首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primary structures of the alpha- and beta-hemoglobin chains of the lesser hedgehog tenrec (Echinops telfairi, Zalambdodonta) are presented. Chain separation was performed by carboxymethyl-cellulose chromatography. The peptides, obtained by tryptic digestion of the oxidized chains, were prefractionated by gel chromatography and isolated by reversed-phase HPLC. For sequence analysis gas and liquid phase sequencers were employed. The tenrec hemoglobin consists of one alpha- and two beta-chains the latter occurring in a 1:1 ratio and differing in beta 16 Gly/Cys and beta 118 Phe/Leu. Two external cysteine residues at beta 16 and beta 52 cause reversible polymerization to octamers and most likely irreversible formation of higher polymers. A comparison of the whole chains and certain positions of tenrec hemoglobin with those of Insectivora sensu strictu, Scandentia and Proto- and Metatheria corroborates a long and independent evolution of tenrec and its phylogenetic isolation from the Insectivora s.str. (hedgehog, musk shrew and mole). Replacements at positions involved in heme and subunit interface contacts are discussed. Compared to human hemoglobin the tenrec pigment shows a low intrinsic oxygen affinity as well as lower chloride and temperature sensitivities, a reduced Bohr effect and a strong response to 2,3-DPG. The possible adaptive significance of these properties is discussed in relation to the large diurnal body temperature variations seen in tenrecs.  相似文献   

2.
The hemoglobin of the Great Crested Newt (Triturus cristatus), an animal maintaining the gas exchange to about 85% through the skin, consists of a major (HbM = 65%) and a minor (Hbm = 35%) component. The primary structures of the four chains are presented. They could be separated by reversed-phase HPLC and were cleaved with trypsin and additionally by acid hydrolysis. Both the native chains and their peptides were sequenced by liquid and gas phase sequenators. At the N-terminus the alpha M-chains are by one amino-acid residue longer and the beta M-chains by one residue shorter, resulting in a chain length of 142 and 145, respectively. The alpha m-chains are of normal length whereas in the beta m-chains the C-terminal histidine in position 146 is missing. Both alpha-chains differ by 50 residues (35.2%) and the beta-chains by 63 (43.2%). The alpha-chains were compared with those of other salamandroid hemoglobins. The difference to human hemoglobin is marked by 61 (43.3%) amino-acid substitutions in both alpha-chains and by 78 (53.4%) in both beta-chains. Numerous heme contacts and positions involved in the subunit interface are affected by replacements. The most interesting of them were studied by molecular modeling. The importance of the missing beta m-146(HC3)His and of the substitution of several amino-acid residues involved in the binding of organic phosphates is discussed with respect to the reduced Bohr effect of Triturus cristatus hemoglobin.  相似文献   

3.
The erythrocytes of adult ratel contain two hemoglobin components, with two alpha- and one beta-chains. In this paper, their complete amino acid sequences are presented. The two alpha-chains differ in one residue at position 34 (Ala----Val) only. The primary structure of the chains was determined by sequencing the N-terminal regions (45 steps) and the tryptic peptides after their isolation from the digests by reversed-phase high-performance liquid chromatography. The alignment of these peptides was deduced from homology with other carnivora globins. The alpha-chains show 21 and the beta-chains 11 exchanges compared with human globin chains. In the alpha-chains, one heme- and two alpha 1/beta 1 contacts are exchanged. In the beta-chains there are three exchanges which involve one alpha 1/beta 1-, one alpha 1/beta 2- and one heme-contact. Between the ratel hemoglobin and those of carnivora a high degree of homology was found.  相似文献   

4.
The hemoglobin of the Mouse-Eared Bat Myotis velifer consists of one component. We present the primary structures of the alpha- and beta-globin chains which have been separated by chromatography on carboxymethyl-cellulose CM-52. The sequences have been determined by Edman-degradation with the film technic or the gas phase method, using the native chains and the tryptic peptides, as well as the C-terminal prolyl-peptides obtained by acid hydrolysis of the Asp-Pro-bonds. Compared to the corresponding human chains we found only 13 substitutions in the alpha-chains, but 27 in the beta-chains. The amino-acid residues substituted in the alpha-chains are not involved in any contacts, whereas in the beta-chains, one exchange involves a heme contact, three alpha 1/beta 1- and one alpha 1/beta 2-contacts, the latter [beta 43(CD2)-Glu----Thr] brings for the first time threonine in this position of the beta-chains. Comparison with the Egyptian Fruit Bat (Rousettus aegyptiacus) shows 12 and 25 substitutions in the alpha- and beta-chains, respectively, suggesting a large phylogenetic distance between Micro- and Megachiroptera. We consider this primary structure as a contribution towards solving the problem of the origin of bats and their relation to primates.  相似文献   

