6-trimethoxybenzyl)-4-2-pyridinecarboxamide] copper(II) behaved as inhibitors of HIV-1 PR. In a search for similar readily accessible ligands, we synthesised and studied the structural properties of N2-(2-pyridylmethyl)-2-pyridinecarboxamide (L) copper(II) complexes. Three different crystal structures were obtained. Two were found to contain ligand L simultaneously in a tridentate and bidentate conformation [Cu(L(tri)L(bi))]. The other contained two symmetry-related ligands, coordinated through the pyridine nitrogen and the amide oxygen atoms [Cu(L(bi))(2)]. A search of the Cambridge Structural Database indicated that L(tri) resulting from nitrogen bound amide hydrogen metal substitution is favoured over chelation through the amide oxygen atom. In our case, we calculated that the conformation of L(tri) is 11 kcal/mol more favourable than that of L(bi). ESI-MS experiments showed that the Cu(L(bi))(2) structure could not be observed in solution, while Cu(L(tri)L(bi))-related complexes were indeed present. The lack of protease inhibition of the pyridine carboxamide copper(II) complexes was explained by the fact that the Cu(L(bi)L(tri)) complex could not fit into the HIV-1 active site.  相似文献   

11.
Through two unequivalent oxygen donor atoms of the hinokitiol (Hhino; C10H12O2; 4-isopropyltropolone) ligand that showed noteworthy biological activities, the dimeric, silver(I)-oxygen bonding complex [Ag(hino)]2 1, the monomeric aluminium(III) complex [Al(hino)3].0.5H2O 4 and the cobalt(II) complex "[Co(hino)2]2.H2O" 6 were synthesized and characterized with elemental analysis, thermogravimetric and differential thermal analysis (TG/DTA), FTIR and solution (1H and 13C) NMR spectroscopy. The crystal structure of 1 was determined by Rietveld analysis based on X-ray powder diffraction (XPD) data and those of [Al(hino)3].MeOH 4a and [Co(hino)2(EtOH)]2 6a, being obtained as yellow block crystals and red platelet crystals, respectively, by crystallization of 4 and 6, were determined by single-crystal X-ray analysis. The antimicrobial activities of 1, 4 and 6, evaluated with minimum inhibitory concentration (MIC; microg ml(-1)), were compared with those of other metal complexes (M=Na, Li, Cs, Ca, V, Zn) with the hino- ligand. The antimicrobial activities observed in the alkali-metal salts strongly suggested that they were attributed to the effect of the anionic hino- species. The antimicrobial activities of 1 were significantly enhanced, whereas those of other metal complexes were suppressed, compared with those of the neutral Hhino and anionic hino- molecules. The antimicrobial activities observed in 1 were comparable with those of other recently found silver(I)-oxygen bonding complexes, the ligands of which had no activity. Thus, it is proposed that the antimicrobial activities of the silver(I)-oxygen bonding complexes are due to a direct interaction or complexation of the silver(I) ion with biological ligands such as protein, enzyme and membrane, and the coordinating ligands of the silver(I) complexes play the role of a carrier of the silver(I) ion to the biological system.  相似文献   

12.
A series of new platinum(IV) complexes of the type [PtIV(DACH)trans(L)2Cl2] (where DACH = trans-1R,2R-diaminocyclohexane, and L = acetate, propionate, butyrate, valerate, hexanoate, or heptanoate) bearing the carboxylate groups in the axial positions have been synthesized and characterized by elemental analysis, IR, and 195Pt NMR spectroscopy. The crystal structure of the analogue [PtIV(DACH)trans(acetate)2Cl2] was determined by single crystal X-ray diffraction method. There were two crystallographically independent molecules, both of which lie on crystallographic two-fold axes. The bond lengths and bond angles of both the molecules were the same within the experimental error. The compound crystallizes in the monoclinic space group C2, with a = 11.180(2) A, b = 14.736(3) A, c = 10.644(2) A, beta = 112.38(3) degrees, Z = 4 and R = 0.0336, based upon a total of 1648 collected reflections. In this complex, the platinum had a slightly distorted octahedron geometry owing to the presence of a geometrically strained five-member ring. The two adjacent corners of the platinum plane were occupied by the two amino nitrogens of DACH, whereas the other two equatorial positions were occupied by two chloride ions. The remaining two axial positions were occupied by the oxygens of acetate ligands. The DACH ring was in a chair configuration. An intricate network of intermolecular hydrogen bonds held the crystal lattice together. These analogues were evaluated in vitro and demonstrated cytotoxic activity against the human ovarian 2008 tumor cell line (IC50 = 0.001-0.06 microM). Structure-activity study revealed that activity was highest for the analogue where L = butyrate.  相似文献   

