首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intact cells of marine pseudomonad B-16 (ATCC 19855) which have been washed with a solution of NaCl require only 0.001 M MgSO4 and 100 to 300 times this concentration of NaCl or KCl to prevent lysis. Conversion of intact cells to mureinoplasts, a process involving removal of the outer double-track layer (outer membrane) and the periplasmic space layer of the cell wall, approximately doubled the requirement for the three salts to prevent lysis. The formation of protoplasts from mureinoplasts by removing the peptidoglycan layer again doubled the requirement for Na+ and K+ salts but increased the requirement for the Mg-2+ salt 200- to 300-fold. Cells of the marine pseudomonad suspended in solutions containing Mg-2+ salts failed to lyse on subsequent repeated suspension in distilled water, whereas cells presuspended in NaCl lysed immediately. Isolated envelope layers including the peptidoglycan layer, when dialyzed against solutiions containing Mg-2+ salts, retained Mg-2+ after subsequent suspension in distilled water. Envelope layers exposed to solutions of Na+ or K+ salts failed to retain these ions after exposure to distilled water. Na+ displaced Mg-2+ from the cell envelope layers. The results obtained indicate that the capacity of Mg-2+ salts at very low concentration to prevent lysis of intact cells and mureinoplasts of this organism is due primarily to the interaction of Mg-2+ with the peptidoglycan layer of the cell wall. Ion interaction with the layers lying outside of the peptidoglycan layer contributes only a small amount to the mechanical strength of the wall.  相似文献   

2.
We studied the effects of alkali metal cations on the terminal stages of complement lysis of human and sheep HK erythrocytes. Sensitized erythrocytes (EA) were reacted with limited amounts of complement for 1 hr at 37 degrees C in buffer containing 147 mM NaCl (Na buffer), which resulted in 10-40% lysis. The unlysed cells were washed with Na buffer at 0-2 degrees C and incubated for 1 hr at 37 degrees C in buffers containing 147 mM of the various alkali metal cations. Although additional lysis (25 to 65%) occurred with K, Rb, or Cs buffer, only minor degrees developed with Na or Li buffer, only minor degrees developed with Na or Li buffer. Intermediate levels occurred with 100 mM of the divalent alkali cations. Halogen ions and SCN-(147 MM), Ca++ (0.15mM), and Mg++ (0.5 mM) did not alter the effect of the alkali metal cations. Lysis occurring in K+, Rb+ or Cs+ proceeded without lag, was temperature dependent with an optimum of 43 degrees C, and had a pH optimum of 6.5. Lysis in K and Na buffers was unaffected by 10(-3) to 10(-5) M ouabain. Experiments with mixtures of cations indicated that Na+ had a mild inhibitory effect that could be totally overcome by K+, partially by Rb+, and not at all by Cs+. Li+ had a strong inhibitory effect, 6 X 10(-5) M causing 50% inhibition in buffers containing 147 mM K+, Rb+, or Cs+. By using intermediate complexes of EA and purified complement components we demonstrated that K+ enhances the lytic action of C8 on EAC1-7 as well as that of C9 on EAC1-8. It was known that Li+ facilitates lysis when acting on the entire complement reaction. We found that Li+ enhanced the lytic action of C8 on EAC1-7, with a kinetic that differed from that of the K+ effect. In addition, Li+ inhibited the enhancing effect of K+ upon lysis of EAC1-8 by C9. This occurred at concentration of Li+ similar to those which inhibited the additional lysis by K+, Rb+, and Cs+ of cells that were pretreated in Na buffer with the entire complement sequence. We propose that the major effects of alkali metal cations on complement lysis are due to their interaction with C8 and/or membrane constitutes.  相似文献   

