首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang LS  Xia L  Shen SM  Zheng Y  Yu Y  Chen GQ 《Proteomics》2012,12(4-5):597-606
Programmed cell deaths (PCD), including apoptosis, autophagy and programmed necrosis, are genetically determined, complex processes in multi-cellular organisms. Problems with the regulation of PCD have been implicated in a number of diseases including myocardial infarction, cancer and autoimmune disease. As a result, the investigation on PCD regulation has stirred considerable interest. In the past decades, many PCD-involved proteins had been identified as being modulated by post-translational mechanisms, including post-translational modification, protein-protein interactions and protein cleavage, which fall precisely within the range of proteomic analysis. Contemporary quantitative proteomics, interactomics, PTMomics, degradomics, chemical proteomics and pharmacoproteomics have been quickly applied in the field of PCD research, and possess the potential to be the driving forces of the field. This review attempts to highlight some of the major achievements in the application of proteomics in PCD research to trigger further thinking and application.  相似文献   

2.
The emergence of shotgun proteomics has facilitated the numerous biological discoveries made by proteomic studies. However, comprehensive proteomic analysis remains challenging and shotgun proteomics is a continually changing field. This review details the recent developments in shotgun proteomics and describes emerging technologies that will influence shotgun proteomics going forward. In addition, proteomic studies of integral membrane proteins remain challenging due to the hydrophobic nature in integral membrane proteins and their general low abundance levels. However, there have been many strategies developed for enriching, isolating and separating membrane proteins for proteomic analysis that have moved this field forward. In summary, while shotgun proteomics is a widely used and mature technology, the continued pace of improvements in mass spectrometry and proteomic technology and methods indicate that future studies will have an even greater impact on biological discovery.  相似文献   

3.
4.
Maize, sorghum, sugarcane, switchgrass and miscanthus are the main crops suggested as potential sources of lignocellulosic biomass for the production of second‐generation ethanol. The attention these crops have received has been concentrated in the field of genomics, and very little research has been performed in the field of proteomics, particularly in the cell wall proteomic, despite the importance of these crops in biofuel production. New mass spectrometry‐based proteomic methods allow the identification and quantification of thousands of proteins in complex mixtures, as well as the detection of post‐translational changes in complex proteomes, providing important insight into the downstream consequences of gene expression. Together with other ‘omic’ approaches, proteomic might be decisive to bring new information in the study of cell wall formation. Here, we briefly highlight proteomic techniques and review the research that has been completed on the proteomes of these five crops.  相似文献   

5.
Mass spectrometry-based proteomics has evolved as a high-throughput research field over the past decade. Significant advances in instrumentation, and the ability to produce huge volumes of data, have emphasized the need for adequate data analysis tools, which are nowadays often considered the main bottleneck for proteomics development. This review highlights important issues that directly impact the effectiveness of proteomic quantitation and educates software developers and end-users on available computational solutions to correct for the occurrence of these factors. Potential sources of errors specific for stable isotope-based methods or label-free approaches are explicitly outlined. The overall aim focuses on a generic proteomic workflow.  相似文献   

6.
快速发展的亚细胞蛋白质组学   总被引:3,自引:1,他引:3  
亚细胞蛋白质组是蛋白质组学领域中的一支新生力量 ,已成为蛋白质组学新的主流方向 ,通过多种策略和技术方法 ,一些重要的亚细胞结构的蛋白质组不断的得到分析 ,到目前为止 ,几乎所有亚细胞结构的蛋白质组学研究都有报道 ,而且已经深入到亚细胞器和复合体水平 ;另外 ,不仅局限于对亚细胞结构的蛋白组成进行简单分析 ,而且更注重功能性分析 ,将定量技术和差异分析引入亚细胞蛋白质组学 ,来观察此亚细胞结构的蛋白质组在某些生理或病理条件下的变化 ,这已经成为亚细胞蛋白质组学新的发展方向 .亚细胞蛋白质组学最大的困难在于怎样确认鉴定出来蛋白质的定位 ,是在提取过程中的污染还是真正在此亚细胞结构中有定位 ?这将是亚细胞蛋白质组学需要努力解决的挑战 .文章全面介绍了亚细胞蛋白质组学的最新研究进展 ,阐述了亚细胞蛋白质组学面临的挑战 ,并对亚细胞蛋白质组学的发展方向作了展望 .  相似文献   

