首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Mayer ML 《Neuron》2005,45(4):539-552
Little is known about the molecular mechanisms underlying differences in the ligand binding properties of AMPA, kainate, and NMDA subtype glutamate receptors. Crystal structures of the GluR5 and GluR6 kainate receptor ligand binding cores in complexes with glutamate, 2S,4R-4-methylglutamate, kainate, and quisqualate have now been solved. The structures reveal that the ligand binding cavities are 40% (GluR5) and 16% (GluR6) larger than for GluR2. The binding of AMPA- and GluR5-selective agonists to GluR6 is prevented by steric occlusion, which also interferes with the high-affinity binding of 2S,4R-4-methylglutamate to AMPA receptors. Strikingly, the extent of domain closure produced by the GluR6 partial agonist kainate is only 3 degrees less than for glutamate and 11 degrees greater than for the GluR2 kainate complex. This, together with extensive interdomain contacts between domains 1 and 2 of GluR5 and GluR6, absent from AMPA receptors, likely contributes to the high stability of GluR5 and GluR6 kainate complexes.  相似文献   

3.
AMPA and kainate receptors mediate fast synaptic transmission. AMPA receptor ligand‐binding domains form dimers, which are key functional units controlling ion‐channel activation and desensitization. Dimer stability is inversely related to the rate and extent of desensitization. Kainate and AMPA receptors share common structural elements, but functional measurements suggest that subunit assembly and gating differs between these subtypes. To investigate this, we constructed a library of GluR6 kainate receptor mutants and directly measured changes in kainate receptor dimer stability by analytical ultracentrifugation, which, combined with electrophysiological experiments, revealed an inverse correlation between dimer stability and the rate of desensitization. We solved crystal structures for a series of five GluR6 mutants, to understand the molecular mechanisms for dimer stabilization. We demonstrate that the desensitized state of kainate receptors acts as a deep energy well offsetting the stabilizing effects of dimer interface mutants, and that the deactivation of kainate receptor responses is dominated by entry into desensitized states. Our results show how neurotransmitter receptors with similar structures and gating mechanisms can exhibit strikingly different functional properties.  相似文献   

4.
Kumar J  Schuck P  Mayer ML 《Neuron》2011,71(2):319-331
Native glutamate receptor ion channels are tetrameric assemblies containing two or more different subunits. NMDA receptors are obligate heteromers formed by coassembly of two or three divergent gene families. While some AMPA and kainate receptors can form functional homomeric ion channels, the KA1 and KA2 subunits are obligate heteromers which?function only in combination with GluR5-7. The mechanisms controlling glutamate receptor assembly involve an initial step in which the amino terminal domains (ATD) assemble as dimers. Here, we establish by sedimentation velocity that the ATDs of GluR6 and KA2 coassemble as a heterodimer of K(d) 11?nM, 32,000-fold lower than the K(d) for homodimer formation by KA2; we solve crystal structures for the GluR6/KA2 ATD heterodimer and heterotetramer assemblies. Using these structures as a guide, we perform a mutant cycle analysis to probe the energetics of assembly and show that high-affinity ATD interactions are required for biosynthesis of functional heteromeric receptors.  相似文献   

5.
Horning MS  Mayer ML 《Neuron》2004,41(3):379-388
Ionotropic glutamate receptors are tetramers, the isolated ligand binding cores of which assemble as dimers. Previous work on nondesensitizing AMPA receptor mutants, which combined crystallography, ultracentrifugation, and patch-clamp recording, showed that dimer formation by the ligand binding cores is required for activation of ion channel gating by agonists. To define the mechanisms responsible for stabilization of dimer assembly in native AMPA receptors, contacts between the adjacent ligand binding cores were individually targeted by amino acid substitutions, using the GluR2 crystal structure as a guide to design mutants. We show that disruption of a salt bridge, hydrogen bond network, and intermolecular van der Waals contacts between helices D and J in adjacent ligand binding cores greatly accelerates desensitization. Conservation of these contacts in AMPA and kainate receptors indicates that they are important determinants of dimer stability and that the dimer interface is a key structural element in the gating mechanism of these glutamate receptor families.  相似文献   

6.
On the basis of X-ray structures of ionotropic glutamate receptor constructs in complex with amino acid-based AMPA and kainate receptor antagonists, a series of rigid as well as flexible biaromatic alanine derivatives carrying selected hydrogen bond acceptors and donors have been synthesized in order to investigate the structural determinants for receptor selectivity between AMPA and the GluR5 subtype of kainate receptors. Compounds selective for either GluR5 or AMPA receptors were identified. One particular substituent position appeared to be of special importance for control of ligand selectivity. Using molecular modeling the observed structure–activity relationships at AMPA and GluR5 receptors were deduced.  相似文献   