3.
The estrone 3-sulfate 16 alpha-hydroxylase of guinea pig liver microsomes has been demonstrated to be sensitive to CO. A CO/O2 ratio of 0.64 caused 50% inhibition of activity. Since inhibition was also obtained in the presence of 2-diethylaminoethyl-2,2-diphenylvalerate . HCl it seems likely that the hydroxylase is a cytochrome P450 containing system. A fourfold increase in enzyme activity was brought about by 40 mM Mg2+ or Ca2+ while the same concentration of Mn2+ resulted in a twofold increase. Lesser increases were seen with Na+ or K+ and complete inhibition was obtained in the presence of Fe2+, Cu2+, or EDTA. When assayed in the presence of detergent concentrations sufficiently small to guard against cytochrome P450 destruction, it was found that Cutscum, Triton X-100, and Triton N-101 each caused greatest inhibition of enzyme activity. Lesser inhibition was apparent in the presence of Miranol H2M, cholate, or deoxycholate. The nonionic detergent, Brij 35, caused least inhibition of all and, when hepatic microsomes were treated higher concentrations of Brij 35, about 80% of protein and over 95% cytochrome P450 were to be found in the 100 000 X g supernatant. Microsomal activity was more stable when stored at -20 degrees C in buffer containing glycerol, EDTA, and dithiothreitol than in buffer alone. Under best conditions only 10% of the hydroxylase activity was lost in one week.  相似文献   

4.
A membrane fraction from calf thymocytes was used to investigate molecular and catalytic properties of membrane-bound alkaline phosphatase (ortho-phosphoric-monoester phosphohydrolase EC 3.1.3.1). The principal findings were: 1. Solubilization of membranes with the non-ionic detergent Triton X-100 increases alkaline phosphatase activity by 30-40%. The enzyme activity elutes in a single peak (Stokes' radius = 7.7 nm) after chromatography in Sepharose 6B in the presence of Triton X-100. The activity also sediments as a single component of approx. 6.4 S during centrifugation in sucrose gradients containing Triton X-100. 2. Ion-exchange chromatography and isoelectric focusing in the presence of Triton X-100 indicate substantial charge heterogeneity. Two overlapping bands, a peak at pH 5.92 with a pronounced shoulder at pH 5.29, are apparent by isoelectric focusing. 3. The pH optimum for hydrolysis of p-nitrophenylphosphate (pNPhP) by the undissolved enzyme(s) is 9.57. Half-maximal activity occurs at pH 8.65 and ph 10.45. Triton X-100 has no effect on the pH profile. 4. Catalytic activity is affected by amines, especially analogues of ethanolamine. Diethanolamine exerts a unique stimulatory effect, but does not change the pH dependency. Increasing the concentration of diethanolamine from 0 to 1 M causes a 6-fold increase in Km and a 10-fold increase in the rate of hydrolysis of pNPhP. Glycine is inhibitory. 5. EDTA causes an irreversible loss of activity with t1/2 (1 mM EDTA, pH 8.2, 23 degrees C) = 3.5 h. Optimal activity is achieved in 0.1--1.0 mM Mg2+, although this does not cause the degree of activation reported to occur with the purified enzymes. Other divalent ions are inhibitory. Concentrations required to reduce activity to 50% of control are: Zn2+, 4.0 muM (no added Mg2+) and 30 muM (in the presence of 1 mM Mg2+); Mn2+, 0.25 mM (+/- Mg2+); Ca2+, 20 mM (+/- Mg2+). 6. Monovalent cations have little effect on activity. In the absence of added Mg2+, 50--150 mM Na+ is partially inhibitory, but markedly less so in the presence of 1 mM Mg2+. K+ has no significant effect. 7. Of the substrates tested, pNPhP (Km = 44 muM) was most rapidly hydrolyzed. Other substrates (rate relative to pNPhP) were alpha-naphthylphosphate (0.79), 2'-AMP (0.80), 5'-AMP (0.70), 3'-AMP (0.63), alpha-glycerophosphate (0.47) and glucose 6-phosphate (0.35). Phosphodiesterase activity was less than or equal to 10% of the phosphomonoesterase activity (for pNPhP) as evidenced by the lack of hydrolysis of bis(p-nitrophenyl)-phosphate and cyclic 3',5'-AMP. The ability of these substances to inhibit hydrolysis of pNPhP reflected their capacity as substrates, i.e. the most inhibitory were the most rapidly hydrolyzed.  相似文献   