7.
癌症差异蛋白质组学研究中样品分离和鉴定分析技术   总被引:1,自引:0,他引:1  
随着人类基因组测序的完成,癌症研究的重点从基因组学转移到蛋白质组学研究中。癌症研究中的差异蛋白质组学技术也飞速发展,包括癌症样品制备、分离,蛋白质鉴定分析、蛋白质组定量研究和翻译后修饰研究等。这些技术极大地推动了与癌症相关的差异蛋白质组学研究,使蛋白质组学在癌症早期诊断、治疗,监测以及发现新药物治疗靶标方面发挥更大的作用。本文主要综述了近年来癌症差异蛋白质组学研究中样品分离和鉴定分析技术。  相似文献   

8.
Several genomics-based techniques have been applied in the last decade to the molecular characterization of cancer, which has led to a variety of applications suitable for improved diagnosis, prognosis and prediction of outcome to treatment. Proteomics-based approaches have also been seen as crucial to the discovery of biomarkers for early diagnosis and prognosis of tumors, as well as for a better understanding of the molecular bases of cancer. Accordingly, proteomic techniques have been used extensively for a better molecular characterization of thyroid tumors. In this field, three main directions have been preceded: first, proteomic studies of model systems; second, proteomics of thyroid tumor specimens; and third, serum proteomics. In this review, we describe the most relevant results that have been obtained for tumors derived from thyroid follicular cells using various proteomic approaches.  相似文献   

9.
Bunk DM 《Proteomics》2010,10(23):4220-4225
In order to improve the repeatability, comparability, and accuracy of MS-based proteomic measurements, there has been considerable international effort to develop appropriate reference materials. Although the majority of reference materials are developed to support measurement quality of routine assays, the development of reference materials for a diverse and changing research field such as proteomics represents unique challenges. In order to define common measurement components and common features of typical proteomic samples, the metrology underpinning proteomics must be considered due to the diversity and changing nature of the field. Reference materials can then be designed around common aspects in order to produce reference materials with the broadest applicability. Reference materials are needed to support both qualitative and quantitative proteomic measurements, involving different design considerations. Consensus and validated statistical approaches to describe the confidence in qualitative measurement, such as protein identification, needs to be established. Common sources of measurement bias also need to be considered in proteomic reference material design.  相似文献   

10.
Xiao H  Wong DT 《Bioinformation》2010,5(7):294-296
Human saliva is a biological fluid with enormous diagnostic potential. Because saliva can be non-invasively collected, it provides an attractive alternative for blood, serum or plasma. It has been postulated that the blood concentrations of many components are reflected in saliva. Saliva harbors a wide array of proteins, which can be informative for the detection of diseases. Profiling the proteins in saliva over the course of disease progression could reveal potential biomarkers indicative of different stages of diseases, which may be useful in medical diagnostics. With advanced instrumentation and developed refined analytical techniques, proteomics is widely envisioned as a useful and powerful approach for salivary proteomic biomarker discovery. As proteomic technologies continue to mature, salivary proteomics have great potential for biomarker research and clinical applications. The progress and current status of salivary proteomics and its application in the biomarker discovery of oral and systematic diseases will be reviewed. The scientific and clinical challenges underlying this approach will also be discussed.  相似文献   

