首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ninth and tenth FIII domains (FIII9-10) of human fibronectin act in synergy to promote cell adhesion via the interaction with integrin receptors. Here we describe the functional and structural properties of a set of recombinant FIII9-10 mutants containing various alanine substitutions within the key synergistic site, DRVPHSRN in FIII9, either alone or in combination with another substitution (Leu(1408) to Pro), on the opposite face of FIII9, that increases stability and the functional capacity of FIII9-10. We show that the introduction of mutations into the synergistic sequence of FIII9-10 has a negative effect on the adhesion of baby hamster kidney fibroblasts and results in reduced ability of these ligands to recognize integrin alpha(5)beta(1). Conformational stability of the FIII9 domain in the synergy site mutants is likewise reduced in comparison with native FIII9. The Leu(1408) to Pro substitution in mutant FIII9-10 proteins carrying substitutions in the synergy site results in a substantial recovery of the adhesive activity of the mutants and affinity to alpha(5)beta(1). In keeping with the enhancement of functional activity, the Leu(1408) to Pro substitution in the FIII9-10 synergy site mutants also causes a significant increase in conformational stability of FIII9. These observations imply a strong positive correlation between the biological activity and conformational stability of the assessed FIII9-10 mutants and suggest that a Leu(1408) to Pro substitution restores the biological activity of the mutants via their ability to restore their conformational stability. We conclude that domain stability may be a major determinant of the synergistic potential of FIII9. Our data underscore the value of using more than one approach in such structure-function studies and the requirement for validating the global structural integrity of protein ligands in which sequences that disrupt function have been perturbed.  相似文献   

2.
Binding of the extracellular matrix molecule fibronectin to the integrin receptor alpha(5)beta(1) elicits downstream signaling pathways that modulate cell function. Fibronectin-alpha(5)beta(1) interaction occurs via the conserved RGD sequence in the tenth FIII (FIII10) domain of fibronectin. A synergistic site containing the sequence PHSRN in the adjacent FIII9 domain has also been identified. Here we investigate the function of the eighth FIII domain in integrin-mediated cell adhesion using a wide range of methods, including biochemical, biological, and biophysical assays of integrin binding, cell adhesion, and protein denaturation. Mutation of the FIII9 synergistic site (PHSRN to PHAAA) in FIII9-10 reduced the binding activity for integrin alpha(5)beta(1) to levels observed for FIII10 alone, but the corresponding mutant in FIII8-9-10 showed no loss of binding activity. Cell adhesion assays also demonstrated enhanced functional activity of constructs containing FIII8. Equilibrium chemical denaturation studies indicated that FIII8 confers conformational stability upon FIII9, but only if the exposed loops, PHSRN and VKNEED on FIII9 and FIII8, respectively, are intact. These results demonstrate that the loss of integrin binding activity, observed upon alteration of the PHSRN synergistic site of FIII9-10, results partly from a loss of conformational stability of FIII9. Our data suggest a mechanism for integrin alpha(5)beta(1)-fibronectin interaction, which in addition to the primary RGD binding event, involves a conformation-sensitive scanning by the integrin for accessible sites on the ligand, whereupon full activation of downstream signaling occurs.  相似文献   

3.
The ninth and tenth type III domains (FIII9-10) in the central cell binding domain of human fibronectin contain integrin receptor binding sites, including RGD in FIII10 and a synergy site, PHSRN, in FIII9. The specific amino acids that contribute to cell binding have been identified by the use of wild-type and mutant fragments of human fibronectin containing the FIII9-10 domain pair. At high concentrations FIII9-10 mimics, to a large extent, the biological activity of the full-length fibronectin molecule. However, FIII9 is conformationally unstable, even in the context of the FIII9-10 pair. Here we report the construction of a series of hybrid mouse-human FIII9-10 pairs that confer varying degrees of conformational stability to FIII9. The conformational stability of the human FIII9 module was increased 2-3-fold by substitution of Leu1408 with Pro. We demonstrate that the biological activity of this mutant is enhanced. The resulting FIII9-10 mutant has good solution properties and will provide a template into which further mutations can be incorporated in order to probe the structure-function relationship of the cell binding module of fibronectin.  相似文献   