5.
The hemoglobin of the Brazilian Manatee (Trichechus inunguis, Sirenia) consists of one component. We present the primary structures of the alpha- and beta-chains which have been separated by chromatography on carboxymethyl-cellulose CM-52. The sequences have been determined by automatic Edman degradation with the film technique, using the native chains, tryptic peptides and the C-terminal prolyl-peptide obtained by acid hydrolysis of the Asp-Pro bond of the alpha-chains. Compared to the corresponding human chains we found 27 substitutions in the alpha- as well as in the beta-chains. Three heme contacts and four alpha 1/beta 1 contacts between the subunits are affected by exchanges. The hemoglobin of Trichechus inunguis is compared with those of Elephas maximus, Loxodonta africana, and Procavia habessinica and the monophyletic origin of the superorder Paenungulata is discussed.  相似文献   

6.
The complete primary structure of the hemoglobin from the Pallid Bat (Antrozous pallidus, Microchiroptera) is presented. This hemoglobin consists of two components with identical amino-acid sequences, differing, however, in the N-terminus which is formylated in 12.5% of the beta-chains. The alpha- and beta-chains were separated by reversed phase high performance liquid chromatography. The sequences of both chains were established by automatic Edman degradation with the film technique or gas phase method using the native chains and the tryptic peptides. The formylation of a part of the N-terminal peptide of the beta-chains was determined by mass spectrometric examination. Compared to the corresponding human chains we found 14 substitutions in the alpha-chains and 21 in the beta-chains. One substitution in the alpha-chains and three in the beta-chains are involved in alpha 1/beta 1-contacts. Among these the exchange beta 123(H1)Thr----Cys is unusual because cysteine was so far not found in this position of mammalian beta-chains. Compared to the hemoglobin of Myotis velifer, another representative of the family Vespertilionidae, 5 residues are replaced in the alpha-chains and 18 in the beta-chains.  相似文献   

7.
The hemoglobin of the Indian false vampire Megaderma lyra contains only one component. In this paper, we are presenting its primary structure. The globin chains were separated by high-performance liquid chromatography and the sequences determined by automatic liquid and gas phase Edman degradation of the chains and their tryptic peptides, as well as of the prolyl-peptides obtained by acid hydrolysis of the Asp-Pro bond in the alpha- and beta-chains. The alpha-chains show 23 and the beta-chains 20 exchanges compared with the human alpha- and beta-chains, respectively. In the alpha-chains, three exchanges involved alpha 1/beta 1 contacts. In the beta-chains one heme-and three alpha 1/beta 1 contacts are exchanged. The functional and systematic aspects of these replacements are discussed.  相似文献   

8.
The hemoglobin of Weddell Seal (Leptonychotes weddelli, Pinnipedia) comprises two components with identical beta-chains. The alpha-chains differ in positions 15 (Gly/Asp) and 57 (Ala/Thr). We present the primary structure of the chains which have been separated by reversed-phase high-performance liquid chromatography. The sequences have been determined by automatic Edman-degradation with the film-technique or the gas-phase method, using the native chains and the tryptic peptides of the oxidized chains. Compared to the corresponding human chains we found 22 substitutions in the alpha-chains and 14 in the beta-chains. In the alpha-chains exchanges involve one heme- and three alpha 1/beta 1-contacts. In the beta-chains one heme contact, one alpha 1/beta 1- and one alpha 1/beta 2-contacts are substituted. The sequences are compared to those of other Pinnipedia and Arctoidea hemoglobins.  相似文献   

9.
The hemoglobin of the indigo snake (Drymarchon corais erebennus, Colubrinae) consists of two components, HbA and HbD, in the ratio of 1:1. They differ in both their alpha and beta chains. The amino acid sequences of both a chains (alphaA and alphaD) and one beta chain (betaI) were determined. The presence of an alphaD chain in a snake hemoglobin is described for the first time. A comparison of all snake beta chain sequences revealed the existence of two paralogous beta chain types in snakes as well, which are designated as betaI and betaII type. For the discussion of the physiological properties of Drymarchon hemoglobin, the sequences were compared with those of the human alpha and beta chains and those of the closely related water snake Liophis milians where functional data are available. Among the heme contacts, the substitution alphaD58(E7)His-->Gln is unusual but most likely without any effect. The residues responsible for the main part of the Bohr effect are the same as in mammalian hemoglobins. In each of the three globin chains only two residues at positions involved in the alpha1/beta2 interface contacts, most important for the stability and the properties of the hemoglobin molecule, are substituted with regard to human hemoglobin. On the contrary, nine, eleven, and six alpha1/beta1 contact residues are replaced in the alphaA, alphaD, betaI chains, respectively.  相似文献   

