首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The outer mitochondrial membrane protein Ugo1 forms a complex with the Fzo1p and Mgm1p GTPases that regulates mitochondrial fusion in yeast. Ugo1p contains two putative carrier domains (PCDs) found in mitochondrial carrier proteins (MCPs). Mitochondrial carrier proteins are multipass transmembrane proteins that actively transport molecules across the inner mitochondrial membrane. Mitochondrial carrier protein transport requires functional carrier domains with the consensus sequence PX(D/E)XX(K/R). Mutation of charged residues in this consensus sequence disrupts transport function. In this study, we used targeted mutagenesis to show that charge reversal mutations in Ugo1p PCD2, but not PCD1, disrupt mitochondrial fusion. Ugo1p is reported to be a single-pass transmembrane protein despite the fact that it contains several additional predicted transmembrane segments. Using a combination of protein targeting and membrane extraction experiments, we provide evidence that Ugo1p contains additional transmembrane domains and is likely a multipass transmembrane protein. These studies identify PCD2 as a functional domain of Ugo1p and provide the first experimental evidence for a multipass topology of this essential fusion component.  相似文献   

3.
4.
The yeast proteins Mrs3p and Mrs4p are two closely related members of the mitochondrial carrier family (MCF), which had previously been implicated in mitochondrial Fe2+ homeostasis. A vertebrate Mrs3/4 homologue named mitoferrin was shown to be essential for erythroid iron utilization and proposed to function as an essential mitochondrial iron importer. Indirect reporter assays in isolated yeast mitochondria indicated that the Mrs3/4 proteins are involved in mitochondrial Fe2+ utilization or transport under iron-limiting conditions. To have a more direct test for Mrs3/4p mediated iron uptake into mitochondria we studied iron (II) transport across yeast inner mitochondrial membrane vesicles (SMPs) using the iron-sensitive fluorophore PhenGreen SK (PGSK). Wild-type SMPs showed rapid uptake of Fe2+ which was driven by the external Fe2+ concentration and stimulated by acidic pH. SMPs from the double deletion strain mrs3/4Δ failed to show this rapid Fe2+ uptake, while SMPs from cells overproducing Mrs3/4p exhibited increased Fe2+ uptake rates. Cu2+ was transported at similar rates as Fe2+, while other divalent cations, such as Zn2+ and Cd2+ apparently did not serve as substrates for the Mrs3/4p transporters. We conclude that the carrier proteins Mrs3p and Mrs4p transport Fe2+ across the inner mitochondrial membrane. Their activity is dependent on the pH gradient and it is stimulated by iron shortage.  相似文献   

5.
6.
Mitochondria transport and utilize iron for the synthesis of haem and Fe-S clusters. Although many proteins are known to be involved in these processes, additional proteins are likely to participate. To test this hypothesis, in the present study we used a genetic screen looking for yeast mutants that are synthetically lethal with the mitochondrial iron carriers Mrs3 and Mrs4. Several genes were identified, including an isolate mutated for Yfh1, the yeast frataxin homologue. All such triple mutants were complemented by increased expression of Rim2, another mitochondrial carrier protein. Rim2 overexpression was able to enhance haem and Fe-S cluster synthesis in wild-type or Δmrs3/Δmrs4 backgrounds. Conversely Rim2 depletion impaired haem and Fe-S cluster synthesis in wild-type or Δmrs3/Δmrs4 backgrounds, indicating a unique requirement for this mitochondrial transporter for these processes. Rim2 was previously shown to mediate pyrimidine exchange in and out of vesicles. In the present study we found that isolated mitochondria lacking Rim2 exhibited concordant iron defects and pyrimidine transport defects, although the connection between these two functions is not explained. When organellar membranes were ruptured to bypass iron transport, haem synthesis from added iron and porphyrin was still markedly deficient in Rim2-depleted mitochondrial lysate. The results indicate that Rim2 is a pyrimidine exchanger with an additional unique function in promoting mitochondrial iron utilization.  相似文献   