7.
The ligand-binding domains of AMPA receptor subunits carry two conserved N-glycosylation sites. In order to gain insight into the functional role of the corresponding N-glycans, we examined how the elimination of glycosylation at these sites (N407 and N414) affects the ligand-binding characteristics, structural stability, cell-surface expression, and channel properties of homomeric GluR-D (GluR4) receptor and its soluble ligand-binding domain (S1S2). GluR-D S1S2 protein expressed as a secreted protein in insect cells was found to be glycosylated at N407 and N414. No major differences in the ligand-binding properties were observed between the 'wild-type' S1S2 and non-glycosylated N407D/N414Q double mutant, or between S1S2 proteins expressed in the presence or absence of tunicamycin, an inhibitor of N-glycosylation. Purified glycosylated and non-glycosylated S1S2 proteins also showed similar thermostabilities as determined by CD spectroscopy. Full-length homomeric GluR-D receptor with N407D/N414Q mutation was expressed on the surface of HEK293 cells like the wild-type GluR-D. In outside-out patches, GluR-D and the N407D/N414Q mutant produced similar rapidly desensitizing current responses to glutamate and AMPA. We therefore report that the two conserved ligand-binding domain glycans do not play any major role in receptor-ligand interactions, do not impart a stabilizing effect on the ligand-binding domain, and are not critical for the formation and surface localization of homomeric GluR-D AMPA receptors in HEK293 cells.  相似文献   

8.
A new ionotropic glutamate receptor subunit termed KA-2, cloned from rat brain cDNA, exhibits high affinity for [3H]kainate (KD approximately 15 nM). KA-2 mRNA is widely expressed in embryonic and adult brain. Homomeric KA-2 expression does not generate agonist-sensitive channels, but currents are observed when KA-2 is coexpressed with GluR5 or GluR6 subunits. Specifically, coexpression of GluR5(R) and KA-2 produces channel activity, whereas homomeric expression of either subunit does not. Currents through heteromeric GluR5(Q)/KA-2 channels show more rapid desensitization and different current-voltage relations when compared with GluR5(Q) currents. GluR6/KA-2 channels are gated by AMPA, which fails to gate homomeric GluR6 receptor channels. These results suggest possible in vivo partnership relations for high affinity kainate receptors.  相似文献   

9.
The expression of ionotropic glutamate receptor subunits in the motoneuronal pools of the hypoglossal nucleus was studied using specific antibodies against subunits of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), kainate and N-methyl-D-aspartate (NMDA) subtypes. The highest numbers of intensely immunolabelled motoneurons were found in the dorsal tier and caudoventromedial part of the hypoglossal nucleus with all antibodies except that against the GluR1 AMPA subunit. Labelling for the GluR1 subunit was weak except for caudally located groups of motoneurons which innervate tongue muscles related to respiratory activity. By contrast, most motoneurons were intensely immunostained with antibodies against GluR2/3 and GluR4 subunits of the AMPA subtype. The low staining observed using an antibody specific for the GluR2 subunit (which prevents Ca2+-entry through AMPA channels) strongly suggests that AMPA receptors in hypoglossal motoneurons are Ca2+-permeable. Immunolabelling for the GluR5/6/7 kainate receptor subunits was found in many motoneuronal somata as well as in thin axon-like profiles and puncta that resembled synaptic boutons. Most motoneurons were intensely immunostained for the NMDA receptor subunit NR1. These results show that the hypoglossal nucleus contains five heterogeneous pools of motoneurons which innervate functionally defined groups of tongue muscles. The uneven expression of the different receptor subunits analysed here could reflect diverse phenotypic properties of hypoglossal motoneurons which might be expected to generate different patterns of motor responses under different physiological or pathological conditions.  相似文献   

10.
Abstract: The functional expression of the kainate subtype of glutamate receptor (GluR) has been investigated in cultured rat cerebellar granule cells using single cell intracellular calcium ([Ca2+]i) measurements. Both AMPA- and kainate-induced [Ca2+]i increases could be blocked completely by the AMPA receptor-selective antagonist LY300168 (50 µ M ). However, following treatment with concanavalin A, an inhibitor of kainate receptor desensitisation, 30% of cells showed a kainate-induced [Ca2+]i rise of >100 n M in the presence of LY300168. Responses to 30 µ M kainate in the presence of LY300168 were virtually abolished by the AMPA and GluR5 kainate receptor competitive antagonist LY293558 (100 µ M ). These results demonstrate the presence of functional kainate receptors on cultured cerebellar granule cells, and suggest that the GluR5 subtype of kainate receptor plays a significant role in kainate receptor-mediated [Ca2+]i increases.  相似文献   