4.
5.
Progress towards endometrial tissue engineering for modelling endometrial diseases and infertility is frustrated by the inability to mimic the fibronectin (FN) extracellular matrix required by human endometrial stromal cells (EnSCs). Here we show that this is because of the requirement to present integrin α5β1 (the FN receptor) ligands in specifically oriented, polyvalent displays; by engineering controlled self-assembly of the 9th–10th type III FN domain pair (FIII9–10, the minimal integrin α5β1 ligand) immobilised in a specific orientation to cell culture surfaces. The fraction of adherent EnSCs seen to spread increased significantly for the multimeric ligand surfaces in the order: tetramer > trimer > dimer > monomer. The extent of EnSC spread morphology also increased in the same order, with the tetrameric ligand supporting a morphology most similar to that supported by FN. Our data suggest that only higher-order multimers of FIII9–10 will fully promote cell spreading mediated through integrin α5β1 binding.  相似文献   

6.
Integrins are an important family of signaling receptors that mediate diverse cellular processes. The binding of the abundant extracellular matrix ligand fibronectin to integrins alpha(5)beta(1) and alpha(v)beta(3) is known to depend upon the Arg-Gly-Asp (RGD) motif on the tenth fibronectin FIII domain. The adjacent ninth FIII domain provides a synergistic effect on RGD-mediated integrin alpha(5)beta(1) binding and downstream function. The precise molecular basis of this synergy remains elusive. Here we have dissected further the function of FIII9 in integrin binding by analyzing the biological activity of the FIII9-10 interdomain interface variants and by determining their structural and dynamic properties in solution. We demonstrate that the contribution of FIII9 to both alpha(5)beta(1) and alpha(v)beta(3) binding and downstream function critically depends upon the interdomain tilt between the FIII9 and FIII10 domains. Our data suggest that modulation of integrin binding by FIII9 may arise in part from its steric properties that determine accessibility of the RGD motif. These findings have wider implications for mechanisms of integrin-ligand binding in the physiological context.  相似文献   

7.
Fibronectin (FN) containing a heparin-binding domain (HBD) and an Arg-Gly-Asp (RGD) domain can promote cell adhesion and proliferation compared to FN that contained only RGD. Here, we have engineered recombinant human osteocalcin (rhOC) with FN type III9-14 (rhOC-FNIII9-14) containing RGD and HBD to promote the cellular activity of MC3T3-E1 cells, including adhesion, proliferation, and differentiation. RhOC-FNIII9-14 significantly increased cell adhesion and proliferation of MC3T3-E1 cells compared to rhOC-FNIII9-10 (P < 0.05). Moreover, rhOC-FNIII9-14 showed osteogenic differentiation of MC3T3-E1 cells in mineralization activity and osteogenic gene expression.  相似文献   

8.
Kim JH  Park SO  Jang HJ  Jang JH 《Biotechnology letters》2006,28(17):1409-1413
We have previously shown that the recombinant human fibronectin (FN) fragment composed of central cell binding domains (CCBD) spanning the ninth and tenth type III domains promotes cell adhesion and proliferation of osteoblasts. In the present study, we investigated the biological potency of heparin-binding domain (HBD) of FN spanning the twelfth and fourteenth type III domains. The HBD of FN significantly enhances the RGD-containing CCBD-mediated cell adhesion and proliferation in HOS cells (P < 0.05).  相似文献   