7.
The human gene MRS2L encodes a mitochondrial protein distantly related to CorA Mg2+ transport proteins. Constitutive shRNA-mediated knockdown of hMRS2 in human HEK-293 cell line was found here to cause death. To further study its role in Mg2+ transport, we have established stable cell lines with conditionally expressing shRNAs directed against hMRS2L . The cells expressing shRNA for several generations exhibited lower steady-state levels of free mitochondrial Mg2+ ([Mg2+]m) and reduced capacity of mitochondrial Mg2+ uptake than control cells. Long-term expression of shRNAs resulted in loss of mitochondrial respiratory complex I, decreased mitochondrial membrane potential and cell death. We conclude that hMrs2 is the major transport protein for Mg + uptake into mitochondria and that expression of hMrs2 is essential for the maintenance of respiratory complex I and cell viability.  相似文献   

8.
Autocatalytic activity of some group II introns has been demonstrated in vitro, but helper functions such as the yeast MRS2 protein are essential for splicing in vivo. In our search for such helper factors in plants, we pursued the cloning of two Arabidopsis thaliana homologues, atmrs2-1 and atmrs2-2. Atmrs2-1, but not atmrs2-2, complements the yeast deletion mutant of mrs2, and this is congruent with the prediction of two adjacent transmembrane stretches in AtMRS2-1 and yeast MRS2 but not in AtMRS2-2. This complementation depends on fusion of the native yeast mitochondrial import sequence to atmrs2-1. A differing, non-mitochondrial, cellular targeting in Arabidopsis is supported by the analysis of green fluorescent protein fusion constructs after transient transformation into plant protoplasts. Further members of what now appears to be a family of 10 mrs2 homologues are identified in the Arabidopsis genome. Similarity searches with the PSI-BLAST algorithm in the protein database fail to identify homologues of this novel gene family in any eukaryotes other than yeasts, but do identify its distant relatedness to the corA group of bacterial magnesium transporters. In line with this observation, intramitochondrial magnesium concentrations are indeed restored to wild-type levels in the yeast mutant on complementation with atmrs2-1.  相似文献   

9.
《Gene》1996,169(1):119-124
The nucleotide sequence is reported for the Saccharomyces cerevisiae YTP1 (yeast putative transmembrane (TM) protein) gene, encoding a novel deduced protein of 459 amino acids (aa) in length (51643 Da). The Ytpl protein appears by computer analysis (hydropathy plots in conjunction with the combined predictions of several Internet on-line programs that deduce protein structure from primary sequence data) to be a type-III integral TM protein containing 10 or 11 TM-spanning domains. Blocks of aa sequence similarity, predominantly to mitochondrial electron transport proteins, are consistent with the notion that Ytpl is an integral TM protein and may reflect some aspect of its functional role. The C terminus of Ytpl is both hydrophilic and highly negatively charged, with 11 of the last 33 aa corresponding to Glu or Asp. Although Northern blot analysis indicates that this gene is expressed, a disruption of YTP1 shows that it is not essential. YTP1 is located between SIN4 (TSF3) and KEX2 (SRB1) at position 205 (kb) on the chromosome XIV physical map  相似文献   

10.
Sequences of 66 genes encoding bacterial or yeast membrane proteins have been examined for the respective positioning of putative transmembrane domains and translational pauses. The latter were operationally defined as clusters of at least 17 non-preferred codons along the mRNA. The putative transmembrane domains were defined as stretches of at least 17 hydrophobic amino acids in the encoded protein. For yeast non-mitochon drial membrane proteins, it was observed that clusters of non-preferred codons occur more frequently about 56 to 75 codons after a hydrophobic stretch in the encoded protein. About 40 amino acid residues are required to span the large ribosomal subunit. Such clusters were thus predicted to cause a severe slow-down in peptide elongation, just when the hydrophobic stretch fully protrudes from the ribosome. This transient slow-down of the ribosome pace has consequently been named the “+70 pause”. This pause was not observed for mitochondrial or bacterial membrane proteins, which are thought to insert post-translationally in their respective membranes. Because insertion of yeast proteins in the endoplasmic reticulum membrane is generally cotranslational instead, it is possible that the “+70 pause” reflects the coupling of translation, targeting, insertion and folding in this case. The pause may, for instance, give time for productive interaction of the newly synthesized hydrophobic domain with the proper targeting/insertion machineries. Thus, it would favor entrance of the stalled protein domain into the proper pathway.  相似文献   

