首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
群落生态学的中性理论   总被引:15,自引:0,他引:15       下载免费PDF全文
生物多样性的分布格局和维持机制一直是群落生态学研究的核心问题,其中的关键是物种的共存机制。长期以来,生态位分化的思想在这一研究领域占据着主导地位。然而这一理论在解释热带雨林很高的物种多样性时遇到了困难。而以Hubbell为代表提出的群落中性漂变理论则假定在同一营养级物种构成的群落中不同物种的不同个体在生态学上可看成是完全等同的;物种的多度随机游走,群落中的物种数取决于物种灭绝和物种迁入/新物种形成之间的动态平衡。在这一假定之下,该理论预言了两种统计分布。一种是集合群落在点突变形成新物种的模式下其各个物种相对多度服从对数级数分布,而受扩散限制的局域群落以及按照随机分裂为新物种模式形成的集合群落则服从零和多项式分布。与生态位理论相反,中性理论不以种间生态位差异作为研究群落结构的出发点,而是以物种间在个体水平上的对等性作为前提。该理论第一次从基本生态学过程(出生、死亡、迁移、物种分化)出发,给出了群落物种多度分布的机理性解释,同时其预测的物种多度分布格局在实际群落中也得到了广泛的印证。因此,中性理论自诞生以来便在生态学界引发了极大的反响,也包括一些反对的声音。该文重点综述了关于中性理论的假设、预测和物种形成模式等方面的最新研究进展,包括中性理论本身的发展、关于中性理论的假设和预测的合理性检验以及在集合群落尺度上物种分化模式的讨论;并指出未来发展方向可能是在生态位理论和中性理论之间架起一座桥梁,同时发展包含随机性的群落生态位模型,以及允许种间差异的近中性模型。  相似文献   

2.
Modes of speciation and the neutral theory of biodiversity   总被引:5,自引:0,他引:5  
Hubbell's neutral theory of biodiversity has generated much debate over the need for niches to explain biodiversity patterns. Discussion of the theory has focused on its neutrality assumption, i.e. the functional equivalence of species in competition and dispersal. Almost no attention has been paid to another critical aspect of the theory, the assumptions on the nature of the speciation process. In the standard version of the neutral theory each individual has a fixed probability to speciate. Hence, the speciation rate of a species is directly proportional to its abundance in the metacommunity. We argue that this assumption is not realistic for most speciation modes because speciation is an emergent property of complex processes at larger spatial and temporal scales and, consequently, speciation rate can either increase or decrease with abundance. Accordingly, the assumption that speciation rate is independent of abundance (each species has a fixed probability to speciate) is a more natural starting point in a neutral theory of biodiversity. Here we present a neutral model based on this assumption and we confront this new model to 20 large data sets of tree communities, expecting the new model to fit the data better than Hubbell's original model. We find, however, that the data sets are much better fitted by Hubbell's original model. This implies that species abundance data can discriminate between different modes of speciation, or, stated otherwise, that the mode of speciation has a large impact on the species abundance distribution. Our model analysis points out new ways to study how biodiversity patterns are shaped by the interplay between evolutionary processes (speciation, extinction) and ecological processes (competition, dispersal).  相似文献   

3.
One of the central goals of community ecology is to understand the forces that maintain species diversity within communities. The traditional niche-assembly theory asserts that species live together in a community only when they differ from one another in resource uses. But this theory has some difficulties in explaining the diversity often observed in specie-rich communities such as tropical forests. As an alternative to the niche theory, Hubbell and other ecologists introduced a neutral model. Hubbell argues that the number of species in a community is controlled by species extinction and immigration or speciation of new species. Assuming that all individuals of all species in a trophically similar com-munity are ecologically equivalent, Hubbell's neutral theory predicts two important statistical distributions. One is the asymptotic log-series distribution for the metacommunities under point mutation speciation, and the other is the zero-sum multinomial distribution for both local communities under dispersal limitation and metacommunities under random fission speciation. Unlike the niche-assembly theory, the neutral theory takes similarity in species and individuals as a starting point for investigating species diversity. Based on the fundamental processes of birth, death, dispersal and spe-ciation, the neutral theory provided the first mechanistic explanation of species abundance distribution commonly observed in natural communities. Since the publication of the neutral theory, there has been much discussion about it, pro and con. In this paper, we summarize recent progress in the assumption, prediction and speciation mode of the neutral theory, including progress in the theory itself, tests about the assumption of the theory, prediction and speciation mode at the metacommunity level. We also suggest that the most important task in the future is to bridge the niche-assembly theory and the neutral theory, and to add species differences to the neutral theory and more stochasticity to the niche theory.  相似文献   

