首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study character of effect of apoptotic signal proteins on activities of neurosecretory cells and neurons of rat hypothalamus, pharmacological inhibitors of proapoptotic protein p53 Pifithrin-α and antiapoptotic protein Bcl-2 HA14-1 were injected into hypothalamus. Activation of vasopressinergic neurosecretory cells at administration of the blocker Bcl-2 HA14-1 was shown: there were observed an increase of vasopressin mRNA in neurons of hypothalamic supraoptical and paraventricular nuclei, a decrease of the immunoreactive vasopressin content in posterior pituitary, and reduction of diuresis. Inactivation of p53 inhibited release of vasopressin from hypothalamus cell bodies, which is indicated by an elevated content of immunoreactive vasopressin in neurosecretory cell bodies with its unchanged synthesis, a decrease of the neurohormone content in the posterior pituitary, and an increase of diuresis rate. Activation of vasopressinergic neurons of the suprachiasmatic nucleus was also shown. Administration of the blocker of Bcl-2 has been revealed to decrease functional activity both of dopaminergic neurons (zona incerta) and of dopaminergic neurosecretory cells (arcuate nucleus), in which a decrease of the tyrosine hydroxylase content was observed. The p53 inactivation also led to a decrease of activity of dopaminergic neurosecretory cells of arcuate nucleus, whereas activity of the neurons of zona incerta did not change. Thus, it has been shown that a change of the apoptotic protein content in vasopressinergic and dopaminergic neurons and neurosecretory cells leads to a change of their functional activity, the character and possibly mechanisms of effects of apoptotic proteins on activities of vasopressin-and dopaminergic cells being different.  相似文献   

2.
To study character of effect of apoptosis signal proteins on activities of neurosecretory cells and neurons of rat hypothalamus, pharmacologic inhibitors of proapoptotic protein p53 Pifithrin-alpha and antiapoptotic protein Bcl-2 HA14-1 were injected into the hypothalamus. Activation of vasopressinergic neurosecretory cells at administration of the blocker Bcl-2 HA14-1 was shown: there were observed an increase of vasopressin mRNA in neurons of hypothalamus supraoptical and paraventricular nuclei, a decrease of the immunoreactive vasopressin content in posterior pituitary, and reduction of diuresis. Inactivation of p53 inhibited release of vasopressin from hypothalamus cell bodies, which is indicated by an elevated content of immunoreactive vasopressin in neurosecretory cell bodies with its unchanged synthesis, a decrease of the neurohormone content in the posterior pituitary, and an increase of diuresis rate. Activation of vasopressinergic neurons of the suprachiasmatic nucleus was also shown. Administration of the blocker Bcl-2 has been revealed to decrease functional activity both of dopaminergic neurons (Zona Incerta) and of dopaminergic neurosecretory cells (arcuate nucleus), in which a decrease of the tyrosine hydroxylase content was observed. The p53 inactivation also led to a decrease of activity of dopaminergic neurosecretory cells of arcuate nucleus, whereas activity of the proteins Zone Incerta did not change. Thus, it has been shown that a change of the apoptotic protein content in vasopressinergic and dopaminergic neurons and neurosecretory cells leads to a change of their functional activity, the character and possibly mechanisms of effects of apoptotic proteins on activities of vasopressin- and dopaminergic cells being different.  相似文献   

3.
The role of apoptotic signaling proteins for long-lived neurons in the mature brain is poorly understood. Recently, we have shown that water deprivation leads to the activation of vasopressin (VP) secretion and expression of Bcl-2 and caspase-9 apototic proteins in the hypothalamus of the rat brain. In the present work, we continued to study a possible relationship between the functional activity of neurosecretory cells of the hypothalamus and apoptosis related proteins. We found that water deprivation leads to simultaneous activation of synthesis of VP and p53 and Bcl-2 apoptotic proteins in the mouse brain. To study a possible effect of apoptotic proteins on the functional state of hypothalamic neurons, the VP and tyrosine hydroxylase (TH) synthesis were analyzed in p53, p21Waf1/Cip1 and Bcl-2 deficient mice. Loss of p53 and Bcl-2 significantly reduced VP synthesis in paraventricular and supraoptic nuclei and TH expression in arcuat, periventricular and zona incerta nuclei of the hypothalamus. Surprisingly, in contrast with the loss of p53, the inactivation of p21Waf1/Cip1 up-regulates the expression of VP and TH. These data indicate that p53, p21Waf1/Cip1 and Bcl-2 proteins, besides affecting cell cycle, tumor suppression and apoptosis, may act as modulators of neurosecretory activity of hypothalamic neurons; however, this problem remains to be determined more detailed.  相似文献   