5.
A plasma membrane fraction was isolated from lysates of Bacillus Calmette-Guérin-induced alveolar macrophages of rabbit. On the basis of morphological and biochemical criteria this fraction appeared to be minimally contaminated by other subcellular organelles. Concentrations of Ca2+, but not of Mg2+, from 6.10(-8) to 1.10(-5) M markedly stimulated the basal ATPase (EC 3.6.1.3) activity of the plasma membrane, with an apparent Km (Ca2+) of 1.10(-6) M. The specific activity of the Ca2+-ATPase assayed at pCa = 5.5 was enriched about 8-fold in the plasma membrane fraction over the macrophage lysate. In contrast, the specific activity of the K+, EDTA-activated ATPase, associated to macrophage myosin, increased only 1.3-fold. Oligomycin and -SH group reagents exerted no influence on the Ca2+-ATPase activity, which was on the contrary inhibited by detergents such as Triton X-100 and deoxycholate. The activity of the Ca2+-ATPase was maximal at pH 7, and was decreased by 50 mM Na+ and 5 mM K+. On the contrary, the activity of Mg2+-ATPase, also present in the plasma membrane fraction, had a peak at about pH 7.8, and was stimulated by Na+ plus K+. On account of its properties, it is suggested that the Ca2+-ATPase is a component of the plasma membrane of the alveolar macrophage, and that its function may be that of participating in the maintenance of low free Ca2+ concentrations in the macrophage cytosol.  相似文献   

6.
Eighteen gram-negative marine bacteria and two terrestrial species, Escherichia coli and Pseudomonas aeruginosa, were examined for their sensitivity to lysis in distilled water after exposure to a salt solution containing a sea water concentration of Mg2+ (0.05 M) or to 0.5 M NaCl. A spectrum of lytic susceptibility was observed among the marine bacteria ranging from those organisms which lysed in distilled water after exposure to the Mg2+-containing solution, through organisms which could be sensitized to lysis by washing with the NaCl solution, to organisms which failed to lyse in distilled water even after having been washed with a solution of 0.5 M NaCl. Pseudomonas aeruginosa and E. coli fell within this spectrum, the former being capable of being induced to lyse in distilled water by washing with 0.5 M NaCl, while the latter failed to lyse in distilled water after this treatment. It was thus concluded that no overall distinction could be made between marine and terrestrial bacteria on the basis of the sensitivity of the two groups of organisms to lysis in freshwater. Quite large decreases in optical density and increases in the release of ultraviolet-absorbing material took place when cells preexposed to the Mg2+-containing solution or to 0.5 M NaCl were subsequently suspended in distilled water even though in some cases no loss of cell numbers could be detected. In most cases two to three times as much K+ as Na+ and 1/10 to 1/100 as much Mg2+ was required to prevent these changes. For three of the marine bacteria and P. aeruginosa grown in a terrestrial type medium little difference in the requirements for Na+ and K+ to prevent the optical density changes was noted. For P. aeruginosa grown in a marine type medium, cells required more K+ than Na+ to prevent these changes.  相似文献   

7.
An endogenous Na+, K+-ATPase inhibitor termed endobain E has been isolated from rat brain which shares several biological properties with ouabain. This cardiac glycoside possesses neurotoxic properties attributable to Na+, K+-ATPase inhibition, which leads to NMDA receptor activation, thus supporting the concept that Na+/K+ gradient impairment has a critical impact on such receptor function. To evaluate potential direct effects of endobain E and ouabain on NMDA receptors, we assayed [3H]dizocilpine binding employing a system which excludes ionic gradient participation. Brain membranes thoroughly washed and stored as pellets ('non-resuspended' membranes) or after resuspension in sucrose ('resuspended' membranes) were employed. Membrane samples were incubated with 4 or 10 nM ligand with or without added endobain E or ouabain, in the presence of different glutamate plus glycine combinations, with or without spermidine. [3H]dizocilpine basal binding and Na+, K+- and Mg2+-ATPase activities proved very similar in 'non-resuspended' or 'resuspended' membranes. Endobain E decreased [3H]dizocilpine binding to 'resuspended' membranes in a concentration-dependent manner, attaining roughly 50% binding inhibition with the highest endobain E concentration assayed. Among tested conditions, only in 'resuspended' membranes, with 4 nM ligand and with 1x10(-8) M glutamate plus 1x10(-5) M glycine, was [3H]dizocilpine binding enhanced roughly +24% by ouabain (1 mM). After Triton X-100 membrane treatment, which drastically reduces Na+, K+-ATPase activity, the effect of ouabain on binding was lost whereas that of endobain E remained unaltered. Results indicate that not only membrane preparation but also treatment and storage are crucial to observe direct endobain E and ouabain effects on NMDA receptor, which are not attributable to changes in Na+, K+-ATPase activity or to Na+/K+ equilibrium alteration.  相似文献   