4.
One of the central goals of community ecology is to understand the forces that maintain species diversity within communities. The traditional niche-assembly theory asserts that species live together in a community only when they differ from one another in resource uses. But this theory has some difficulties in explaining the diversity often observed in specie-rich communities such as tropical forests. As an alternative to the niche theory, Hubbell and other ecologists introduced a neutral model. Hubbell argues that the number of species in a community is controlled by species extinction and immigration or speciation of new species. Assuming that all individuals of all species in a trophically similar community are ecologically equivalent, Hubbell’s neutral theory predicts two important statistical distributions. One is the asymptotic log-series distribution for the metacommunities under point mutation speciation, and the other is the zero-sum multinomial distribution for both local communities under dispersal limitation and metacommunities under random fission speciation. Unlike the niche-assembly theory, the neutral theory takes similarity in species and individuals as a starting point for investigating species diversity. Based on the fundamental processes of birth, death, dispersal and speciation, the neutral theory provided the first mechanistic explanation of species abundance distribution commonly observed in natural communities. Since the publication of the neutral theory, there has been much discussion about it, pro and con. In this paper, we summarize recent progress in the assumption, prediction and speciation mode of the neutral theory, including progress in the theory itself, tests about the assumption of the theory, prediction and speciation mode at the metacommunity level. We also suggest that the most important task in the future is to bridge the niche-assembly theory and the neutral theory, and to add species differences to the neutral theory and more stochasticity to the niche theory. __________ Translated from Journal of Plant Ecology, 2006, 30(5): 868–877 [译自:植物生态学报]  相似文献   

5.
Patterns of biodiversity predicted by the neutral theory rely on a simple phenomenological model of speciation. To further investigate the effect of speciation on neutral biodiversity, we analyze a spatially explicit neutral model based on population genetics. We define the metacommunity as a system of populations exchanging migrants, and we use this framework to introduce speciation with little or no gene flow (allopatric and parapatric speciation). We find that with realistic mutation rates, our metacommunity model driven by neutral processes cannot support more than a few species. Adding natural selection in the population genetics of speciation increases the number of species in the metacommunity, but the level of diversity found in the Barro Colorado Island is difficult to reach.  相似文献   

6.
Over evolutionary time, the number of species in a community reflects the balance between the rate of speciation and the rate of extinction. Over shorter time‐scales local species richness is also affected by how often species move into and out of the local community. These processes are at the heart of Hubbell's ‘unified neutral theory of biodiversity’ ( Hubbell 2001 ). Hubbell's spatially implicit, dispersal‐limited neutral model is the most widely used of the many implementations of neutral theory and it provides an estimate of the rate of speciation in a metacommunity (if metacommunity size is known) and the rate at which species migrate into the local community from the wider metacommunity. Recently, this neutral model has been used to compare rates of speciation and migration in the species‐rich fynbos of South Africa and in neotropical forests. Here we use new analytical methods for estimating the neutral model's parameters to infer speciation and dispersal rates for three sites in species‐rich sclerophyll shrublands (equivalent to fynbos) in Western Australia (WA). Our estimates suggest that WA shrublands are intermediate between fynbos and tropical rainforest in terms of speciation and dispersal. Although a weak test, the model predicts species abundance distributions and species accumulation curves similar to those observed at the three sites. The neutral model's predictions also remain plausible when confronted with independent data describing: (1) known edaphic relationships between sites, (2) estimates of metacommunity species richness and (3) rates of speciation among resprouters and nonsprouters. Two of the site pairs, however, show species turnovers significantly different from those predicted by the spatially implicit form of the neutral model that we use. This suggests that non‐neutral processes, in this case probably edaphic specialisation, are important in the WA shrubland metacommunity. The neutral model predicts similar rates of speciation in resprouter and sprouter taxa, a finding supported by recent molecular phylogenies. Finally, when converted into temporally scaled speciation rates and species longevities, the estimates produced by the neutral model seem implausible. The apparent departure from neutrality in the turnover of species between some sites and the implausible temporal dynamics may be due to the particular model chosen and does not reduce the significance of our other results, which confirm that local dispersal limitation, coupled with broader scale edaphic fidelity, combine to structure this biodiverse metacommunity.  相似文献   