4.
Tumor necrosis factor (TNF) participates in regulation of many processes, including carcinogenesis and apoptosis. However, at present, there are practically no studies on peculiarities of apoptosis control in tnf-knockout (tnf-/-) mice. These mice develop without morphologic abnormalities, but they seem to have impairment of many biological processes, such as inflammation, programmed cell death, etc. Therefore, the goal of our work was to study possible pathways of regulation of apoptosis in the absence of TNF in neurosecretory cells (NSC) of young and old mice. For this purpose, we determined immunohistochemically expression of apoptosis markers caspase-8, caspase-9, Bax, Bcl-2, Mcl-1, neuropeptide vasopressin and the apoptosis level in hypothalamus of tnf-knockout mice of different ages as compared with mice with unchanged level of TNF synthesis. It was shown that the apoptosis activation observed during aging did not depend on the tnf gene and that apoptosis at aging was caspase-dependent. It was revealed that at aging in mouse NSC the external cell death pathway with participation of caspase-8 is activated. The pathways mediating cell death in different neurosecretory centers at aging are different. Thus, in supraoptic nucleus (SON), in all studied animal groups, an important cause of the NSC apoptosis is Bax. In paraventricular nucleus (PVN), of the greater importance is a decrease of the anti-apoptotic protection. Hence, misbalance of synthesis of proteins of the Bcl-2 family plays an important role in development of senescent apoptosis.  相似文献   

5.
The state of the hypothalamic-pituitary-adrenocortical system (HPAS) in aged mice was compared with that in young mice after administration of interferon-alpha (IA). In the aged mice, IA produced an increase of morpho-functional activity of neurosecretory cells (NSC) of hypothalamic paraventricular nucleus. In the young mice, no effects of IA on neuroendocrine centers (paraventricular and supraoptic nuclei) were found, but an increase of the number of apoptotic cells in the adrenal cortex was revealed. The differences in the IA effects can be due to age-related changes revealed in the HPAS. They consist in intact old animals in a decrease of functional activity of hypothalamic centers as a result of loss of NSC (an increase of apoptosis level) with a simultaneous rise of activity of adrenal cortex, which seems to have a compensatory character. Thus, in aging, first of all, function of the central part of the HPAS decreases, which subsequently might lead to age-related changes in the peripheral link of the endocrine system. The results obtained indicate that the effect of IA on the HPAS depends on the stage of ontogenesis.  相似文献   

6.
The work studied vasopressinergic neurons of hypothalamic supraoptic and paravenricular nuclei of the wild type mice and the neuronal nitric oxide synthase (nNOS) gene knockouted mice at a decrease of the brain catecholamine (CA) level caused by administration of the blocker of activity of tyrosine hydroxylase alpha-methyl-paratyrosine (alpha-MPT) and at the CA level decrease on the background of functional activity of the vasopressinergic neurons caused by dehydration of animals. There were analyzed changes in the number of neurons in both magnocellular hypothalamic nuclei expressing proapoptotic proteins caspase-8 and caspase-9, p53, and antiapoptotic protein Bcl-2. The disturbance of the CA-ergic innervation was shown to be a strong damaging factor leading to apoptosis of neurons regardless of the presence of nNOS in the cells. However, at disturbance of the CA-ergic innervation due to the 5-day mouse dehydration, no death of neurons by apoptosis was revealed. Thus, it is possible that functional activation prevents the hypothalamic vasopressinergic neurons from death at a decrease of the CA level in brain. The main difference of the nNOS gene knockouts is the absence of activation of the Bcl-2 expression under all used actions. This confirms our suggestion about interaction of CA and NO in triggering of expression of the antiapoptotic protein Bcl-2.  相似文献   