8.
F Noel  R S Pardon 《Life sciences》1989,44(22):1677-1683
Vanadate inhibitory effects on Na+, K+-ATPases from carcass of Schistosoma mansoni and from lamb kidney outer medulla were compared in the presence of various concentrations of Na+, K+ and Mg2+. Depending on the ionic conditions, the schistosomal Na+, K+-ATPase was 2.4- to 175-fold less sensitive to vanadate than the lamb kidney enzyme. In 100 mM Na+, 3 mM K+ and 3 mM Mg2+, schistosomal Na+, K+-ATPase was surprisingly resistant to vanadate (I50 = 944 microM). The difference in vanadate sensitivity between schistosomal and lamb Na+, K+-ATPases may be due to a species difference in the efficacy of Na+, K+ and Mg2+ in promoting conformational changes between E1 and E2 forms of the enzyme.  相似文献   

9.
The activities of acetylcholinesterase and Ca2+ + Mg2+ ATPase were measured following treatment of human erythrocyte membranes with nonsolubilizing and solubilizing concentrations of Triton X-100. A concentration of 0.1% (v/v) Triton X-100 caused a significant inhibition of both enzymes. The inhibition appears to be caused by perturbations in the membrane induced by Triton X-100 incorporation. No acetylcholinesterase activity and little Ca2+ + Mg2+ ATPase activity were detected in the supernatant at 0.05% Triton X-100 although this same detergent concentration induced changes in the turbidity of the membrane suspension. Also, no inhibition of soluble acetylcholinesterase was observed over the entire detergent concentration range. The inhibition of these enzymes at 0.1% Triton X-100 was present over an eightfold range of membrane protein in the assay indicating an independence of the protein/detergent ratio. The losses in activities of these two enzymes could be prevented by either including phosphatidylserine in the Triton X-100 suspension or using Brij 96 which has the same polyoxyethylene polar head group but an oleyl hydrophobic tail instead of the p-tert-octylphenol group of Triton X-100. The results are discussed in regard to the differential recovery of enzyme activities over the entire detergent concentration range.  相似文献   

10.
Membrane events in exocytosis were studied by examining the effect of different detergents on the K+-stimulated release of noradrenaline in the secretory cell line PC 12. The nonionic detergent Triton X-100 and the cationic detergent cetyltrimethylammonium bromide (CTAB) inhibit the noradrenaline release evoked by 55 mM K+ by 50% at very low concentrations (30 microM and 10 microM, respectively). These values are tenfold lower than the critical micellar concentrations (CMC). No such effect was seen with the anionic detergent sodium dodecyl sulphate (NaDodSO4). The inhibitory effect of 30 microM Triton X-100 is reversible, and the recovery from inhibition correlates with the loss of detergent from the cells as demonstrated by binding studies using [3H]Triton X-100. The possible relationship between this inhibition of secretion and the structural properties of the detergent was investigated. The inhibition in the presence of purified Triton X-100 subfractions turned out to be a function of the length of the oligometric ethyleneglycol chain (C6 to C26). The maximal effect was observed for Triton X-100 molecules having a chain length of 16 carbon atoms, which can penetrate just half of the lipid bilayer of the membrane. Additionally, the phase transition at 13-14 degrees C observed in an Arrhenius plot of noradrenaline release in stimulated cells was abolished. In the presence of 30 microM Triton X-100, 22Na+ uptake, 86Rb+ release, and 45Ca2+ uptake were reduced by 50-60%. These data suggest that the site of action of Triton X-100 is at the level of altering the movement of ions in PC 12 cells during the stimulatory phase of secretion.  相似文献   