11.
Unilateral hypoglossal nerve axotomy was used as a model to analyse immunohistochemically the expression of the GluR1, GluR2, GluR3, and GluR4 glutamate receptor subunits of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) subtype and the NR1 subunit of the N-methyl-D-aspartate (NMDA) subtype in the different morphofunctional hypoglossal pools from 1 to 45 days postaxotomy. Following hypoglossal nerve axotomy, the percentage of motoneurons that were GluR1-immunopositive and the labeling intensity for this subunit was increased in some hypoglossal pools. Immunolabeling for the GluR2 subunit was undetectable. These results contrast with the unchanged pattern for these two subunits after sciatic nerve axotomy previously described. Image analysis showed a significant decrease in the intensity of immunohistochemical labeling for the GluR2/3 and GluR4 subunits in motoneurons, although most motoneurons were still immunopositive for these 2 subunits after axotomy. The intensity of immunolabeling for the NR1 subunit was slightly decreased postlesion, whereas the percentage of NR1-immunopositive motoneurons increased. Immunoreactivity returned to basal levels 45 days postlesion. These findings show that in axotomized hypoglossal motoneurons, i) AMPA and NMDA receptor subunits are still expressed, ii) the composition of the ionotropic glutamate receptor subunit pool is subjected to continuous changes during the regeneration process, iii) AMPA receptors, if functional, would have physiological properties different to those in intact motoneurons, and iv) the various AMPA receptor subunits are differentially regulated. The present results also suggest a faster recovery of basal levels of immunoreactivity for caudally localised groups of motoneurons which could reflect a caudo-rostral sequential functional revovery in the hypoglossal nucleus.  相似文献   

12.
A glutamate receptor channel with high affinity for domoate and kainate.   总被引:6,自引:0,他引:6  
The non-NMDA family of glutamate receptors comprises a growing number of structurally related subunits (GluR-A to -D or -1 to -4; GluR-5, -6; KA-1). GluR-A to -D appear to constitute the major AMPA receptor subtypes but the functional and pharmacological characteristics of the other subunits are unresolved. Using a mammalian expression system we demonstrate here that homomeric GluR-5 receptors exhibit properties of a high affinity domoate (KD approximately 2 nM) and kainate (KD approximately 70 nM) binding site. For these receptors, the rank order of ligands competing with [3H]kainate binding was domoate much greater than quisqualate approximately glutamate much greater than AMPA approximately CNQX. The respective receptor channels were gated in decreasing order of sensitivity by domoate, kainate, glutamate and AMPA. In contrast to recombinantly expressed GluR-A to -D channels, currents elicited at GluR-5 receptor desensitize channels to all agonists. This property is characteristic of currents in peripheral neurons on sensory ganglia. These findings suggest the existence of at least two distinct types of non-NMDA receptor channels, both gated by AMPA and kainate, but differing in pharmacology and current properties.  相似文献   

13.
High-resolution structures of the ligand binding core of GluR0, a glutamate receptor ion channel from Synechocystis PCC 6803, have been solved by X-ray diffraction. The GluR0 structures reveal homology with bacterial periplasmic binding proteins and the rat GluR2 AMPA subtype neurotransmitter receptor. The ligand binding site is formed by a cleft between two globular alpha/beta domains. L-Glutamate binds in an extended conformation, similar to that observed for glutamine binding protein (GlnBP). However, the L-glutamate gamma-carboxyl group interacts exclusively with Asn51 in domain 1, different from the interactions of ligand with domain 2 residues observed for GluR2 and GlnBP. To address how neutral amino acids activate GluR0 gating we solved the structure of the binding site complex with L-serine. This revealed solvent molecules acting as surrogate ligand atoms, such that the serine OH group makes solvent-mediated hydrogen bonds with Asn51. The structure of a ligand-free, closed-cleft conformation revealed an extensive hydrogen bond network mediated by solvent molecules. Equilibrium centrifugation analysis revealed dimerization of the GluR0 ligand binding core with a dissociation constant of 0.8 microM. In the crystal, a symmetrical dimer involving residues in domain 1 occurs along a crystallographic 2-fold axis and suggests that tetrameric glutamate receptor ion channels are assembled from dimers of dimers. We propose that ligand-induced conformational changes cause the ion channel to open as a result of an increase in domain 2 separation relative to the dimer interface.  相似文献   