13.
The perchlorate M(II) (M = Cu, Ni, Co) complexes with the diethyl (pyridin-4-ylmethyl)phosphate (4-pmOpe) ligand of the composition [M(4-pmOpe)2 (H2O)2](ClO4)2 (M = Ni, Co) and [Cu(4-pmOpe)2(ClO4)2] were prepared and studied. The ligand contains two donor atoms, i.e. pyridine nitrogen and phosphoryl oxygen atoms. In particular, the crystal structure of [Cu(4-pmOpe)2(ClO4)2] was determined by the X-ray method. Its structure consists of a one-dimensional polymeric chain in which copper(II) ions are N,O-bridged by two 4-pmOpe organic ligands in a trans arrangement. Two perchlorate ions occupy the fifth and the sixth coordination sites. The Cu?Cu distance is 9.180 Å. The crystal packing is determined by the weak intermolecular C-H?O hydrogen contacts. The coordination compounds were identified and characterized by elemental analysis, spectroscopic and magnetic studies. Spectroscopic and magnetic results of the copper(II) compound are presented in the light of the crystal structure. The magnetic data indicate very weak intra- and interchain magnetic exchange interactions (J = −0.43 and zJ = 0.29 cm−1, respectively). The spectroscopic and magnetic properties of the Co(II) and Ni(II) complexes indicate octahedral and polymeric structure of both compounds in which 4-pmOpe ligand also acts as N,O-bridge between metal ions.  相似文献   

14.
The reaction of N,N′-bis(β-phenyl-cinnamaldehyde)-1,2-diiminoethane (Phca2en) with a mixture of CuI and AgNO3 (molar ratio 1:2:1) yields the novel mononuclear [Cu(Phca2en)2][AgI2] complex. The crystal and molecular structure of [Cu(Phca2en)2][AgI2] was determined by X-ray crystallography from single-crystal data. The structure contains cationic moieties of copper(I) ion coordinated to four N atoms of two Phca2en ligands in a distorted tetrahedral fashion and isolated linear diiodoargenate(I) anions. The Phca2en ligand adopts a Z,Z configuration. A supramolecular motif that is a one-dimensional array has been identified from the crystal packing analysis.  相似文献   

15.
Reaction of 4,6-dimethylpyrimidine-2(1H)-thione (Me2pymSH) with mer-[ReOCl3(Me2S)(OPPh3)] synthon in 1:1 molar ratio in refluxing acetone, results in the replacement of the Me2S ligand to form the mer-[ReOCl3(Me2pymSH)(OPPh3)] species. X-ray diffraction shows that the structure of the title compound consists of monomeric units with a distorted octahedral coordination around the rhenium(V) centre which includes the axial ReO and Re---OPPh3 bonds, and in which three Cl ions and a S-monodentate neutral Me2pymSH ligand act as equatorial ligands. The compound was also characterised using electrochemical measurements and UV–Vis–NIR and IR spectroscopy.  相似文献   

16.
The self-assembly of copper(II) ions and 5-(2-(2-hydroxyethoxy)ethoxy)benzene-1,3-dicarboxylic acid (2) leads to hollow nanoballs in which 12 dinuclear copper(II) paddle wheel units are interconnected via 24 ligands, as determined by single crystal X-ray structure analysis. The nanoball dissociates in aqueous solutions, and in the presence of an excess of ligand it transforms into a three-dimensional network, but is stable in organic solvents. The thermodynamic stability of the nanoball against dissociation in aqueous solution is studied and compared to simple copper(II) paddle wheel complexes. The results reveal enhanced thermodynamic stability of the nanoball as compared to discrete copper(II) paddle wheel complexes due to chelate effects and positive cooperativity.  相似文献   