11.
Biosynthesis of phosphatidylinositol in Crithidia fasciculata   总被引:1,自引:0,他引:1  
Microsomal preparations from the protozoan (Crithidia fasciculata were shown to incorporate myo-[2-3H]inositol into phosphatidylinositol by both the CDPdiacylglycerol:myo-inositol phosphatidyltransferase reaction and by a myo-inositol exchange reaction. Non-ionic detergent and Mg2+ were necessary for the measurement of transferase activity. Untreated preparations could not be saturated with Mg2+, even at very high concentrations (50-75 mM). However, low concentrations of EGTA (75 micro M) both stimulated the activity 3-fold and reduced the Mg2+ required for saturation to 15-20 mM. EGTA also increased the apparent Km for CDPdiacylglycerol while increasing the sensitivity to substrate inhibition above 1 mM. The transferase activity was inhibited by relatively low concentrations of Ca2+ (50 micro M). This and the EGTA effect suggest a possible role for Ca2+ in the modulation of phosphatidylinositol synthesis. The myo-inositol exchange activity required Mn2+, was insensitive to Ca2+ inhibition and was only slightly stimulated by detergents and EGTA. This activity was preferentially inactivated by heating at 50 degrees C in the presence of Triton X-100. In a detergent solubilized preparation the exchange activity but not the transferase exhibited a non-specific requirement for phospholipid. The differences in properties of the two activities suggest the presence of a separate exchange enzyme.  相似文献   

12.
Isolated rat kidney proximal tubule brush border membrane vesicles exhibit an increase in diacylglycerol levels (20- to 30-fold) and a concomitant decrease in phosphatidylinositol when incubated with [3H]arachidonate-labeled lipids, Ca2+, and deoxycholate. Levels of free arachidonate, triglyceride, and noninositol phospholipids are not altered. These results suggest phosphatidylinositol phosphodiesterase activity is associated with rat proximal tubule brush border membrane. Presence of both deoxycholate and certain divalent cations was necessary to demonstrate enzyme activity. Optimum pH ranged from 7.0 to 8.5. Ca2+, Mg2+, and Mn2+ stimulated diglyceride production while Ba2+, Zn2+, Hg2+, and K+ were ineffective. HgCl2 inhibited Ca2+-stimulated phosphatidylinositol phosphodiesterase. Mg2+ and deoxycholate-dependent enzyme activity was shown to be phosphatidylinositol specific. Sodium lauryl sulfate, tetradecyltrimethylammonium bromide, and Triton X-100 did not activate phosphatidylinositol phosphodiesterase in the presence of Ca2+. In combination with deoxycholate, diglyceride formation was not affected by sodium lauryl sulfate, partially inhibited by Triton X-100, and completely abolished by tetradecyltrimethylammonium bromide. Diglyceride kinase activity was not found associated with brush border membrane phosphatidylinositol phosphodiesterase. ATP (1-5 mM) inhibited Ca2+- or Mg2+-stimulated, deoxycholate-dependent phosphatidylinositol hydrolysis by chelating the required divalent cation.  相似文献   

