首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
In their seminal publication describing the structure of the DNA double helix , Watson and Crick wrote what may be one of the greatest understatements in the scientific literature, namely that "It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material." Half a century later, we more fully appreciate what a huge challenge it is to replicate six billion nucleotides with the accuracy needed to stably maintain the human genome over many generations. This challenge is perhaps greater than was realized 50 years ago, because subsequent studies have revealed that the genome can be destabilized not only by environmental stresses that generate a large number and variety of potentially cytotoxic and mutagenic lesions in DNA but also by various sequence motifs of normal DNA that present challenges to replication. Towards a better understanding of the many determinants of genome stability, this chapter reviews the fidelity with which undamaged and damaged DNA is copied, with a focus on the eukaryotic B- and Y-family DNA polymerases, and considers how this fidelity is achieved.  相似文献   

2.
3.
4.
Restriction endonucleases of the PD…D/EXK family need Mg2+ for DNA cleavage. Whereas Mg2+ (or Mn2+) promotes catalysis, Ca2+ (without Mg2+) only supports DNA binding. The role of Mg2+ in DNA cleavage by restriction endonucleases has elicited many hypotheses, differing mainly in the number of Mg2+ involved in catalysis. To address this problem, we measured the Mg2+ and Mn2+ concentration dependence of DNA cleavage by BamHI, BglII, Cfr10I, EcoRI, EcoRII (catalytic domain), MboI, NgoMIV, PspGI, and SsoII, which were reported in co-crystal structure analyses to bind one (BglII and EcoRI) or two (BamHI and NgoMIV) Me2+ per active site. DNA cleavage experiments were carried out at various Mg2+ and Mn2+ concentrations at constant ionic strength. All enzymes show a qualitatively similar Mg2+ and Mn2+ concentration dependence. In general, the Mg2+ concentration optimum (between ∼ 1 and 10 mM) is higher than the Mn2+ concentration optimum (between ∼ 0.1 and 1 mM). At still higher Mg2+ or Mn2+ concentrations, the activities of all enzymes tested are reduced but can be reactivated by Ca2+. Based on these results, we propose that one Mg2+ or Mn2+ is critical for restriction enzyme activation, and binding of a second Me2+ plays a role in modulating the activity. Steady-state kinetics carried out with EcoRI and BamHI suggest that binding of a second Mg2+ or Mn2+ mainly leads to an increase in Km, such that the inhibitory effect of excess Mg2+ or Mn2+ can be overcome by increasing the substrate concentration. Our conclusions are supported by molecular dynamics simulations and are consistent with the structural observations of both one and two Me2+ binding to these enzymes.  相似文献   

5.
The relationships between the conformational landscape, nucleotide insertion catalysis and fidelity of DNA polymerase beta are explored by means of computational simulations. The simulations indicate that the transition states for incorporation of right (R) and wrong (W) nucleotides reside in substantially different protein conformations. The protein conformational changes that reproduce the experimentally observed fidelity are significantly larger than the small rearrangements that usually accompany motions from the reactant state to the transition state in common enzymatic reactions. Once substrate binding has occurred, different constraints imposed on the transition states for insertion of R and W nucleotides render it highly unlikely that both transition states can occur in the same closed structure, because the predicted fidelity would then be many orders of magnitude too large. Since the conformational changes reduce the transition state energy of W incorporation drastically they decrease fidelity rather than increase it. Overall, a better agreement with experimental data is attained when the R is incorporated through a transition state in a closed conformation and W is incorporated through a transition state in one or perhaps several partially open conformations. The generation of free energy surfaces for R and W also allow us to analyze proposals about the relationship between induced fit and fidelity.  相似文献   