10.
The hemoglobin of the Pale-Throated Three-Toed Sloth (Bradypus tridactylus, Xenarthra) was separated into two components (ratio 4:1) with identical amino-acid analyses for the alpha- and beta-chains. The primary structures of both chains from the major component are given. They could be isolated by chromatography on carboxymethyl cellulose CM-52. The sequences have been determined by automatic Edman degradation of the native chains and their tryptic peptides. The comparison with human hemoglobin showed 27 substitutions in the alpha-chains and 33 in the beta-chains. In the alpha-chains one amino-acid exchange involves an alpha 1/beta 1-contact. In the beta-chains two heme- and four alpha 1/beta 1-contacts are substituted. The hemoglobin of the Sloth is compared to that of the Nine-Banded Armadillo (Dasypus novemcinctus), another representative of the order Xenerthra.  相似文献   

11.
The blood of the Rock-Hopper Penguin contains only one hemoglobin component, corresponding to the Hb A of other birds. The primary structures of the alpha- and beta-chains are presented. The chains were separated by high-performance liquid chromatography and cleaved either enzymatically (alpha) or both enzymatically and chemically (beta). Both the native chains and their peptides were sequenced using liquid and gas phase sequenators. The peptides were aligned using their homology to the sequence of human hemoglobin and other bird hemoglobins. As compared to human hemoglobin, 44 amino-acid replacements are found in the alpha-chains (68% homology) and 47 in the beta-chains (67.8% homology). These exchanges involve seven alpha 1/beta 1 and one alpha 1/beta 2 contact in the alpha-chains, whereas in the beta-chains eight alpha 1/beta 1, one alpha 1/beta 2 and one hem contact are substituted. The influence of these replacements on the structure-function relationships in hemoglobin, as well as their importance for the diving ability of penguins, are discussed.  相似文献   

12.
The hemoglobin of the European marmot Marmota marmota marmota has been found to consist of only one component. In this work, we are presenting its primary structure. The globin chains have been separated by high performance liquid chromatography and the sequences have been determined by automated Edman degradation of the chains and their tryptic peptides, as well as of the peptide obtained by acid hydrolysis of the Asp-Pro bond in the beta-chains. In the alpha-chains we have found 13 and in the beta-chains 34 exchanges compared with the human alpha- and beta-chains, respectively. The amino acids which are substituted in the alpha-chains are not involved in any contacts, whereas in the beta-chains, one exchange involves a heme contact, two alpha 1/beta 1- and one alpha 1/beta 2-contacts. The functional and evolutionary aspects of these findings are discussed.  相似文献   

13.
The hemoglobin of the Giant Otter (Pteronura brasiliensis, Carnivora) contains only one component. The complete primary structures of the alpha- and beta-chains are presented. The globin chains were separated by high-performance liquid chromatography and the sequences determined by automatic liquid- and gas-phase Edman degradation of the chains and their tryptic peptides. The alpha-chains show 18 and the beta-chains 12 exchanges compared with human alpha- and beta-chains, respectively. In the alpha-chains, two substitutions involve alpha 1/beta 1-contacts and one a heme-contact. In the beta-chains one alpha 1/beta 1-, one alpha 1/beta 2- and one heme-contact are exchanged. The alpha- and beta-chains of the Giant Otter are compared to those of the Common Otter and other Carnivora hemoglobins.  相似文献   

14.
The primary structure of the alpha- and beta-chains of hemoglobin from spotted hyena (Crocuta crocuta, Hyenidae) is presented. The structure-function relationship is discussed. The separation of the chains directly from hemoglobin was performed by RP-HPLC. After tryptic digestion of the chains, the peptides were isolated by RP-HPLC. Amino-acid sequences were determined by Edman degradation in liquid- and gas-phase sequencers. The alignment of the tryptic peptides was made by homology with human and other Carnivora hemoglobins. The hemoglobin from spotted hyena (Crocuta crocuta) exhibits in its alpha- and beta-chains 22 and 20 exchanges, respectively, compared to human hemoglobin. In the alpha-chains, two alpha 1 beta 1-contacts are exchanged. In the beta-chains five exchanges involve one alpha 1 beta 1-contact, one alpha 1 beta 2-contact, one heme contact, and two 2,3-DPG-binding sites.  相似文献   

15.
The hemoglobin of the Common Otter (Lutra lutra, Carnivora) contains only one component. The complete primary structures of the alpha- and beta-chains are presented. They were separated by high-performance liquid chromatography and the sequences determined by automatic liquid and gas-phase Edman degradation of the chains and their tryptic peptides. The alpha-chains show 18 and the beta-chains 13 substitutions compared to human alpha- and beta-chains, respectively. In the alpha-chains one heme- and two alpha 1/beta 1-contacts are exchanged. In the beta-chains the replacements involve one heme-, one alpha 1/beta 1-, and one alpha 1/beta 2-contact. The alpha- and beta-chains of the Common Otter are compared to those of other Carnivora hemoglobins. The unexpected low number of substitutions between Common Otter hemoglobin and that of Lesser Panda as well as of Harbor Seal is discussed.  相似文献   