17.
The synthesis and X-ray structures of copper(II) complexes of the bidentate ligands, N-(4-oxo-5,5-diphenyl-4,5-dihydro-1H-imidazol-2-yl)-N′-phenylguanidino, 2-uanidinobenzimidazolo and N-(4-oxo-3-phenyl-1,3-diazaspiro[4.4]non-1-en-2-yl)guanidino, are reported. These complexes, which possess potential doublet (DA) or triplet (DAD) hydrogen bonding motifs, can form supramolecular structures based on synthons involving hydrogen bonding or phenyl embraces. The changes in supramolecular structure resulting from small changes in ligand structure, as well as from the use of different solvents for their crystallisation, are examined. The structures adopted are compared with others reported previously for complexes of related ligands.  相似文献   

18.
The zinc(II) complexes dichloro[2-(3,4-dichlorophenyl)imino-kappaN-(2-thiazolin-kappaN-2-yl)thiazolidine]zinc(II) (1) and dichloro[2-(3,4-dichlorophenyl)imino-kappaN-(4H-5,6-dihydro-1,3-thiazin-kappaN-2-yl)tetrahydrothiazine]zinc(II) (2) have been isolated and characterized in the solid state by X-ray diffraction, elemental analysis and IR spectra. In both complexes, the environment around the zinc(II) ion may be described as a distorted tetrahedral geometry, with the metallic atom coordinated to two chlorine atoms [Zn-Cl(1)=2.218(1)A; Zn-Cl(2)=2.221(1)A], one imino nitrogen [Zn-N(3)=2.042(2)A] and one thiazoline nitrogen [Zn-N(1)=2.022(2)A] in complex 1 and to two chlorine atoms [Zn-Cl(1)=2.216(1)A; Zn-Cl(2)=2.192(1)A], one imino nitrogen [Zn-N(3)=2.045(2)A] and one thiazine nitrogen [Zn-N(1)=2.039(2)A] in complex 2. In addition, we also report in this study the crystal structure of the 2-(3,4-dichlorophenyl)imino-N-(2-thiazolin-2-yl)thiazolidine (TdTn) ligand as well as the synthesis and characterization by X-ray diffraction, (1)H and (13)C NMR spectra, elemental analysis, IR and electronic spectra of the 2-(3,4-dichlorophenyl)imino-N-(4H-5,6-dihydro-1,3-thiazin-2-yl)tetrahydrothiazine (TzTz) ligand. Besides, we study the phagocytic function in humans neutrophils treated with each complex and ligand aforementioned.  相似文献   

19.
Three different five coordinate nickel(II) complexes of tripyrrin ligands with chloro, oxalato and nitrato anionic ligands were obtained by ligand exchange reactions from respective trifluoroacetato species prepared in situ. Crystallographic studies of these compounds revealed different coordination geometries as well as different packing pattern. In the solid, the chloride complex accepts one water ligand to form a distorted trigonal bipyramid with two N donor centers in apical and one in an equatorial position. The molecules are organized in the crystal via hydrogen bonds, resulting in endless chains. Oxalate serves as a bridging ligand between two nickel(II) tripyrrins. Again the coordination of nickel(II) is found to be trigonal bipyramidal but with two equatorial and one apical nitrogen donors. The discrete dinuclear complexes are arranged in the crystal in a way as to form channels filled with toluene molecules. The nitrate species displays a η2 bound nitrate ligand and short contacts between the nickel(II) center and an ethyl substituent of a neighboring molecule. The complex shows an unusually distorted molecular structure and unexpected differences in the two Ni-O bond lengths.  相似文献   

20.
The synthesis, structure and spectroscopic properties of novel palladium(II) chloro complexes with a series of (aminoalkyloxymethyl)dimethylphosphine oxides (AOPO) are reported. The complexes with general formula PdCl2(N,N′-AOPO2) were obtained by the reaction of PdCl2(CH3CN)2 with the ligands in dry ethanol. The crystal structure of the trans-bis[2-(dimethylphosphinoylmethoxy-1,1-dimethylethylamine)]palladium(II) dichloride has been determined from single-crystal X-ray diffraction data. The compound crystallizes in monoclinic crystal system with P21/n space group. The square-planar coordination sphere of palladium consists of two N atoms from two aminoalkyldimethylphosphine ligands and two Cl atoms in trans-arrangement. The AOPO ligand has monodentate coordination through the NH2 group. The Pd-N and Pd-Cl distances are 2.0610(14) and 2.3225(4) Å, respectively. The preparation of complexes with a composition PdCl2(AOPO)2 in chloroform solution are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号