6.
We study the effect of the oxidative lesion 8-oxoguanine (8oxoG) on the preorganization of the active site for DNA replication in the closed (active) state of the Bacillus fragment (BF), a Klenow analog from Bacillus stearothermophilus. Our molecular dynamics and free energy simulations of explicitly solvated model ternary complexes of BF bound to correct dCTP/incorrect dATP opposite guanine (G) and 8oxoG bases in DNA suggest that the lesion introduces structural and energetic changes at the catalytic site to favor dATP insertion. Despite the formation of a stable Watson-Crick pairing in the 8oxoG:dCTP system, the catalytic geometry is severely distorted to possibly slow down catalysis. Indeed, our calculated free energy landscapes associated with active site preorganization suggest additional barriers to assemble an efficient catalytic site, which need to be overcome during dCTP incorporation opposite 8oxoG relative to that opposite undamaged G. In contrast, the catalytic geometry for the Hoogsteen pairing in the 8oxoG:dATP system is highly organized and poised for efficient nucleotide incorporation via the "two-metal-ion" catalyzed phosphoryl transfer mechanism. However, the free energy calculations suggest that the catalytic geometry during dATP incorporation opposite 8oxoG is considerably less plastic than that during dCTP incorporation opposite G despite a very similar, well organized catalytic site for both systems. A correlation analysis of the dynamics trajectories suggests the presence of significant coupling between motions of the polymerase fingers and the primary distance for nucleophilic attack (i.e., between the terminal primer O3' and the dNTP P(alpha.) atoms) during correct dCTP incorporation opposite undamaged G. This coupling is shown to be disrupted during nucleotide incorporation by the polymerase with oxidatively damaged DNA/dNTP substrates. We also suggest that the lesion affects DNA interactions with key polymerase residues, thereby affecting the enzymes ability to discriminate against non-complementary DNA/dNTP substrates. Taken together, our results provide a unified structural, energetic, and dynamic platform to rationalize experimentally observed relative nucleotide incorporation rates for correct dCTP/incorrect dATP insertion opposite an undamaged/oxidatively damaged template G by BF.  相似文献   

7.
Hanwool Yoon  Arieh Warshel 《Proteins》2017,85(8):1446-1453
Pol η belongs to the important Y family of DNA polymerases that can catalyze translesion synthesis across sites of damaged DNA. This activity involves the reduced fidelity of Pol η for 8‐oxo‐7,8‐dhyedro‐2′‐deoxoguanosin(8‐oxoG). The fundamental interest in Pol η has grown recently with the demonstration of the importance of a 3rd Mg2+ ion. The current work explores both the fidelity of Pol η and the role of the 3rd metal ion, by using empirical valence bond (EVB) simulations. The simulations reproduce the observed trend in fidelity and shed a new light on the role of the 3rd metal ion. It is found that this ion does not lead to a major catalytic effect, but most probably plays an important role in reducing the product release barrier. Furthermore, it is concluded, in contrast to some implications, that the effect of this metal does not violate transition state theory, and the evaluation of the catalytic effect must conserve the molecular composition upon moving from the reactant to the transition state. Proteins 2017; 85:1446–1453. © 2017 Wiley Periodicals, Inc.  相似文献   

8.
9.
The discovery of novel anticancer molecules 5F‐203 (NSC703786) and 5‐aminoflavone (5‐AMF, NSC686288) has addressed the issues of toxicity and reduced efficacy by targeting over expressed Cytochrome P450 1A1 (CYP1A1) in cancer cells. CYP1A1 metabolizes these compounds into their reactive metabolites, which are proven to mediate their anticancer effect through DNA adduct formation. However, the drug metabolite–DNA binding has not been explored so far. Hence, understanding the binding characteristics and molecular recognition for drug metabolites with DNA is of practical and fundamental interest. The present study is aimed to model binding preference shown by reactive metabolites of 5F‐203 and 5‐AMF with DNA in forming DNA adducts. To perform this, three different DNA crystal structures covering sequence diversity were selected, and 12 DNA‐reactive metabolite complexes were generated. Molecular dynamics simulations for all complexes were performed using AMBER 11 software after development of protocol for DNA‐reactive metabolite system. Furthermore, the MM‐PBSA/GBSA energy calculation, per‐nucleotide energy decomposition, and Molecular Electrostatic Surface Potential analysis were performed. The results obtained from present study clearly indicate that minor groove in DNA is preferable for binding of reactive metabolites of anticancer compounds. The binding preferences shown by reactive metabolites were also governed by specific nucleotide sequence and distribution of electrostatic charges in major and minor groove of DNA structure. Overall, our study provides useful insights into the initial step of mechanism of reactive metabolite binding to the DNA and the guidelines for designing of sequence specific DNA interacting anticancer agents. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Hanwool Yoon  Arieh Warshel 《Proteins》2016,84(11):1616-1624
Understanding the origin of discrimination between rNTP and dNTP by DNA/RNA polymerases is important both for gaining fundamental knowledge on the corresponding systems and for advancing the design of specific drugs. This work explores the nature of this discrimination by systematic calculations of the transition state (TS) binding energy in RB69 DNA polymerase (gp43) and T7 RNA polymerase. The calculations reproduce the observed trend, in particular when they included the water contribution obtained by the water flooding approach. Our detailed study confirms the idea that the discrimination is due to the steric interaction between the 2′OH and Tyr416 in DNA polymerase, while the electrostatic interaction is the source of the discrimination in RNA polymerase. Proteins 2016; 84:1616–1624. © 2016 Wiley Periodicals, Inc.  相似文献   