11.
Human saliva is a biological fluid with enormous diagnostic potential. Because saliva can be non-invasively collected, it provides an attractive alternative for blood, serum or plasma. It has been postulated that the blood concentrations of many components are reflected in saliva. Saliva harbors a wide array of proteins, which can be informative for the detection of diseases. Profiling the proteins in saliva over the course of disease progression could reveal potential biomarkers indicative of different stages of diseases, which may be useful in medical diagnostics. With advanced instrumentation and developed refined analytical techniques, proteomics is widely envisioned as a useful and powerful approach for salivary proteomic biomarker discovery. As proteomic technologies continue to mature, salivary proteomics have great potential for biomarker research and clinical applications. The progress and current status of salivary proteomics and its application in the biomarker discovery of oral and systematic diseases will be reviewed. The scientific and clinical challenges underlying this approach will also be discussed.  相似文献   

12.
Understanding biology at the systems level is a powerful method for discovery of previously unrecognized molecular pathways and mechanisms in human disease. The application of proteomics to arthritis research has lagged behind many other clinical targets, partly due to the unique biochemical properties of cartilage and associated biological fluids such as synovial fluid. In recent years, however, proteomic-based studies in cartilage and arthritis research have risen sharply and have started to make a significant impact on our understanding of joint disease, including the discovery of new and promising biomarkers of cartilage degeneration, a hallmark of arthritis. In this review we will make the case for the ongoing proteomic analysis of cartilage and other tissues affected by joint disease, overview some of the core proteomic techniques and discuss how the challenge of cartilage proteomics has been met through technical innovation. The major outcomes and information obtained from recent proteomic analysis of synovial fluid, cartilage and chondrocytes will also be described. In addition, we present some novel insights into post-translational regulation of cartilage proteins, through proteomic identification of proteolytic fragments in mouse cartilage extracts and explant culture media. We conclude with our prediction of how emerging proteomic technologies that have yet to be applied in arthritis research are likely to contribute further important information.  相似文献   

13.
The recent dramatic improvements in high-resolution mass spectrometry (MS) have revolutionized the speed and scope of proteomic studies. Conventional MS-based proteomics methodologies allow global protein profiling based on expression levels. Although these techniques are promising, there are numerous biological activities yet to be unveiled, such as the dynamic regulation of enzyme activity. Chemical proteomics is an emerging field that extends these types proteomic profiling. In particular, activity-based protein profiling (ABPP) utilizes small-molecule probes to monitor enzyme activity directly in living intact subjects. In this mini-review, we summarize the unique roles of smallmolecule probes in proteomics studies and highlight some recent examples in which this principle has been applied. [BMB Reports 2014; 47(3): 149-157]  相似文献   

14.
The significant potential of tissue-based proteomic biomarker studies can be restricted by difficulties in accessing samples in optimal fresh-frozen form. While archival formalin-fixed tissue collections with attached clinical and outcome data represent a valuable alternate resource, the use of formalin as a fixative which induces protein cross-linking, has generally been assumed to render them unsuitable for proteomic studies. However, this view has been challenged recently with the publication of several papers accomplishing variable degrees of heat-induced reversal of cross-links. Although still in its infancy and requiring the quantitative optimisation of several critical parameters, formalin-fixed tissue proteomics holds promise as a powerful tool for biomarker-driven translational research. Here, we critically review the current status of research in the field, highlighting challenges which need to be addressed for robust quantitative application of protocols to ensure confident high impact inferences can be made.  相似文献   

15.
Neuroproteomics has become a ‘symbol’ or even a ‘sign’ for neuroscientists in the post-genomic era. During the last several decades, a number of proteomic approaches have been used widely to decipher the complexity of the brain, including the study of embryonic stages of human or non-human animal brain development. The use of proteomic techniques has allowed for great scientific advancements, including the quantitative analysis of proteomic data using 2D-DIGE, ICAT and iTRAQ. In addition, proteomic studies of the brain have expanded into fields such as subproteomics, synaptoproteomics, neural plasma membrane proteomics and even mitochondrial proteomics. The rapid progress that has been made in this field will not only increase the knowledge based on the neuroproteomics of the developing brain but also help to increase the understanding of human neurological diseases. This paper will focus on proteomic studies in the central nervous system and especially those conducted on the development of the brain in order to summarize the advances in this rapidly developing field.  相似文献   