16.
The primary structure of the alpha- and beta-chains of the hemoglobin from the Pacific Walrus (Odobenus rosmarus divergens, Pinnipedia) is presented. Sequence analysis revealed only one hemoglobin component whereas two bands were found in polyacrylamide gel electrophoresis. The globin chains were separated by high-performance liquid chromatography and the sequences determined by automatic liquid- and gas-phase sequencing of the chains and their tryptic peptides. The alpha-chains show 20 and the beta-chains 12 exchanges compared to the corresponding human chains. In the alpha-chains one heme- and two alpha 1/beta 1-contacts were exchanged whereas in the beta-chains one alpha 1/beta 1-, one alpha 1/beta 2-and one heme-contact are substituted. Compared to Harbour Seal (Phoca vitulina) the Walrus hemoglobin shows 9 amino-acid replacements in the alpha-chains and 5 in the beta-chains. The relation between Pinnipedia and Arctoidea is discussed.  相似文献   

17.
The hemoglobin of the ground squirrel Spermophilus townsendii consists of two components which are present in a ratio of ca. 2:1. The two hemoglobins have identical alpha-chains, but differ in their beta-chains. We present the primary structures of the alpha- and the two beta-globin chains. Following chain separation by chromatography on carboxymethyl-cellulose CM-52, the amino-acid sequences were established by automatic Edman degradation of the globin chains and the tryptic peptides, as well as of a peptide obtained by acid hydrolysis of the Asp-Pro bond of the beta-chains. The two beta-chains differ by only one amino-acid residue, Ala being present in the main and Asp in the minor component in position 58 (E2). The comparison with human hemoglobin showed only 14 exchanges in the alpha-chains but 33 in the beta-chains. Whereas no contact positions are affected in the alpha-chains, we found four such substitutions in the beta-chains, including one heme contact, two alpha 1/beta 1-contacts, and one alpha 1/beta 2-contact. It seems however, that the substitution found in the beta-chains has no effect on the oxygen affinity.  相似文献   

18.
The hemoglobin of the Indian flying fox Cynopterus sphinx contains only one component. In this work, we are presenting its primary structure. The globin chains were separated by high-performance liquid chromatography and the sequences determined by automatic liquid and gas-phase Edman degradation of the chains and their tryptic peptides, as well as of the peptide obtained by acid hydrolysis of the Asp-Pro bond in the beta-chains. The alpha-chains show 14 and the beta-chains 19 exchanges compared with the human alpha- and beta-chains, respectively. In the alpha-chains one amino-acid exchange involves an alpha 1/beta 1 contact. In the beta-chains one heme contact, three alpha 1/beta 1- and one alpha 1/beta 2-contacts are exchanged. The functional and evolutionary aspects of these findings are discussed.  相似文献   

19.
The amino-acid sequence for the hemoglobin of the musk-rat (Ondatra zibethica) was determined. The sequence of both chains was established by automatic Edman-Begg degradation of the tryptic peptides and, in the case of the beta-chains additionally of the prolyl-peptide. The complete primary structure of the alpha-chains differs at 22, that of the beta-chains at 36 positions from the adult human hemoglobin. There are no changes in the heme-binding residues, the alpha 1--beta 2 contact positions and the allosteric regulator sites. In the heme-pocket we found beta 44 Ser leads to His and 8 positions changed within the alpha 1--beta 1 contact regions. These changes are discussed with respect to the function of the respective regions.  相似文献   

20.
Mole rat (Spalax ehrenbergi) hemoglobin consists of only one component. The complete amino-acid sequence of the alpha- and beta-chains of the species with the diploid chromosome number of 60 is presented. Following chain separation by chromatography on carboxymethyl cellulose CM-52, the primary structures were established by automatic Edman degradation on the chains, on the tryptic peptides, and on a peptide obtained by acid hydrolysis of the Asp-Pro bond in beta-chains. The alignment of the peptides was performed by homology with human alpha- and beta-chains. The comparison showed an exchange of 23 residues in the alpha-chains and 26 in the beta-chains. One substitution in the beta-chains concerns the surrounding of the heme. We found two exchanges in each chain in the alpha 1 beta 1-subunit interface and one in the beta-chain alpha 1 beta 2-contact points. Though all binding sites for 2,3-bisphosphoglycerate are unchanged, the mole rat blood has a high oxygen affinity as a part of adaptation to subterranean life under hypoxia and hypercapnia. A comparison of the sequence with known X-ray models of hemoglobins may give an interpretation of this fact. The primary structure of the mole rat hemoglobin shows more similarities with surface rodents, than with the mole, another small mammal, adapted to hypoxia in subterranean tunnels. The adaptation to hypoxia in mole rat and mole must be due to different mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号