14.
Desensitization is a universal feature of ligand-gated ion channels. Using the crystal structure of the GluR2 L483Y mutant channel as a guide, we attempted to build non-desensitizing kainate-subtype glutamate receptors. Success was achieved for GluR5, GluR6 and GluR7 with intermolecular disulfide cross-links but not by engineering the dimer interface. Crystallographic analysis of the GluR6 Y490C L752C dimer revealed relaxation from the active conformation, which functional studies reveal is not sufficient to trigger desensitization. The equivalent non-desensitizing cross-linked GluR2 mutant retained weak sensitivity to a positive allosteric modulator, which had no effect on GluR2 L483Y. These results establish that the active conformation of AMPA and kainate receptors is conserved and further show that their desensitization requires dimer rearrangements, that subtle structural differences account for their diverse functional properties and that the ligand-binding core dimer is a powerful regulator of ion-channel activity.  相似文献   

15.
The expression and distribution of AMPA, kainate and NMDA glutamate receptor subunits was studied in the goldfish retina. For the immunocytochemical localization of the AMPA receptor antisera against GluR2, GluR2/3 and GluR4 were used, and for in situ hybridization rat specific probes for GluR1 and GluR2 and goldfish specific probes for GluR3 and GluR4 were used. The localization of the low affinity kainate receptor and NMDA receptor was studied using antisera against GluR5-7 and NR1. All AMPA receptor subtypes were demonstrated to be present in the goldfish retina both by immunocytochemistry and in situ hybridization. In situ hybridization revealed expression of all AMPA receptors subunit at the inner border of the INL. Only GluR3 was also strongly expressed in the outer border of the INL. Some of the ganglion cells displayed a strong signal for GluR1, GluR3 and GluR4. GluR1-immunoreactivity was present in subsets of bipolar, amacrine, and ganglion cells. GluR2 and GluR2/3-immunoreactivity was mainly localized in the outer plexiform layer. GluR2 and GluR2/3-immunoreactivity are associated with the photoreceptor synaptic terminals. GluR4-immunoreactivity is present on Müller cells in the inner retina and on dendrites of bipolar cells in the OPL, whereas GluR5-7-immunoreactivity was prominently present on horizontal cell axon terminals. Finally, NR1-immunoreactivity was confined to amacrine cells, the inner plexiform layer and ganglion cells. This study shows that there is a strong heterogeneity of glutamate receptor subunit expression in the various layers of the retina. Of the AMPA receptor subunits GluR3 seems to be expressed the most widely in all layers with strong glutamatergic synaptic interactions whereas all the other subunits seem to have a more restricted expressed pattern.  相似文献   

16.
Ionotropic glutamate receptors (iGluRs) mediate the majority of fast excitatory synaptic neurotransmission in the central nervous system. The selective assembly of iGluRs into AMPA, kainate, and N-methyl-d-aspartic acid (NMDA) receptor subtypes is regulated by their extracellular amino-terminal domains (ATDs). Kainate receptors are further classified into low-affinity receptor families (GluK1-GluK3) and high-affinity receptor families (GluK4-GluK5) based on their affinity for the neurotoxin kainic acid. These two families share a 42% sequence identity for the intact receptor but only a 27% sequence identity at the level of ATD. We have determined for the first time the high-resolution crystal structures of GluK3 and GluK5 ATDs, both of which crystallize as dimers but with a strikingly different dimer assembly at the R1 interface. By contrast, for both GluK3 and GluK5, the R2 domain dimer assembly is similar to those reported previously for other non-NMDA iGluRs. This observation is consistent with the reports that GluK4-GluK5 cannot form functional homomeric ion channels and require obligate coassembly with GluK1-GluK3. Our analysis also reveals that the relative orientation of domains R1 and R2 in individual non-NMDA receptor ATDs varies by up to 10°, in contrast to the 50° difference reported for the NMDA receptor GluN2B subunit. This restricted domain movement in non-NMDA receptor ATDs seems to result both from extensive intramolecular contacts between domain R1 and domain R2 and from their assembly as dimers, which interact at both R1 and R2 domains. Our results provide the first insights into the structure and function of GluK4-GluK5, the least understood family of iGluRs.  相似文献   