16.
Mass spectrometry, specifically the analysis of complex peptide mixtures by liquid chromatography and tandem mass spectrometry (shotgun proteomics) has been at the centre of proteomics research for the past decade. To overcome some of the fundamental limitations of the approach, including its limited sensitivity and high degree of redundancy, new proteomic workflows are being developed. Among these, targeting methods in which specific peptides are selectively isolated, identified and quantified are particularly promising. Here we summarize recent incremental advances in shotgun proteomic methods and outline emerging targeted workflows. The development of the target-driven approaches with their ability to detect and quantify identical, non-redundant sets of proteins in multiple repeat analyses will be crucially important for the application of proteomics to biomarker discovery and validation, and to systems biology research.  相似文献   

17.
Aiming at clinical studies of human diseases, antibody-assisted assays have been applied to biomarker discovery and toward a streamlined translation from patient profiling to assays supporting personalized treatments. In recent years, integrated strategies to couple and combine antibodies with mass spectrometry-based proteomic efforts have emerged, allowing for novel possibilities in basic and clinical research. Described in this review are some of the field’s current and emerging immunocapture approaches from an affinity proteomics perspective. Discussed are some of their advantages, pitfalls and opportunities for the next phase in clinical and translational proteomics.  相似文献   

18.
The human respiratory system represents a vital but vulnerable system. It is a major target for many diseases such as cancer and asthma. The incidence of these diseases has increased dramatically in the last 40-50 years. In the search for possible new therapies, many experimental tools and methods have been developed to study these diseases, ranging from animal models to in vitro studies. In the last decades, genomic and proteomic approaches have gained a lot of attention. After the major scientific breakthroughs in the field of genomics, it is now widely accepted that to understand biological processes, large-scale protein studies through proteomics techniques are required. In the battle against lung cancer, the proteomics approach has already been successfully implemented. Surprisingly, only a few proteomics studies on the ever-increasing global asthma problem have been published so far. And although proteomics also has its limitations and experimental difficulties, in our opinion, proteomics can definitely contribute to the understanding of a complex disease such as asthma. Therefore, the additional values and possibilities of proteomics in asthma research should be thoroughly investigated. A close collaboration between the different scientific disciplines may eventually lead to the development of new therapeutic strategies against asthma.  相似文献   

19.
Nowadays, proteomic studies no longer focus only on identifying as many proteins as possible in a given sample, but aiming for an accurate quantification of them. Especially in clinical proteomics, the investigation of variable protein expression profiles can yield useful information on pathological pathways or biomarkers and drug targets related to a particular disease. Over the time, many quantitative proteomic approaches have been established allowing researchers in the field of proteomics to refer to a comprehensive toolbox of different methodologies. In this review we will give an overview of different methods of quantitative proteomics with focus on label-free proteomics and its use in clinical proteomics.  相似文献   

20.
ABSTRACT

Introduction: The last decade has yielded significant developments in the field of proteomics, especially in mass spectrometry (MS) and data analysis tools. In particular, a shift from gel-based to MS-based proteomics has been observed, thereby providing a platform with which to construct proteome atlases for all life forms. Nevertheless, the analysis of plant proteomes, especially those of samples that contain high-abundance proteins (HAPs), such as soybean seeds, remains challenging.

Areas covered: Here, we review recent progress in soybean seed proteomics and highlight advances in HAPs depletion methods and peptide pre-fractionation, identification, and quantification methods. We also suggest a pipeline for future proteomic analysis, in order to increase the dynamic coverage of the soybean seed proteome.

Expert opinion: Because HAPs limit the dynamic resolution of the soybean seed proteome, the depletion of HAPs is a prerequisite of high-throughput proteome analysis, and owing to the use of two-dimensional gel electrophoresis-based proteomic approaches, few soybean seed proteins have been identified or characterized. Recent advances in proteomic technologies, which have significantly increased the proteome coverage of other plants, could be used to overcome the current complexity and limitation of soybean seed proteomics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号