9.
Previously, we have shown that some lymphoid cell lines adhere to fibronectin (FN)-coated substratum, whereas others do not. In this study, the adhesion of five adherent lymphoid cell lines to different FN domains was examined. These cell lines ranged in their adherence to substratum coated with FN, the cell-binding domain (CBD) fragment, or the heparin-binding domain (HBD) fragments. None of the cell lines adhered to substratum coated with the gelatin-binding domain fragment. Three of the lymphoid cell lines adhered preferentially to HBD over CBD, whereas two other lymphoid cell lines and BHK fibroblasts adhered preferentially to CBD. These results suggest that two distinct adhesive interactions occur between cells and FN and that the pattern of interaction varies among cell types. Using MOPC 315 (which adheres preferentially to HBD) as a cell model to study the cell-HBD interaction, the HBD-promoted adhesion was found to be independent of the RGD sequence and could be inhibited by anti-FN antibodies. Moreover, the MOPC 315-HBD interaction had the following characteristics: (1) adhesion was temperature dependent, (2) presence of divalent cations was necessary, (3) integrity of cellular microfilaments but not microtubules was required, (4) inhibition of protein synthesis abolished adhesion, (5) pretreatment of cells with trypsin inhibited adhesion, and (6) the adhesion was mediated by the carboxyl-terminal HBD.  相似文献   

10.
Fibronectin's RGD-mediated binding to the alpha5beta1 integrin is dramatically enhanced by a synergy site within fibronectin III domain 9 (FN9). Guided by the crystal structure of the cell-binding domain, we selected amino acids in FN9 that project in the same direction as the RGD, presumably toward the integrin, and mutated them to alanine. R1379 in the peptide PHSRN, and the nearby R1374 have been shown previously to be important for alpha5beta1-mediated adhesion (Aota, S., M. Nomizu, and K.M. Yamada. 1994. J. Biol. Chem. 269:24756-24761). Our more extensive set of mutants showed that R1379 is the key residue in the synergistic effect, but other residues contribute substantially. R1374A decreased adhesion slightly by itself, but the double mutant R1374A-R1379A was significantly less adhesive than R1379A alone. Single mutations of R1369A, R1371A, T1385A, and N1386A had negligible effects on cell adhesion, but combining these substitutions either with R1379A or each other gave a more dramatic reduction of cell adhesion. The triple mutant R1374A/P1376A/R1379A had no detectable adhesion activity. We conclude that, in addition to the R of the PHRSN peptide, other residues on the same face of FN9 are required for the full synergistic effect. The integrin-binding synergy site is a much more extensive surface than the small linear peptide sequence.  相似文献   

11.
Cell migration on fibronectin (FN)-coated substrata was studied using 10 cell lines, of which only 2 showed clear enhancement and 1 showed marginal enhancement of cell migration. The migration of the other 7 cell lines was not affected on FN-coated substrata, although they all showed FN-dependent cell adhesion. The migration-enhancing activity of FN was found in the fragment including the cell-adhesion and Hep-2 domains, but not other domains (Hep-1/Fib-1, Gel, Fib-2). No difference in the migration-enhancing effect was seen among FNs from plasma, fibroblasts, or transformed cells. FN-dependent cell migration was inhibited by polyclonal antibodies directed to the C-terminal half region including the cell binding domain, but not by antibodies directed to five other domains. Since these results indicated that FN-mediated cell migration could be controlled by the cell-adhesion domain of FN and its receptor, studies were then focused on the effect of antibodies directed to receptors for FN and collagen, and on the effect of tetrapeptide sequences recognized by these receptors. It was found that (i) cell migration on FN-coated surfaces was specifically inhibited by anti-FN receptor antibody P1F8 but not by anticollagen receptor antibody P1H5; (ii) the migration was strongly inhibited by Arg-Gly-Asp-Ser but not by other oligopeptide sequences. However, the majority of those cell lines not susceptible to FN-dependent cell migration were characterized by having FN receptors and the ability to adhere on FN-coated matrix. Based on these findings, it was concluded that FN-dependent cell migration shares the same recognition mechanism as FN-dependent cell adhesion, but that the majority of cell lines not exhibiting FN-dependent migration still show FN-dependent cell adhesion and express the FN receptor (integrin); i.e., cell migration and adhesion involve the same receptor and the same FN loci, but migration is controlled by still-unidentified cellular factors which determine the susceptibility of the cell to the dynamic function of the FN receptor (integrin) unit.  相似文献   