7.
S.P. Hubbell 《Oikos》2003,100(1):193-199
Ricklefs (2003) has presented a thoughtful critique of the two modes of speciation discussed in my recent book ( Hubbell 2001a ). His main point is that under point mutation speciation, a plethora of species is produced with extremely short lifespans, whereas under random fission speciation, lifespans are too long, particularly in large metacommunities. The issue is easily resolved if one regards point mutation speciation and random fission speciation as the theoretical extremes of a speciation continuum. The mean lifespan of a species in the theory depends upon the size of the species population at its origination. If initial population sizes are fairly small, but not as small as the extreme of individual-founded lineages as under point mutation, then intermediate distributions of species lifespans are obtained. To examine this further, I consider a third model of speciation that I call "peripheral isolate speciation." There should be a signature of peripheral isolate speciation in the distribution of metacommunity relative species abundance, just as there is in the case of point mutation speciation and random fission speciation. Other points made by Ricklefs and several others are addressed in the body of the text.  相似文献   

8.
Vascular epiphytes form a diverse group of almost 30 000 species, yet theory concerning their community structure is still largely lacking. We therefore employed the simplest models of biodiversity, (near-)neutral models, to generate hypotheses concerning their community structure. With recently developed tools for (near-)neutral models we analyzed species abundance data from many samples in Central and South America which we divided into four metacommunities (Mesoamerica, Central America, Amazonia and Paraná), where for each metacommunity we considered two subsets differing in dispersal syndrome: an animal-dispersed guild and a wind-dispersed guild. We considered three models differing in the underlying speciation mode. Across all metacommunities, we found observed patterns to be indistinguishable from patterns generated by neutral or near-neutral processes. Furthermore, we found that subdivision in different dispersal guilds was often supported, with recruitment limitation being stronger for animal-dispersed species than for wind-dispersed species. This is the first time that (near-)neutral theory has been applied to epiphyte communities. Future efforts with additional data sets and more refined models are expected to further improve our understanding of community structure in epiphytes and will have to test the generality of our findings.  相似文献   

9.
Theories of the differentiation of ecological communities on landscapes have typically not considered evolutionary dynamics. Here we analytically study the expected differentiation among local communities in a large metacommunity, undergoing speciation, ecological drift and intercommunity dispersal, in the context of neutral theory. We demonstrate that heterogeneity in species diversity and abundance arises among communities when local communities are small and intercommunity migration is infrequent. We propose a new measure to describe community differentiation, defined as the average correlation or the average probability (Cst) that two randomly sampled individuals of the same species within local communities are from the same ancestor. The effects of driving forces (migration, mutation, and ecological drift) are incorporated into the two-level hierarchical community structure in a finite island model of neutral communities. Community differentiation can increase the effective metacommunity size or the Hubbell's fundamental species diversity in the metacommunity by a factor (1−Cst)−1. Significant community differentiation arises when Cst≠0. Intercommunity migration promotes species diversity in local communities but reduce species diversity in the metacommunity. In either the finite or infinite island case, one can estimate the number of intercommunity migrants by using multiple local community datasets when the speciation is negligible in the neutral local communities, or by using the metacommunity dataset when the speciation is included in the local neutral communities. These results highlight the significance of the evolutionary mechanisms in generating heterogeneous communities in the absence of complicated ecological processes on large landscapes.  相似文献   

10.
Hubbell’s neutral theory claims that ecological patterns such as species abundance distributions can be explained by a stochastic model based on simple assumptions. One of these assumptions, the point mutation assumption, states that every individual has the same probability to speciate. Etienne et al. have argued that other assumptions on the speciation process could be more realistic, for example, that every species has the same probability to speciate (Etienne, et al. in Oikos 116:241–258, 2007). They introduced a number of neutral community models with a different speciation process, and conjectured formulas for their stationary species abundance distribution. Here we study a generalised neutral community model, encompassing these modified models, and derive its stationary distribution, thus proving the conjectured formulas.  相似文献   

11.
The scale‐dependent species abundance distribution (SAD) is fundamental in ecology, but few spatially explicit models of this pattern have thus far been studied. Here we show spatially explicit neutral model predictions for SADs over a wide range of spatial scales, which appear to match empirical patterns qualitatively. We find that the assumption of a log‐series SAD in the metacommunity made by spatially implicit neutral models can be justified with a spatially explicit model in the large area limit. Furthermore, our model predicts that SADs on multiple scales are characterized by a single, compound parameter that represents the ratio of the survey area to the species’ average biogeographic range (which is in turn set by the speciation rate and the dispersal distance). This intriguing prediction is in line with recent empirical evidence for a universal scaling of the species‐area curve. Hence we hypothesize that empirical SAD patterns will show a similar universal scaling for many different taxa and across multiple spatial scales.  相似文献   