13.
In order to study the "sidedness" of the ligands of the Na+, K+-ATPase in the phosphorylation from [32P]ATP, tight vesicles were prepared from guinea pig kidney and partially purified by a two-stage sucrose and Ficoll gradient centrifugation procedure. These vesicles were derived presumably from plasma membrane fragments resealed after the initial disruption of the cells during homogenization. Tightness of the vesicles was estimated according to activation by the nonionic detergent, Triton X-100. Treatment with Triton X-100 increased both the activity of the Na+, K+-ATPase and its Na+-dependent phosphorylation from [32P]ATP at least three-fold. Activation of both functions also appeared when the vesicles were shocked osmotically. These results suggest that the preparation contains a major population of tight normal vesicles (approximately 75%) in which the phosphorylation site faces the intravesicular solution. In the response to ouabain breakdown of the phosphoenzyme was inhibited in vesicles treated with Triton X-100 but not in intact ones as if ouabain could not get to its binding site. Correspondingly in phosphorylation from ATP pretreatment with ouabain in the presence of inorganic phosphate produced less inhibition in intact vesicles than in those disrupted with Triton X-100 beforehand. These data suggest the presence of an everted vesicle fraction in the preparation (approximately 20%). Apparently only a small fraction of the vesicles was leaky. In the everted vesicles the action of K+ on the phosphoenzyme was slow. In order to accelerate the dephosphorylation in intact vesicles as effectively as in disrupted ones, K+ had to be added before the start of phosphorylation. This supports the view that K+ was acting from the side of the membrane opposite to that where the gamma-phosphoryl group was accepted from ATP.  相似文献   

14.
We have studied the effects of several cations on (1) the neuronal uptake of [3H]dopamine ([3H]DA) and (2) the specific binding of 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenyl-2-[1-3H]propenyl)piperazi ne ([3H]GBR 12783) to a site associated with the neuronal carrier of DA, in preparations obtained from rat striatum. When studied under the same experimental conditions, both the uptake of [3H]DA and the binding of [3H]GBR 12783 were similarly impaired by the gradual replacement of NaCl by sucrose. In both processes, no convenient substitute for Na+ was found. Furthermore, potential substitutes of Na+ acted as inhibitors of the uptake with a rank order of potency as follows: K+ = Li+ > or = Cs+ > or = Rb+ > choline+ > Tris+ > sucrose, which was somewhat different from that observed in binding studies, i.e., Cs+ > Rb+ > choline+ > or = K+ > Li+ > Tris+ > sucrose. In the presence of either 36 mM or 136 mM Na+, [3H]DA uptake was optimal with 2 mM Mg2+, 1 mM K+, or 1 mM Ca2+. In contrast, higher concentrations of divalent cations competitively blocked the uptake process. K+ concentrations > 50 mM impaired the specific binding, whereas in the millimolar range of concentrations, K+ noncompetitively inhibited the uptake. Decreasing the Na+ concentration increased the inhibitory effect of K+, Ca2+, and Mg2+ on the specific uptake. An increase in NaCl concentration from 0 to 120 mM elicited a significant decline in the affinity of some substrates for the [3H]GBR 12783 binding site. An uptake study performed using optimal experimental conditions defined in the present study revealed that decreasing Na+ concentration reduces the affinity of DA for the neuronal transport. We propose a hypothetical model for the neuronal transport of DA in which both Na+ and K+ membrane gradients are involved.  相似文献   

15.
Acetyl-coenzyme A carboxylase has been purified from the plastids of developing castor oil seeds. High concentrations of the enzyme are required for stability as well as the presence of dithiothreitol, glycerol, bicarbonate, Triton X-100, and polyvinyl-pyrrolidone. It has a molecular weight of approximately 528,000 and appears to be membrane associated. Acetyl-CoA carboxylase is active over a wide pH range with an optimum at 8.0. Arrhenius plots are biphasic. The enzyme displays normal Michaelis-Menten kinetics with limiting Michaelis constants of KATP, 0.1 mM; KHCO-3, 3.0 mM; and Kacetyl-CoA, 0.05 mM. Monovalent cations, such as K+ and Cs+, exert a small activating effect on the enzyme while a divalent cation, Mn2+ or Mg2+, is essential for activity. The enzyme does not appear to be highly regulated by cellular metabolites.  相似文献   