11.
The human DNA glycosylase NEIL1 was recently demonstrated to initiate prereplicative base excision repair (BER) of oxidized bases in the replicating genome, thus preventing mutagenic replication. A significant fraction of NEIL1 in cells is present in large cellular complexes containing DNA replication and other repair proteins, as shown by gel filtration. However, how the interaction of NEIL1 affects its recruitment to the replication site for prereplicative repair was not investigated. Here, we show that NEIL1 binarily interacts with the proliferating cell nuclear antigen clamp loader replication factor C, DNA polymerase δ, and DNA ligase I in the absence of DNA via its non-conserved C-terminal domain (CTD); replication factor C interaction results in ∼8-fold stimulation of NEIL1 activity. Disruption of NEIL1 interactions within the BERosome complex, as observed for a NEIL1 deletion mutant (N311) lacking the CTD, not only inhibits complete BER in vitro but also prevents its chromatin association and reduced recruitment at replication foci in S phase cells. This suggests that the interaction of NEIL1 with replication and other BER proteins is required for efficient repair of the replicating genome. Consistently, the CTD polypeptide acts as a dominant negative inhibitor during in vitro repair, and its ectopic expression sensitizes human cells to reactive oxygen species. We conclude that multiple interactions among BER proteins lead to large complexes, which are critical for efficient BER in mammalian cells, and the CTD interaction could be targeted for enhancing drug/radiation sensitivity of tumor cells.  相似文献   

12.
We have constructed a library of recombinant phage containing DNA from salivary gland chromosomes of Rhynchosciara americana. We have isolated phage from this library that carry sequences homologous to cDNA clones that hybridize in situ to the DNA puffs at the polytene chromosome regions C3 and C8. This has enabled us to demonstrate a 16-fold amplification of the genomic DNA sequences at these regions during DNA-puffing. At the C8 site there is a sequence element that has characteristics of 'scrambled' moderately repetitive DNA. This is located within 3 kb from the gene encoding a 1.95-kb mRNA. We have assayed restriction fragments from the two DNA puffs for Ars activity in yeast. The only strong Ars activity is associated with a part of the moderately repetitive DNA element from the C8 puff which is not present at this site in all animals.  相似文献   

13.
Olsson MH  Sharma PK  Warshel A 《FEBS letters》2005,579(10):2026-2034
Gaining a detailed understanding of the molecular nature of the redox coupled proton transfer in cytochrome c oxidase (COX) is one of the challenges of modern biophysics. The present work addresses this by integrating approaches for simulations of proton transport (PTR) and electron transfer (ET). The resulting method converts the electrostatic energies of different charge configurations and reorganization energies to free-energy profiles for different PTR and ET pathways. This approach provides for the first time a tool to study the actual activation barriers and kinetics of different feasible PTR processes in the cycle of COX. Using this tool, we explore the PTR through the bottleneck water molecules. It is found that a stepwise PTR along this commonly assumed path leads to far too high barriers and is, thus, inconsistent with the observed kinetics. Furthermore, the simulated free-energy profile does not provide a simple gating mechanism. Fortunately, we obtain reasonable kinetics when we consider a PTR that involves a concerted transfer of protons to and from E286. Finally, semi-qualitative considerations of the forward and backward barriers point toward open questions about the actual gating process and offer a feasible pumping mechanism. Although further studies are clearly needed, we believe that our approach offers a general and effective tool for correlating the structure of COX with its function.  相似文献   

14.
Human DNA polymerase beta (pol beta) fills gaps in DNA as part of base excision DNA repair. Due to its small size it is a convenient model enzyme for other DNA polymerases. Its active site contains two Mg(2+) ions, of which one binds an incoming dNTP and one catalyzes its condensation with the DNA primer strand. Simulating such binuclear metalloenzymes accurately but computationally efficiently is a challenging task. Here, we present a magnesium-cationic dummy atom approach that can easily be implemented in molecular mechanical force fields such as the ENZYMIX or the AMBER force fields. All properties investigated here, namely, structure and energetics of both Michaelis complexes and transition state (TS) complexes were represented more accurately using the magnesium-cationic dummy atom model than using the traditional one-atom representation for Mg(2+) ions. The improved agreement between calculated free energies of binding of TS models to different pol beta variants and the experimentally determined activation free energies indicates that this model will be useful in studying mutational effects on catalytic efficiency and fidelity of DNA polymerases. The model should also have broad applicability to the modeling of other magnesium-containing proteins.  相似文献   