12.
The neutral theory of biodiversity purports that patterns in the distribution and abundance of species do not depend on adaptive differences between species (i.e. niche differentiation) but solely on random fluctuations in population size (“ecological drift”), along with dispersal and speciation. In this framework, the ultimate driver of biodiversity is speciation. However, the original neutral theory made strongly simplifying assumptions about the mechanisms of speciation, which has led to some clearly unrealistic predictions. In response, several recent studies have combined neutral community models with more elaborate speciation models. These efforts have alleviated some of the problems of the earlier approaches, while confirming the general ability of neutral theory to predict empirical patterns of biodiversity. However, the models also show that the mode of speciation can have a strong impact on relative species abundances. Future work should compare these results to diversity patterns arising from non‐neutral modes of speciation, such as adaptive radiations.  相似文献   

13.
In the classic spatially implicit formulation of Hubbell's neutral theory of biodiversity a local community receives immigrants from a metacommunity operating on a relatively slow timescale, and dispersal into the local community is governed by an immigration parameter m . A current problem with neutral theory is that m lacks a clear biological interpretation. Here, we derive analytical expressions that relate the immigration parameter m to the geometry of the plot defining the local community and the parameters of a dispersal kernel. Our results facilitate more rigorous and extensive tests of the neutral theory: we conduct a test of neutral theory by comparing estimates of m derived from fits to empirical species abundance distributions to those derived from dispersal kernels and find acceptable correspondence; and we generate a new prediction of neutral theory by investigating how the shapes of species abundance distributions change theoretically as the spatial scale of observation changes. We also discuss how our main analytical results can be used to assess the error in the mean-field approximations associated with spatially implicit formulations of neutral theory.  相似文献   

14.
Liu J  Zhou S 《PloS one》2011,6(8):e24128
The neutral assumption that individuals of either the same or different species share exactly the same birth, death, migration, and speciation probabilities is fundamental yet controversial to the neutral theory. Several theoretical studies have demonstrated that a slight difference in species per capita birth or death rates can have a profound consequence on species coexistence and community structure. Whether asymmetry in migration, a vital demographic parameter in the neutral model, plays an important role in community assembly still remains unknown. In this paper, we relaxed the ecological equivalence assumption of the neutral model by introducing differences into species regional dispersal ability. We investigated the effect of asymmetric dispersal on the neutral local community structure. We found that per capita asymmetric dispersal among species could reduce species richness of the local community and result in deviations of species abundance distributions from those predicted by the neutral model. But the effect was moderate compared with that of asymmetries in birth or death rates, unless very large asymmetries in dispersal were assumed. A large difference in species dispersal ability, if there is, can overwhelm the role of random drift and make local community dynamics deterministic. In this case, species with higher regional dispersal abilities tended to dominate in the local community. However, the species abundance distribution of the local community under asymmetric dispersal could be well fitted by the neutral model, but the neutral model generally underestimated the fundamental biodiversity number but overestimated the migration rate in such communities.  相似文献   

15.
Central to Hubbell's neutral theory of biodiversity is a universal, dimensionless fundamental biodiversity parameter that is the product of community size and speciation rate. One of the most important discoveries of Hubbell's theory is that the species‐abundance distribution and the species–area relationship of the neutral metacommunity is completely determined by this fundamental biodiversity parameter, although the diversity patterns of the local community are collectively determined by the biodiversity parameter and migration. Using the relative abundance of species and following the concept of heterozygosity of population genetics, here we developed an analytical relationship between this biodiversity parameter and the well‐known Simpson diversity index. This relationship helps bridge the evolutionary aspect of biodiversity to the ecological and statistical aspect of the diversity. The relationship between these two parameters suggests that diversity patterns of the metacommunity can also be equally described by the Simpson index. This relationship provides an alternative approach to interpret and estimate the fundamental biodiversity parameter for the metacommunity.  相似文献   

16.
Biologists seek an understanding of the processes underlying spatial biodiversity patterns. Neutral theory links those patterns to dispersal, speciation and community drift. Here, we advance the spatially explicit neutral model by representing the metacommunity as a network of smaller communities. Analytic theory is presented for a set of equilibrium diversity patterns in networks of communities, facilitating the exploration of parameter space not accessible by simulation. We use this theory to evaluate how the basic properties of a metacommunity – connectivity, size, and speciation rate – determine overall metacommunity γ -diversity, and how that is partitioned into α - and β -components. We find spatial structure can increase γ -diversity relative to a well-mixed model, even when θ is held constant. The magnitude of deviations from the well-mixed model and the partitioning into α - and β -diversity is related to the ratio of migration and speciation rates. γ -diversity scales linearly with metacommunity size even as α - and β -diversity scale nonlinearly with size.  相似文献   