16.
1. The ATP sites. Homotropic interactions between ATP sites have been studied in a very large range of Na+ and K+ concentrations. The ( Na+, K+)-activated ATPase displays Michaelis-Menten kinetics for ATP under standard concentration conditions of Na+ (100 mM) and K+ (10 mM). The steady-state kinetics behavior changes at very low concentrations of K+ where negative cooperativity is observed. The existence of a high affinity and a low affinity site for ATP was clearly demonstrated from the study of the ATP stimulated hydrolysis of p-nitrophenylphosphate in the presence of Na+ and K+. The ratio of apparent affinities of high and low affinity sites for ATP is 86 at pH 7.5. 2. The Na+ sites. The binding of Na+ to its specific stimulatory sites (internal sites) is characterized by positive cooperativity with a Hill coefficient n(H(Na+))=2.0. Homotropic interactions between Na+ sites are unaffected by variations of the K+ concentration. 3. The K+ sites. (a) Binding of K+ to the (external) stimulatory site of the ATPase has been analyzed by following the (Na+, K+)-ATPase activity as well as the p-nitrophenylphosphatase activity in the presence of Na+ and K+ (with or without ATP). Binding is characterized by a Hill coefficient of 1.0 and a K(0.5(K+))=0.1 to 0.8 mM. The absence of positive or negative cooperativity persists between 5 mM and 100 mM Na+. (b) The analysis of the p-nitrophenylphosphatase or of the 2, 4 dinitrophenylphosphatase activity in the presence of K+ alone indicates the existence of low affinity sites for K+ with positive homotropic interactions. The characteristics of stimulation in that case are, K(0.5)=5 mM, n(H)=1.9. The properties of this family of site(s) are the following: firstly, saturation of the low affinity site(s) by K+ prevents ATP binding to its high affinity internal site. Secondly, saturation of the low affinity sites for K+ prevents binding of Na+ to its internal sites. Thirdly, this family of sites disappears in the presence of ATP, p-nitrophenylphosphate or of both substrates, when Na+ binds to its internal sites. Na+ binding to its specific stimulatory sites provokes the formation of the high affinity type of site for K+. 4. Mg2+ stimulation of the (Na+, K+)-ATPase is characterized by a Hill coefficient n(H(Mg2+))=1.0 and a K(0.5(Mg2+))=1 mM stimulation is essentially a V effect. Heterotropic effects between binding of Mg2+ and substrate to their respective sites are small. Heterotropic interactions between the Ms2+, Na+ and K+ sites are also small. 5. The fluidity of membrane lipids also controls the (Na+, K+)-ATPase activity. Phase transitions or separations in the membrane hardly affect recognition properties of substrates, Na+, K+ and Mg2+ for their respective sites on both sides of the membrane. Only the rate of the catalytic transformation is affected.  相似文献   

17.
Surface arrays on the wall of Sporosarcina ureae.   总被引:5,自引:4,他引:1       下载免费PDF全文
Thin sections of the cell wall of Sporosarcina ureae revealed two structurally distinct layers: a continuous amorphous zone, approximately 15 nm thick, which was adjacent to the plasma membrane, and an overlying periodic zone, approximately 16 nm thick. Sequential Triton X-100 and lysozyme treatment of isolated walls produced small fragments of the outer regular structure which allowed high-resolution, negatively stained images suitable for optical diffractometric analysis. These data suggested a tetragonal array of complex polygonal units of C-C spacing = 12 nm, with each unit joined to another by two delicate linkers. The array was entirely proteinaceous, consisting of a 150,000-dalton polypeptide which had a high affinity for Mg2+. It proved to be sensitive to chelating agents, 5 mM concentrations of Ca2+, Sr2+, or Ba2+, proteases, heat greater than or equal to 45 degrees C, sodium dodecyl sulfate, and pH greater than or equal to 5.8, but magnesium offered protection against the chelating agents and the deleterious salts.  相似文献   

18.
S Stieger  U Brodbeck 《Biochimie》1991,73(9):1179-1186
We investigated the enzymatic properties of phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus cereus towards glycosyl-phosphatidylinositol anchored acetylcholinesterase (AChE) from bovine erythrocytes and Torpedo electric organ as substrate. The conversion of membrane from AChE to soluble AChE by PI-PLC depended on the presence of a detergent and of phosphatidylcholine. In presence of mixed micelles containing Triton X-100 (0.05%) and phosphatidylcholine (0.5 mg/ml) the rate of AChE conversion was about 3 times higher than in presence of Triton X-100 alone. Furthermore, inhibition of PI-PLC occurring at Triton X-100 concentrations higher than 0.01% could be prevented by addition of phosphatidylcholine. Ca2+, Mg2+ and sodium chloride had no effect on PI-PLC activity in presence of phosphatidylcholine and Triton X-100, whereas in presence of Triton X-100 alone sodium chloride largely increased the rate of AChE conversion. Determination of kinetic parameters with three different substrates gave Km-values of 7 microM, 17 microM and 2 mM and Vmax-values of 0.095 microM.min-1, 0.325 microM.min-1 and 56 microM.min-1 for Torpedo AChE, bovine erythrocyte AChE and phosphatidylinositol, respectively. The low Km-values for both forms of AChE indicated that PI-PLC not only recognized the phosphatidylinositol moiety of the anchor but also other components thereof.  相似文献   