11.
When present in high copy number plasmids, the nuclear genes MRS3 and MRS4 from Saccharomyces cerevisiae can suppress the mitochondrial RNA splicing defects of several mit- intron mutations. Both genes code for closely related proteins of about Mr 32,000; they are 73% identical. Sequence comparisons indicate that MRS3 and MRS4 may be related to the family of mitochondrial carrier proteins. Support for this notion comes from a structural analysis of these proteins. Like the ADP/ATP carrier protein (AAC), the mitochondrial phosphate carrier protein (PiC) and the uncoupling protein (UCP), the two MRS proteins have a tripartite structure; each of the three repeats consists of two hydrophobic domains that are flanked by specific amino acid residues. The spacing of these specific residues is identical in all domains of all proteins of the family, whereas spacing between the hydrophobic domains is variable. Like the AAC protein, the MRS3 and MRS4 proteins are imported into mitochondria in vitro and without proteolytic cleavage of a presequence and they are located in the inner mitochondrial membrane. In vivo studies support this mitochondrial localization of the MRS proteins. Overexpression of the MRS3 and MRS4 proteins causes a temperature-dependent petite phenotype; this is consistent with a mitochondrial function of these proteins. Disruption of these genes affected neither mitochondrial functions nor cellular viability. Their products thus have no essential function for mitochondrial biogenesis or for whole yeast cells that could not be taken over by other gene products. The findings are discussed in relation to possible functions of the MRS proteins in mitochondrial solute translocation and RNA splicing.  相似文献   

12.
pOMD29 is a hybrid protein containing the NH2-terminal topogenic sequence of a bitopic, integral protein of the outer mitochondrial membrane in yeast, OMM70, fused to dihydrofolate reductase. The topogenic sequence consists of two structural domains: an NH2-terminal basic region (amino acids 1-10) and an apolar region which is the predicted transmembrane segment (amino acids 11-29). The transmembrane segment alone was capable of targeting and inserting the hybrid protein into the outer membrane of intact mitochondria from rat heart in vitro. The presence of amino acids 1-10 enhanced the rate of import, and this increased rate depended, in part, on the basic amino acids located at positions 2, 7, and 9. Deletion of a large portion of the transmembrane segment (amino acids 16-29) resulted in a protein that exhibited negligible import in vitro. Insertion of pOMD29 into the outer membrane was not competed by import of excess precursor protein destined for the mitochondrial matrix, indicating that the two proteins may have different rate-limiting steps during import. We propose that the structural domains within amino acids 1-29 of pOMD29 cooperate to form a signal-anchor sequence, the characteristics of which suggest a model for proper sorting to the mitochondrial outer membrane.  相似文献   

13.
The Mitochondrial Carrier Family (MCF) is a signature group of integral membrane proteins that transport metabolites across the mitochondrial inner membrane in eukaryotes. MCF proteins are characterized by six transmembrane segments that assemble to form a highly-selective channel for metabolite transport. We discovered a novel MCF member, termed Legionellanucleotide carrier Protein (LncP), encoded in the genome of Legionella pneumophila, the causative agent of Legionnaire's disease. LncP was secreted via the bacterial Dot/Icm type IV secretion system into macrophages and assembled in the mitochondrial inner membrane. In a yeast cellular system, LncP induced a dominant-negative phenotype that was rescued by deleting an endogenous ATP carrier. Substrate transport studies on purified LncP reconstituted in liposomes revealed that it catalyzes unidirectional transport and exchange of ATP transport across membranes, thereby supporting a role for LncP as an ATP transporter. A hidden Markov model revealed further MCF proteins in the intracellular pathogens, Legionella longbeachae and Neorickettsia sennetsu, thereby challenging the notion that MCF proteins exist exclusively in eukaryotic organisms.  相似文献   