12.
N-cadherin comprises five homologous extracellular domains, a transmembrane, and a cytoplasmic domain. The extracellular domains of N-cadherin play important roles in homophilic cell adhesion, but the contribution of each domain to this phenomenon has not been fully evaluated. In particular, the following questions remain unanswered: what is the minimal domain combination that can generate cell adhesion, how is domain organization related to adhesive strength, and does the cytoplasmic domain serve to facilitate extracellular domain interaction? To address these issues, we made serial constructs of the extracellular domains of N-cadherin and produced various cell lines to examine adhesion properties. We show that the first domain of N-cadherin alone on the cell surface fails to generate adhesive activity and that the first two domains of N-cadherin form the "minimal essential unit" to mediate cell adhesion. Cell lines expressing longer extracellular domains or N-cadherin wild type cells formed larger cellular aggregates than those expressing shorter aggregates. However, adhesion strength, as measured by a shearing test, did not reveal any differences among these aggregative cell lines, suggesting that the first two domains of N-cadherin cells generate the same strength of adhesive activity as longer extracellular domain cells. Furthermore, truncations of the first two domains of N-cadherin are also sufficient to form cisdimerization at an adhesive junction. Our findings suggest that the extracellular domains of N-cadherin have distinct roles in cell adhesion, i.e. the first two domains are responsible for homophilic adhesion activity, and the other domains promote adhesion efficiency most likely by positioning essential domains relatively far out from the cell surface.  相似文献   

13.
Latent transforming growth factor (TGF)-β binding proteins are extracellular matrix (ECM) proteins involved in the regulation of TGF-β sequestration and activation. In this study, we have identified binding domains in LTBP-4, which mediate matrix targeting and cell adhesion. LTBP-4 was found to possess heparin binding activity, especially in its N-terminal region. The C-terminal domain of LTBP-4 supported fibroblast adhesion, a property reduced by soluble heparin. In addition, we found that LTBP-4 binds directly to fibronectin (FN), which was indispensable for the matrix assembly of LTBP-4. The FN binding sites were also located in the N-terminal region. Interestingly, heparin was able to reduce the binding of LTBP-4 to FN. In fibroblast cultures, LTBP-4 colocalized first with FN and subsequently with fibrillin-1, pointing to a role for FN in the early assembly of LTBP-4. In FN −/− fibroblasts, LTBP-mediated ECM targeting was disturbed, resulting in increased TGF-β activity. These results revealed new molecular interactions which are evidently important for the ECM targeting, but which also are evidence of novel functions for LTBP-4 as an adhesion molecule.  相似文献   

14.
Cellular adhesion to fibronectin (FN) can be mediated by several sequences located in different portions of the molecule. In human FN, these are: (i) the bipartite RGDS domain containing the RGDS cell-binding sequence functioning in synergy for full cellular adhesion with a second site (termed here the synergistic adhesion site) and (ii) the recently characterized CS1 and REDV adhesion sites within the alternatively-spliced type III homology-connecting segment. Using specific adhesive ligands and inhibitory probes, we have examined the role of each of these domains in the adhesion, spreading, and motility of avian neural crest cells in vitro. Both the RGDS domain and the CS1 adhesion site were found to promote attachment of neural crest cells, but only the RGDS domain supported their spreading. However, the RGDS sequence could mediate both attachment and spreading efficiently only when it was associated with the synergistic adhesion site. In migratory assays, it was found that both the RGDS domain and the CS1 site are required in association, each with functional specificity, to permit effective locomotion of neural crest cells. The REDV adhesion site was apparently not recognized by avian neural crest cells, presumably because this sequence is absent from chicken FN. Finally, it was found that recognition of both the RGDS domain and CS1 binding site by neural crest cells involved receptors belonging to the integrin family. From these results, we conclude that neural crest cells can interact with several binding sites of FN molecules, and use them for distinct functions. Our results also suggest the possibility of an instructive role for FN in the control of adhesive and migratory events during embryonic development.  相似文献   