7.
The work deals with studies on vasopressinergic neurons of hypothalamic supraoptic and paravenricular nuclei in the wild type mice and the neuronal nitric oxide synthase (nNOS) in the gene knockouted mice at a decrease of the brain catecholamine (CA) level caused by administration of the blocker of activity of tyrosine hydroxylase α-methyl-paratyrosine (α-MPT) and at the CA level decrease on the background of functional activity of the vasopressinergic neurons caused by dehydration of animals. There were analyzed changes in the number of neurons in the magnocellular hypothalamic nuclei expressing proapoptotic proteins caspase-8 and caspase-9, p53, and antiapoptotic protein Bcl-2. Disturbance of the CAergic innervation was shown to be a strong damaging factor leading to apoptosis of neurons regardless of the presence of nNOS in the cells. However, at disturbance of the CAergic innervation due to the 5-day mouse dehydration, no death of neurons by apoptosis was revealed. Thus, it is possible that functional activation prevents the hypothalamic vasopressinergic neurons from death at a decrease of the CA level in brain. The main difference of the nNOS gene knockouts is the absence of activation of the Bcl-2 expression under all used actions. This confirms our suggestion about interaction of CA and NO in triggering of expression of the antiapoptotic protein Bcl-2.  相似文献   

8.
9.
There is assumption about active role of immune modulators in cell death process. The involvement of interferon-alpha and cycloferon in apoptosis regulation of hypothalamic neurons of mice during stress and aging was studied. We determined the expression of apoptosis markers (Bcl-2, Mcl-1, Bax) in comparison with apoptosis level. We have found that immune modulators suppress activity of nonapeptidergic neurons. Thus, interferon-alpha treatment reduces synthesis of Bcl-2; cycloferon treatment inhibits expression of Bax and Bcl-2. So the role of immune modulators in neuron apoptosis depends on the stage of ontogenesis and type of immune modulator. Cycloferon is able to reduce the level of age-dependent apoptosis of neurons in aging, but under stress condition both interferon-alpha and cycloferon act as protectors of cell death.  相似文献   

10.
Response of the hypothalamic-pituitary-adrenocortical system (HPAS) of aged (15 month-old) and young (2 month-old) mice to oxidative stress has been studied. The objects of the study were magnocellular neurosecretory centers (NSC) of hypothalamus, the supraoptic (SON) and paraventricular (PVN) nuclei, as well as the adrenals. We studied distribution of neurosecretory cells (NSC) that synthesize protein c-fos participating in the initial stage of apoptosis. Besides, the number of cells submitted to apoptosis was determined using luminescent microscopy. The obtained results showed that the activity of NSC and the number of apoptotic cells in the SON of young and aged mice did not changes at hyperoxia. Thus, the oxidative stress does not seem to be specific of this nucleus. However, oxygen increased the number of c-fos-immunoreactive NSC in the PVN of animals of both ages. The obtained data indicate that oxygen can cause development of apoptosis of the NSC and that protein c-fos is synthesized at one of the initial stages of this process.  相似文献   

11.
Abstract: Neurons do not divide during adult life and thus they provide a unique system to study the effects of age-accumulated damage to DNA in the absence of DNA replication. We have analyzed DNA polymerase activity in neurons isolated from young adult and very aged mice. The predominant catalytic activity is DNA polymerase-β and it is present in similar amounts in neurons from young and old mice. This polymerase is highly errorprone in copying φX174 DNA, the error frequency being about 1/7,000 and not significantly different when obtained from young and old animals. This high infidelity is considered with respect to DNA repair and the protein synthesis error catastrophe theory of aging.  相似文献   

12.
Oxidative stress has been shown to play a role in aging and in neurodegenerative disorders. Some of the consequences of oxidative stress are DNA base modifications, lipid peroxidation, and protein modifications such as formation of carbonyls and nitrotyrosine. These events may play a role in apoptosis, another factor in aging and neurodegeneration, in response to uncompensated oxidative stress. Bcl-2 is a mitochondrial protein that protects neurons from apoptotic stimuli including oxidative stress. Using immunohistochemistry and western blot analysis, here we show that Bcl-2 is up-regulated in the hippocampus and cerebellum of aged (24 months) Fisher 344 rats. Treatment with the free radical spin trap N-tert-butyl-alpha-phenylnitrone (PBN) effectively reverses this age-dependent Bcl-2 up-regulation indicating that this response is redox sensitive. This conclusion was further supported by inducing the same regional Bcl-2 up-regulation in young (3 months) Fisher 344 rats exposed to 100% normobaric O(2) for 48 h. Our results indicate that Bcl-2 expression is increased in the aged brain, possibly as a consequence of oxidative stress challenges. These results also illustrate the effectiveness of antioxidants in reversing age-related changes in the CNS and support further research to investigate their use in aging and in age-related neurodegenerative disorders.  相似文献   