17.
Upon agonist binding, the bilobate ligand-binding domains of the ionotropic glutamate receptors (iGluR) undergo a cleft closure whose magnitude correlates broadly with the efficacy of the agonist. AMPA (alpha-amino-5-methyl-3-hydroxy-4-isoxazolepropionic acid) and kainate are nonphysiological agonists that distinguish between subsets of iGluR. Kainate acts with low efficacy at AMPA receptors. Here we report that the structure-based mutation L651V converts the GluR4 AMPA receptor into a dual-specificity AMPA/kainate receptor fully activated by both agonists. To probe the stereochemical basis of partial agonism, we have also investigated the correlation between agonist efficacy and a series of vibrational and fluorescence spectroscopic signals of agonist binding to the corresponding wild-type and mutant GluR4 ligand-binding domains. Two signals track the extent of channel activation: the maximal change in intrinsic tryptophan fluorescence and the environment of the single non-disulfide bonded C426, which appears to probe the strength of interactions with the ligand alpha-amino group. Both of these signals arise from functional groups that are poised to detect changes in the extent of channel cleft closure and thus provide additional information about the coupling between conformational changes in the ligand-binding domain and activation of the intact receptor.  相似文献   

18.
Priel A  Selak S  Lerma J  Stern-Bach Y 《Neuron》2006,52(6):1037-1046
A prominent feature of ionotropic glutamate receptors from the AMPA and kainate subtypes is their profound desensitization in response to glutamate-a process thought to protect the neuron from overexcitation. In AMPA receptors, it is well established that desensitization results from rearrangements of the interface formed between agonist-binding domains of adjacent subunits; however, it is unclear how this mechanism applies to kainate receptors. Here we show that stabilization of the binding domain dimer by the generation of intermolecular disulfide bonds apparently blocked desensitization of the kainate receptor GluR6. This result establishes a common desensitization mechanism in both AMPA and kainate receptors. Surprisingly, however, surface expression of these nondesensitizing mutants was drastically reduced and did not depend on channel activity. Therefore, in addition to its role at the synapse, we now propose an intracellular role for desensitization in controlling maturation and trafficking of glutamate receptors.  相似文献   

19.
A point mutation of the GluRdelta2 (A654T) glutamate receptor subunit converts it into a functional channel, and a spontaneous mutation at this site is thought to be responsible for the neurodegeneration of neurons in the Lurcher mouse. This mutation is located in a hydrophobic region of the M3 domain of this subunit, and this alanine is conserved throughout many of the glutamate receptors. We show here that site-directed mutagenesis of the homologous alanine (A636T; GluR1-L(c)) in the GluR1 AMPA receptor subunit alters its channel properties. The apparent potencies of both kainate and glutamate were increased 85- and 2000-fold, respectively. Furthermore, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)was converted from a competitive antagonist into a potent agonist. Our results demonstrate that a single amino acid within or near the putative second transmembrane region of the GluR1 subunit is critical for the binding/gating properties of this AMPA receptor.  相似文献   

20.
Glutamate receptor phosphorylation has been implicated in several forms of modulation of synaptic transmission. It has been reported that protein kinase A (PKA) can phosphorylate the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor subunit GluR4 on Ser842, both in vitro and in vivo. Here, we studied the regulation of GluR4 phosphorylation and intracellular trafficking by PKA and by metabotropic receptors coupled to adenylyl cyclase (AC), in cultured chick retinal amacrine-like neurones, which are enriched in GluR4. The regulation of AMPA receptor activity by PKA and by metabotropic AC-coupled receptors was also investigated by measuring the [Ca2+]i response to kainate in Na(+)-free medium. Stimulation of AC with forskolin (FSK), or using the selective agonist of dopamine D1 receptors (+/-)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol (SKF38393), increased the [Ca2+]i response to kainate, GluR4 phosphorylation at Ser842 and GluR4 surface expression. Pre-incubation of the cells with (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV), an agonist of group II metabotropic glutamate receptors (mGluR), which are coupled to inhibition of AC, inhibited the effect of FSK and of SKF38393 on AMPA receptor activity, GluR4 phosphorylation and expression at the plasma membrane. These results indicate that there is a functional cross-talk between dopamine D1 receptors and group II mGluR in the regulation of GluR4 phosphorylation and AMPA receptor activity. Our data show that GluR4 phosphorylation at Ser842 by PKA, and its recruitment to the plasma membrane upon phosphorylation, is regulated by metabotropic receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号