15.
Matrix-bound fibronectin (FN) appears to be involved in cell adhesion and motility mediated by integrin receptors. Although lymphoid cells and other cell types are capable of producing and secreting FN, the precise role of this secreted FN-like factor in regulating immune reactions is unclear. In the present study we analyzed the adhesive properties of FN secreted by rat CD4+ T cells and clone cells activated by the T cell mitogen concanavalin A (Con A), antigen, or via the CD2 pathways, or by macrophages (M phi) activated by lipopolysaccharide (LPS). Immobilized culture supernatant (CS) from the activated T cells or M phi supports the adhesion of activated rat or human CD4+ T cell or murine tumor cell. These CS contained FN and were more potent at facilitating cell adhesion then plasma FN. The adhesion activity of CS was attributed to FN because (a) gelatin columns depleted the FN present in the CS and (b) pretreating the cells with peptides of the cell-binding domain of FN abrogated their ability to bind CS. CS-mediated adhesion appears to occur primarily via the recognition of the Arg-Gly-Asp (RGD) by the beta 1-integrin-specific receptors of the adhesive cells. Thus, we postulate that FN secreted by various types of leukocytes is involved in promoting essential cell-matrix interactions, possibly affecting cell-adhesive and migratory processes at inflammatory or extravasation sites.  相似文献   

16.
Recombinant fibronectin (FN) fragments and their mutant proteins were produced to elucidate the role of type III homology repeats in cell adhesive activity within the cell-binding domain of FN. Cell adhesive activity of the 11.5-kDa fragment, the cell attachment site of the cell-binding domain, was less than 0.1% that of native FN despite the presence of the Arg-Gly-Asp-Ser sequence. The activity increased as type III homology repeats were added to the N terminus of the 11.5-kDa fragment, and a 52-kDa fragment with four additional type III repeats had almost the same activity of native FN. Deletion of Arg-Gly-Asp from the fully active fragments completely abolished the cell adhesive activity. Deletion of one or two repeats from the 52-kDa fragment affected the extent of the cell adhesive activity, the degree of the effect being inversely correlated with the distance of the deletion from the type III repeat containing Arg-Gly-Asp-Ser. Rearrangement of type III repeats caused much loss of activity. These results suggest that the number and kinds of type III repeats and their correct alignment rather than the putative synergistic site decide the extent of the specific cell adhesive activity.  相似文献   

17.
Cell adhesive peptides have been widely applied for therapeutic drugs, drug delivery systems, and biomaterials. Previously, we identified various cell adhesive sequences in the G domains of four laminin α chains (α2-α5) by the systematic soluble peptide screening. We also identified five cell-binding sequences in the laminin α1 chain G domain using synthetic peptide-polystyrene beads. Here, we re-screened cell adhesive peptides in the laminin α1 chain G domain by the systematic soluble peptides screening. The 110 soluble peptides were evaluated for their cell adhesive activities using human fibrosarcoma HT1080 cells and human dermal fibroblasts. Fourteen peptides were newly identified as a cell adhesive. Additionally, four peptides (AG22: SSFHFDGSGYAM, AG42: TFDLLRNSYGVRK, AG76: HQNQMDYATLQLQ, AG86: LGGLPSHYRARNI) promoted integrin-mediated cell adhesion. Further, neurite outgrowth activity with rat pheochromocytoma PC12 cells was evaluated and two peptides (AG20: SIGLWNYIEREGK, AG26: SPNGLLFYLASNG) were newly identified for neurite outgrowth activity. These results suggested that the systematic soluble peptides screening approach is an accurate and powerful strategy for finding biologically active sequences. The active sequences newly identified here could be involved in the biological functions of this domain. The active peptides are useful for evaluating molecular mechanisms of laminin-receptor interactions and for developing cell adhesive biomaterials.  相似文献   