13.
Vitamin E (VitE) only prevented cardiovascular diseases in some patients and the mechanisms remain unknown. VitE levels can be affected by aging and gender. We hypothesize that age and gender can influence VitE’s cardioprotective effect. Mice were divided into 4 groups according to age and gender, and each group of mice were divided into a control group and a VitE group. The mice were administered water or VitE for 21 days; Afterward, the cardiac function and myocardial infarct size and cardiomyocyte apoptosis were measured after myocardial ischemia reperfusion(MI/R). VitE may significantly improved cardiac function in young male mice and aged female mice by enhancing ERK1/2 activity and reducing JNK activity. Enhanced expression of HSP90 and Bcl-2 were also seen in young male mice. No changes in cardiac function and cardiac proteins were detected in aged male mice and VitE was even liked to exert a reverse effect in cardiac function in young mice by enhancing JNK activity and reducing Bcl-2 expression. Those effects were in accordance with the changes of myocardial infarction size and cardiomyocyte apoptosis in each group of mice. VitE may reduce MI/R injury by inhibiting cardiomyocyte apoptosis in young male mice and aged female mice but not in aged male mice. VitE was possibly harmful for young female mice, shown as increased cardiomyocyte apoptosis after MI/R. Thus, we speculated that the efficacy of VitE in cardiac protection was associated with age and gender.  相似文献   

14.
The influence of aging on skeletal myocyte apoptosis is not well understood. In this study we examined apoptosis and apoptotic regulatory factor responses to muscle atrophy induced via limb unloading following loading-induced hypertrophy. Muscle hypertrophy was induced by attaching a weight to one wing of young and aged Japanese quails for 14 days. Removing the weight for 7 or 14 days after the initial 14 days of loading induced muscle atrophy. The contralateral wing served as the intra-animal control. A time-released bromodeoxyuridine (BrdU) pellet was implanted subcutaneously with wing weighting to identify activated satellite cells/muscle precursor cells throughout the experimental period. Bcl-2 mRNA and protein levels decreased after 7 days of unloading, but they were unchanged after 14 days of unloading in young muscles. Bcl-2 protein level but not mRNA level decreased after 7 days of unloading in muscles of aged birds. Seven days of unloading increased the mRNA level of Bax in muscles from both young and aged birds. Fourteen days of unloading increased mRNA and protein levels of Bcl-2, decreased protein levels of Bax, and decreased nuclear apoptosis-inducing factor (AIF) protein level in muscles of aged birds. BrdU-positive nuclei were found in all unloaded muscles from both age groups, but the number of BrdU-positive nuclei relative to the total nuclei decreased after 14 days of unloading compared with 7 days of unloading. The TdT-mediated dUTP nick end labeling (TUNEL) index was higher after 7 days of unloading in both young and aged muscles and after 14 days of unloading in aged muscles. Immunofluorescent staining revealed that almost all of the TUNEL-positive nuclei were also BrdU immunopositive, suggesting that activated satellite cell nuclei (both fused and nonfused) underwent nuclear apoptosis during unloading. There were significant correlations among levels of Bcl-2, Bax, and AIF and TUNEL index. Our data are consistent with the hypothesis that apoptosis regulates, at least in part, unloading-induced muscle atrophy and loss of activated satellite cell nuclei in previously loaded muscles. Moreover, these data suggest that aging influences the apoptotic responses to prolonged unloading following hypertrophy in skeletal myocytes. satellite cells; Bcl-2 protein family  相似文献   

15.
The endocannabinoid system can modulate energy homeostasis by regulating feeding behaviour as well as peripheral energy storage and utilization. Importantly, many of its metabolic actions are mediated through the cannabinoid type 1 receptor (CB1R), whose hyperactivation is associated with obesity and impaired metabolic function. Herein, we explored the effects of administering rimonabant, a selective CB1R inverse agonist, upon key metabolic parameters in young (4 month old) and aged (17 month old) adult male C57BL/6 mice. Daily treatment with rimonabant for 14 days transiently reduced food intake in young and aged mice; however, the anorectic response was more profound in aged animals, coinciding with a substantive loss in body fat mass. Notably, reduced insulin sensitivity in aged skeletal muscle and liver concurred with increased CB1R mRNA abundance. Strikingly, rimonabant was shown to improve glucose tolerance and enhance skeletal muscle and liver insulin sensitivity in aged, but not young, adult mice. Moreover, rimonabant‐mediated insulin sensitization in aged adipose tissue coincided with amelioration of low‐grade inflammation and repressed lipogenic gene expression. Collectively, our findings indicate a key role for CB1R in aging‐related insulin resistance and metabolic dysfunction and highlight CB1R blockade as a potential strategy for combating metabolic disorders associated with aging.  相似文献   