14.
15.
In a forward genetic screen for interaction with mitochondrial iron carrier proteins in Saccharomyces cerevisiae, a hypomorphic mutation of the essential DRE2 gene was found to confer lethality when combined with Δmrs3 and Δmrs4. The dre2 mutant or Dre2-depleted cells were deficient in cytosolic Fe/S cluster protein activities while maintaining mitochondrial Fe/S clusters. The Dre2 amino acid sequence was evolutionarily conserved, and cysteine motifs (CX2CXC and twin CX2C) in human and yeast proteins were perfectly aligned. The human Dre2 homolog (implicated in blocking apoptosis and called CIAPIN1 or anamorsin) was able to complement the nonviability of a Δdre2 deletion strain. The Dre2 protein with triple hemagglutinin tag was located in the cytoplasm and in the mitochondrial intermembrane space. Yeast Dre2 overexpressed and purified from bacteria was brown and exhibited signature absorption and electron paramagnetic resonance spectra, indicating the presence of both [2Fe-2S] and [4Fe-4S] clusters. Thus, Dre2 is an essential conserved Fe/S cluster protein implicated in extramitochondrial Fe/S cluster assembly, similar to other components of the so-called CIA (cytoplasmic Fe/S cluster assembly) pathway although partially localized to the mitochondrial intermembrane space.  相似文献   

16.
The structure of the human gene encoding the mitochondrial outer membrane receptor Tom20 has been determined from overlapping clones obtained using PCR-based techniques. The 20kb human Tom20 gene (hTom20) consists of five exons separated by four introns. The 5' flanking region presents features common with other nuclear genes encoding mitochondrial proteins. Comparison with its homologs and putative homologs in other species has revealed common features in their TPR motifs and other relevant protein domains. Aspects concerning evolutionary origins of the family of processed pseudogenes of hTom20 are also discussed.  相似文献   

17.
We have used cysteine scanning, hydropathy analysis and molecular modeling to construct four possible models of the transmembrane helical domains of the yeast mitochondrial citrate transport protein. Models 1 and 2 invoke the formation of a translocation pathway by the six membrane-spanning alpha-helical domains that comprise each citrate transport protein monomer. Thus the homodimeric CTP (the functional form of the CTP) would contain two separate translocation pathways. Models 3 and 4 explore a novel way in which dimerization might take place, in which transmembrane domain 3 would form part of the dimer interface. This would lead to the formation of two seven-helix translocation pathways within the transporter dimer. Importantly, these studies have led to the construction of the first detailed structural models for any of the mitochondrial anion transport proteins, a family of proteins which is essential to cellular bioenergetics. Furthermore, these models suggest numerous experiments which can be carried out to further elucidate the structure of the translocation pathway through the membrane.  相似文献   

18.
The human genomic sequencing effort has revealed the presence of a large number of Rho GTPases encoded by the human genome. Here we report the characterization of a new family of Rho GTPases with atypical features. These proteins, which were called Miro-1 and Miro-2 (for mitochondrial Rho), have tandem GTP-binding domains separated by a linker region containing putative calcium-binding EF hand motifs. Genes encoding Miro-like proteins were found in several eukaryotic organisms from Saccharomyces cerevisiae, Caenorhabditis elegans, and Drosophila melanogaster to mammals, indicating that these genes evolved early during evolution. Immunolocalization experiments, in which transfected NIH3T3 and COS 7 cells were stained for ectopically expressed Miro as well as for the endogenous Miro-1 protein, showed that Miro was present in mitochondria. Interestingly, overexpression of a constitutively active mutant of Miro-1 (Miro-1/Val-13) induced an aggregation of the mitochondrial network and resulted in an increased apoptotic rate of the cells expressing activated Miro-1. These data indicate a novel role for Rho-like GTPases in mitochondrial homeostasis and apoptosis.  相似文献   

19.
20.
Sdh3/Shh3, a subunit of mitochondrial succinate dehydrogenase, contains transmembrane domains with a hydrophobicity comparable to that of endoplasmic reticulum (ER) proteins. Here, we show that a C-terminal reporter fusion to Sdh3/Shh3 results in partial mis-targeting of the protein to the ER. This mis-targeting is mediated by the signal recognition particle (SRP) and depends on the length of the C-terminal tail. These results imply that if nuclear-encoded mitochondrial proteins contain strongly hydrophobic transmembrane domains and a long C-terminal tail, they have the potential to be recognized by SRP and mis-targeted to the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号