19.
Na+-ATPase activity of a dog kidney (Na+ + K+)-ATPase enzyme preparation was inhibited by a high concentration of NaCl (100 mM) in the presence of 30 microM ATP and 50 microM MgCl2, but stimulated by 100 mM NaCl in the presence of 30 microM ATP and 3 mM MgCl2. The K0.5 for the effect of MgCl2 was near 0.5 mM. Treatment of the enzyme with the organic mercurial thimerosal had little effect on Na+ -ATPase activity with 10 mM NaCl but lessened inhibition by 100 mM NaCl in the presence of 50 microM MgCl2. Similar thimerosal treatment reduced (Na+ + K+)-ATPase activity by half but did not appreciably affect the K0.5 for activation by either Na+ or K+, although it reduced inhibition by high Na+ concentrations. These data are interpreted in terms of two classes of extracellularly-available low-affinity sites for Na+: Na+-discharge sites at which Na+-binding can drive E2-P back to E1-P, thereby inhibiting Na+-ATPase activity, and sites activating E2-P hydrolysis and thereby stimulating Na+-ATPase activity, corresponding to the K+-acceptance sites. Since these two classes of sites cannot be identical, the data favor co-existing Na+-discharge and K+-acceptance sites. Mg2+ may stimulate Na+-ATPase activity by favoring E2-P over E1-P, through occupying intracellular sites distinct from the phosphorylation site or Na+-acceptance sites, perhaps at a coexisting low-affinity substrate site. Among other effects, thimerosal treatment appears to stimulate the Na+-ATPase reaction and lessen Na+-inhibition of the (Na+ + K+)-ATPase reaction by increasing the efficacy of Na+ in activating E2-P hydrolysis.  相似文献   

20.
The ATPase activity of native dynein 1 from sea urchin sperm flagella is activated reversibly by inorganic monovalent chlorides with the magnitude of activation being nearly independent of the cation below 0.3 M. At higher concentrations, activation increases in the order LiCl greater than NH4Cl greater than NaCl greater than KCl, with the maximum occurring at about 0.8 M in all cases. The sodium halides activate reversibly in the order NaI greater than NaBr greater than NaCl, but NaF is strongly inhibitory. The presence of the organic anions formate, acetate, or propionate favors the native low ATPase activity state, with lithium acetate giving little activation at up to 1 M and sodium acetate partially reversing the activation due to simultaneous presence of 0.6 M NaCl. The sedimentation rate of the dynein does not change between 0.2 and 0.8 M NaCl or sodium acetate, suggesting that the effects of the anions on ATPase activity are due to local changes near the catalytic site, rather than to large-scale changes in the molecular structure. All the agents that activate the dynein ATPase, either reversibly (halides) or irreversibly (Triton X-100), decrease its sensitivity to inhibition by vanadate, consistent with ATPase activation being the result of a decreased stability of the dynein. ADP.Pi kinetic intermediate that is thought to bind vanadate at the gamma-Pi site and act as a dead-end kinetic block. Although many divalent cations, including Mg2+, Mn2+, Fe2+, Co2+, Ni2+, Zn2+, Ca2+, and Sr2+, can support dynein ATPase activity, the magnitude of ATPase increase observed upon treatment with Triton X-100 is greatest with Mg2+ and Mn2+, which are also the only cations capable of supporting the motility of demembranated flagella at rates similar to those observed in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号