16.
17.
It has been recently shown that xanthohumol, a flavonoid present in hops, possesses antioxidant, anti-inflammatory and chemopreventive properties. However, its role in the aging brain has not been addressed so far. Therefore, this study aimed to investigate the possible neuroprotective activity of xanthohumol against age-related inflammatory and apoptotic brain damage in male senescence-accelerated prone mice (SAMP8). Animals were divided into 4 groups: Untreated young mice, untreated old mice and old mice treated either with 1 mg kg−1 day−1 or 5 mg kg−1 day−1 xanthohumol. Young and old senescence accelerated resistant mice (SAMR1) were used as controls. After 30 days of treatment, animals were sacrificed and their brains were collected and immediately frozen in liquid nitrogen. mRNA (GFAP, TNF-α, IL-1β, AIF, BAD, BAX, XIAP, NAIP and Bcl-2) and protein (GFAP, TNF-α, IL-1β, AIF, BAD, BAX, BDNF, synaptophysin and synapsin) expressions were measured by RT-PCR and Western blotting, respectively. Significant increased levels of pro-inflammatory (TNF-α, IL-1β) and pro-apoptotic (AIF, BAD, BAX) markers were observed in both SAMP8 and SAMR1 old mice compared to young animals (P<.05) and also in SAMP8 untreated old mice compared to SAMR1 (P<.05). These alterations were significantly less evident in animals treated with both doses of xanthohumol (P<.05). Also, a reduced expression of synaptic markers was observed in old mice compared to young ones (P<.05) but it significantly recovered with 5 mg kg−1 day−1 xanthohumol treatment (P<.05). In conclusion, xanthohumol treatment modulated the inflammation and apoptosis of aged brains, exerting a protective effect on damage induced by aging.  相似文献   

18.
The ultrastructural organization of neurosecretory cells (NSC) belonging to the hypothalamic supraoptic nucleus was investigated in young rats following periods of painful stress differing in duration (of 2 and 20 min). Intact young rats of similar age and others at late stages of development (24–27 months old) served as controls. Short- and longer-acting painful stress was found to intensify and inhibit the functional activity of NSC respectively. Complex ultrastructural changes in the NSC of young rats following protracted painful stress is compared with the ultrastructural organizational pattern in several NSC of aging rats. Findings would imply that aging occurs in rats following prolonged painful stress, resulting from functional hypersecretion and depletion.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 3, pp. 389–395, May–June, 1989.  相似文献   

19.
The influence of aging on the respiratory activity of stimulated Kupffer cells was investigated in the isolated perfused mouse liver in relation to colloidal carbon phagocytosis, and the content of glutathione (GSH) and protein carbonyls as parameters related to oxidative stress. Livers from aged (22 months) mice exhibited significant 35% and 65% decreases in the carbon uptake and in the carbon-induced O2 consumption compared to young (3 months) animals, respectively, with a concomitant 46% diminution in the carbon-induced O2 consumption/carbon uptake ratio. Hepatic GSH depletion was observed in aged mice compared to young animals, whereas protein oxidation was enhanced. It is concluded that aging leads to an impairment in the functional capacity of Kupffer cells reflected by a substantial reduction in their respiratory burst activity, lessened endocytic capacity and enhanced oxidative stress, that may contribute to increased susceptibility of the liver to noxious challenges.  相似文献   

20.
Summary The activated hypothalamic magnocellular neurosecretory system of the rat was studied in tissue sections, double stained with the unlabeled antibody peroxidase-antiperoxidase complex (PAP) technique. The results indicate that in animals with an activated hypothalamic magnocellular neuroendocrine system, as well as in normal animals, vasopressin and oxytocin are exclusively synthesized in separate vasopressinergic and oxytocinergic neurons.This investigation was supported by a grant from the Belgian Nationaal Fonds voor Geneeskundig Wetenschappelijk Onderzoek  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号