17.
Sampling Hubbell's neutral theory of biodiversity   总被引:7,自引:0,他引:7  
In the context of neutral theories of community ecology, a novel genealogy‐based framework has recently furnished an analytic extension of Ewens’ sampling multivariate abundance distribution, which also applies to a random sample from a local community. Here, instead of taking a multivariate approach, we further develop the sampling theory of Hubbell's neutral spatially implicit theory and derive simple abundance distributions for a random sample both from a local community and a metacommunity. Our result is given in terms of the average number of species with a given abundance in any randomly extracted sample. Contrary to what has been widely assumed, a random sample from a metacommunity is not fully described by the Fisher log‐series, but by a new distribution. This new sample distribution matches the log‐series expectation at high biodiversity values (θ > 1) but clearly departs from it for species‐poor metacommunities (θ < 1). Our theoretical framework should be helpful in the better assessment of diversity and testing of the neutral theory by using abundance data.  相似文献   

18.
The emergence of new frameworks combining evolutionary and ecological dynamics in communities opens new perspectives on the study of speciation. By acknowledging the relative contribution of local and regional dynamics in shaping the complexity of ecological communities, metacommunity theory sheds a new light on the mechanisms underlying the emergence of species. Three integrative frameworks have been proposed, involving neutral dynamics, niche theory, and life history trade‐offs respectively. Here, we review these frameworks of metacommunity theory to emphasise that: (1) studies on speciation and community ecology have converged towards similar general principles by acknowledging the central role of dispersal in metacommunities dynamics, (2) considering the conditions of emergence and maintenance of new species in communities has given rise to new models of speciation embedded in the metacommunity theory, (3) studies of diversification have shifted from relating phylogenetic patterns to landscapes spatial and ecological characteristics towards integrative approaches that explicitly consider speciation in a mechanistic ecological framework. We highlight several challenges, in particular the need for a better integration of the eco‐evolutionary consequences of dispersal and the need to increase our understanding on the relative rates of evolutionary and ecological changes in communities.  相似文献   

19.
Community characteristics reflect past ecological and evolutionary dynamics. Here, we investigate whether it is possible to obtain realistically shaped modeled communities–that is with phylogenetic trees and species abundance distributions shaped similarly to typical empirical bird and mammal communities–from neutral community models. To test the effect of gene flow, we contrasted two spatially explicit individual‐based neutral models: one with protracted speciation, delayed by gene flow, and one with point mutation speciation, unaffected by gene flow. The former produced more realistic communities (shape of phylogenetic tree and species‐abundance distribution), consistent with gene flow being a key process in macro‐evolutionary dynamics. Earlier models struggled to capture the empirically observed branching tempo in phylogenetic trees, as measured by the gamma statistic. We show that the low gamma values typical of empirical trees can be obtained in models with protracted speciation, in preequilibrium communities developing from an initially abundant and widespread species. This was even more so in communities sampled incompletely, particularly if the unknown species are the youngest. Overall, our results demonstrate that the characteristics of empirical communities that we have studied can, to a large extent, be explained through a purely neutral model under preequilibrium conditions.  相似文献   

20.
The response of species diversity to dispersal capability is inherently scale‐dependent: increasing dispersal capability is expected to increase diversity at the local scale, while decreasing diversity at the metacommunity scale. However, these expectations are based on model formulations that neglect dispersal limitation and species segregation at the local scale. We developed a unifying framework of dispersal–diversity relationships and tested the generality of these expectations. For this purpose we used a spatially‐explicit neutral model with various combinations of survey area (local scale) and landscape size (metacommunity scale). Simulations were conducted using landscapes of finite and of conceptually infinite size. We analyzed the scale‐dependence of dispersal‐diversity relationships for exponentially‐bounded versus fat‐tailed dispersal kernels, several levels of speciation rate and contrasting assumptions on recruitment at short dispersal distances. We found that the ratio of survey area to landscape size is a major determinant of dispersal–diversity relationships. With increasing survey‐to‐landscape area ratio the dispersal–diversity relationship switches from monotonically increasing through a U‐shaped pattern (with a local minimum) to a monotonically decreasing pattern. Therefore, we provide a continuous set of dispersal–diversity relationships, which contains the response shapes reported previously as extreme cases. We suggest the mean dispersal distance with the minimum of species diversity (minimizing dispersal distance) for a certain scenario as a key characteristic of dispersal–diversity relationships. We show that not only increasing mean dispersal distances, but also increasing variances of dispersal can enhance diversity at the local scale, given a diverse species pool at the metacommunity scale. In conclusion, the response of diversity to variations of dispersal capability at spatial scales of interest, e.g. conservation areas, can differ more widely than expected previously. Therefore, land use and conservation activities, which manipulate dispersal capability, need to consider the landscape context and potential species pools carefully.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号