18.
Fibroblast growth factor (FGF) is an important modulator of cell growth and differentiation of various cells including neuron. Cells need to adhere specifically to cellular and extracellular components of their environment to carry out diverse physiological functions. Here, we examined whether fibronectin (FN) and FGF can cooperate for neuronal adhesion and neurite outgrowth. Using recombinant FN peptide (FNIII9-10), we found that FNIII9-10-mediated adhesion promotes the effect of FGF1 on neurite outgrowth of PC12 cells, while FGF1 enhances the FNIII9-10-mediated neuronal adhesion of PC12 cells. This collaboration of FNIII9-10 and FGF1 was the result of the sustained activation of extracellular signal-regulated kinase (ERK)-type MAP kinase. Finally, the synergistic activity of FGF1 and FN was inhibited by PD98059, an MEK inhibitor. Taken together, these findings indicate that FN-mediated signaling can collaborate with FGFRs signaling for neurite outgrowth through selective activation of ERK-type MAP kinase in PC12 cells, and suggest that FN and FGF act in concert to regulate cell differentiation in the nervous system.  相似文献   

19.
We recently found that fibronectin (FN) had a functional site [YTIYVIAL sequence in the heparin-binding domain 2 (Hep 2)] that was capable of suppressing the integrin-mediated cell adhesion to extracellular matrix. However, our results also indicated that this anti-adhesive site seemed to be usually buried within the Hep 2 domain structure because of its hydrophobic nature, raising a question as to the physiological significance of the cryptic anti-adhesive activity of FN. The present study demonstrates that the cryptic anti-adhesive activity can be exposed through the physiological processes. A 30-kDa chymotryptic FN fragment derived from Hep 2 domain (Hep 2 fragment), which had no effect on adhesion of MSV-transformed nonproducer 3T3 cell line (KN(7)8) to FN, expressed the anti-adhesive activity after treatment with 6 M urea. Light scattering and circular dichroism measurements showed that the urea treatment induced the conformational change of the Hep 2 fragment from a more compact form to an unfolded one. Incubation of the Hep 2 fragment with heparin also induced similar conformational changes and expression of anti-adhesive activity. Additionally, both the urea and heparin treatments made the Hep 2 fragment and intact FN much more accessible to the polyclonal antibody (alphaIII14A), with a recognition site near the anti-adhesive site of FN. Specific cleavage of either the Hep 2 fragment or intact FN by matrix metalloproteinase 2 (MMP-2) released a 10-kDa fragment with the anti-adhesive activity, which was shown to have the exposed anti-adhesive site on the amino-terminal region. Thus, the cryptic anti-adhesive activity of FN can be expressed upon conformational change and proteolytic cleavage of Hep 2 domain.  相似文献   

20.
Cadherins are a family of transmembrane glycoproteins which play a key role in Ca(2+)-dependent cell-cell adhesion. Cytoplasmic domains of these molecules are anchored to the cell cytoskeleton and are required for cadherin function. To elucidate how the function of cadherins is controlled through their cytoplasmic domains, we deleted five different regions in the cytoplasmic domain of E-cadherin. After transfecting L cells with cDNA encoding the mutant polypeptides, we assayed aggregating activity of these transfectants; all these mutant proteins were shown to have an extracellular domain with normal Ca(2+)-sensitivity and molecular weight. Two mutant polypeptides with deletions in the carboxy half of the cytoplasmic domain, however, did not promote cell-cell adhesion and had also lost the ability to bind to the cytoskeleton, whereas the mutant molecules with deletions of other regions retained the ability to promote cell adhesion and to anchor to the cytoskeleton. Thus, the cytoplasmic domain contains a subdomain which was involved in the cell adhesion and cytoskeleton-binding functions. When E-cadherin in F9 cells or in L cells transfected with wild-type or functional mutant cadherin polypeptides was solubilized with nonionic detergents and immunoprecipitated, two additional 94 and 102 kDa components were coprecipitated. The 94 kDa component, however, was not detected in the immunoprecipitates from cells expressing the mutant cadherins which had lost the adhesive function. These results suggest that the interaction of the carboxy half of the cytoplasmic domain with the 94 kDa component regulates the cell binding function of the extracellular domain of E-cadherin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号