15.
Abnormal replication of DNA is associated with many important human diseases, most notably viral infections and neoplasms. Existing approaches to chemotherapeutics for diseases associated with dysfunctional DNA replication classically involve nucleoside analogues that inhibit polymerase activity due to modification in the nucleobase and/or ribose moieties. These compounds must undergo multiple phosphorylation steps in vivo, converting them into triphosphosphates, in order to inhibit their targeted DNA polymerase. Nucleotide monophosphonates enable bypassing the initial phosphorylation step at the cost of decreased bioavailability. Relatively little attention has been paid to higher nucleotides (corresponding to the natural di- and triphosphate DNA polymerase substrates) as drug platforms due to their expected poor deliverability. However, a better understanding of DNA polymerase mechanism and fidelity dependence on the triphosphate moiety is beginning to emerge, aided by systematic incorporation into this group of substituted methylenebisphosphonate probes. Meanwhile, other bridging, as well as non-bridging, modifications have revealed intriguing possibilities for new drug design. We briefly survey some of this recent work, and argue that the potential of nucleotide-based drugs, and intriguing preliminary progress in this area, warrant acceptance of the challenges that they present with respect to bioavailability and metabolic stability.  相似文献   

16.
Molecular dynamics (MD) simulations of the estrogen receptor DNA-binding domain (ERDBD) as a dimer in complex with its DNA response element (ERE) show a significant difference in both structure and dynamics, compared to a MD simulation of monomeric ERDBD bound to its half-site response element (EREH). The C-terminal zinc binding domain (ZnII), including a region (helix II) which is in a helical conformation in ERE-(ERDBD)2, is considerably more flexible in EREH-ERDBD than in the dimeric complex. In EREH-ERDBD, all helical hydrogen bonds in helix II are broken and the entire ZnII region is detached from a hydrogen bonding network that in ERE-(ERDBD)2 connects to other parts of the protein as well as to the DNA. The regions that become flexible in EREH-ERDBD are identical to the regions where the NMR solution structure of free ERDBD is poorly ordered. This strongly suggests that dimerisation of ERDBD is required for ordering of the ZnII region and that monomeric binding to DNA is not sufficient for the ordering. This contrasts to the glucocorticoid receptor DNA-binding domain (GRDBD) which has essentially the same mobility (uniform and limited), regardless of whether it is free as a monomer in solution, bound as a monomer to its half-site response element or in a dimeric complex with the full response element. The hydrogen bonding network that connects ZnII with other parts of the protein and to DNA is almost identical in ERDBD and GRDBD. However, in GRDBD there is also a serine (in the N-terminal zinc coordinating region) with a central role in this network, connecting to the ZnII region. This serine is replaced by a glycine in ERDBD and we suggest that this substitution is sufficient for destabilisation of the network, thus leading to a more flexible ZnII region, which becomes ordered first upon forming a complex with another ERDBD and DNA. Received: 6 March 1998 / Revised version: 22 June 1998 / Accepted: 2 September 1998  相似文献   

17.
Although aqueous simulations with periodic boundary conditions more accurately describe protein dynamics than in vacuo simulations, these are computationally intensive for most proteins. Trp repressor dynamic simulations with a small water shell surrounding the starting model yield protein trajectories that are markedly improved over gas phase, yet computationally efficient. Explicit water in molecular dynamics simulations maintains surface exposure of protein hydrophilic atoms and burial of hydrophobic atoms by opposing the otherwise asymmetric protein-protein forces. This properly orients protein surface side chains, reduces protein fluctuations, and lowers the overall root mean square deviation from the crystal structure. For simulations with crystallographic waters only, a linear or sigmoidal distance-dependent dielectric yields a much better trajectory than does a constant dielectric model. As more water is added to the starting model, the differences between using distance-dependent and constant dielectric models becomes smaller, although the linear distance-dependent dielectric yields an average structure closer to the crystal structure than does a constant dielectric model. Multiplicative constants greater than one, for the linear distance-dependent dielectric simulations, produced trajectories that are progressively worse in describing trp repressor dynamics. Simulations of bovine pancreatic trypsin were used to ensure that the trp repressor results were not protein dependent and to explore the effect of the nonbonded cutoff on the distance-dependent and constant dielectric simulation models. The nonbonded cutoff markedly affected the constant but not distance-dependent dielectric bovine pancreatic trypsin inhibitor simulations. As with trp repressor, the distance-dependent dielectric model with a shell of water surrounding the protein produced a trajectory in better agreement with the crystal structure than a constant dielectric model, and the physical properties of the trajectory average structure, both with and without a nonbonded cutoff, were comparable.  相似文献   

18.
19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号