首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The equilibrium binding of Escherichia coli RecBC and RecBCD helicases to duplex DNA ends containing varying lengths of polyethylene glycol (PEG) spacers within pre-formed 3'-single-stranded (ss) DNA ((dT)n) tails was studied. These studies were designed to test a previous proposal that the 3'-(dT)n tail can be looped out upon binding RecBC and RecBCD for 3'-ssDNA tails with n>or=6 nucleotides. Equilibrium binding of protein to unlabeled DNA substrates with ends containing PEG-substituted 3'-ssDNA tails was examined by competition with a Cy3-labeled reference DNA which undergoes a Cy3 fluorescence enhancement upon protein binding. We find that the binding affinities of both RecBC and RecBCD for a DNA end are unaffected upon substituting PEG for the ssDNA between the sixth and the final two nucleotides of the 3'-(dT)n tail. However, placing PEG at the end of the 3'-(dT)n tail increases the binding affinities to their maximum values (i.e. the same as binding constants for RecBC or RecBCD to a DNA end with only a 3'-(dT)6 tail). Equilibrium binding studies of a RecBC mutant containing a nuclease domain deletion, RecB(Deltanuc)C, suggest that looping of the 3'-tail (when n>or=6 nucleotides) occurs even in the absence of the RecB nuclease domain, although the nuclease domain stabilizes such loop formation. Computer modeling of the RecBCD-DNA complexes suggests that the loop in the 3'-ssDNA tail may form at the RecB/RecC interface. Based on these results we suggest a model for how a loop in the 3'-ssDNA tail might form upon encounter of a "Chi" recognition sequence during unwinding of DNA by the RecBCD helicase.  相似文献   

2.
Escherichia coli RecBCD is a highly processive DNA helicase involved in double-strand break repair and recombination that possesses two helicase/translocase subunits with opposite translocation directionality (RecB (3′ to 5′) and RecD (5′ to 3′)). RecBCD has been shown to melt out ∼ 5-6 bp upon binding to a blunt-ended duplex DNA in a Mg2+-dependent, but ATP-independent reaction. Here, we examine the binding of E. coli RecBC helicase (minus RecD), also a processive helicase, to duplex DNA ends in the presence and in the absence of Mg2+ in order to determine if RecBC can also melt a duplex DNA end in the absence of ATP. Equilibrium binding of RecBC to DNA substrates with ends possessing pre-formed 3′ and/or 5′ single-stranded (ss)-(dT)n flanking regions (tails) (n ranging from zero to 20 nt) was examined by competition with a fluorescently labeled reference DNA and by isothermal titration calorimetry. The presence of Mg2+ enhances the affinity of RecBC for DNA ends possessing 3′ or 5′-(dT)n ssDNA tails with n < 6 nt, with the relative enhancement decreasing as n increases from zero to six nt. No effect of Mg2+ was observed for either the binding constant or the enthalpy of binding (ΔHobs) for RecBC binding to DNA with ssDNA tail lengths, n ≥ 6 nucleotides. Upon RecBC binding to a blunt duplex DNA end in the presence of Mg2+, at least 4 bp at the duplex end become accessible to KMnO4 attack, consistent with melting of the duplex end. Since Mg2+ has no effect on the affinity or binding enthalpy of RecBC for a DNA end that is fully pre-melted, this suggests that the role of Mg2+ is to overcome a kinetic barrier to melting of the DNA by RecBC and presumably also by RecBCD. These data also provide an accurate estimate (ΔHobs = 8 ± 1 kcal/mol) for the average enthalpy change associated with the melting of a DNA base-pair by RecBC.  相似文献   

3.
We have developed and optimized a stopped-flow fluorescence assay for use in studying DNA unwinding catalyzed by Escherichia coli RecBCD helicase. This assay monitors changes in fluorescence resonance energy transfer (FRET) between a pair of fluorescent probes (Cy3 donor and Cy5 acceptor) placed on opposite sides of a nick in duplex DNA. As such, this is an "all-or-none" DNA unwinding assay. Single turnover DNA unwinding experiments were performed using a series of eight fluorescent DNA substrates containing duplex DNA regions ranging from 24 bp to 60 bp. The time-courses obtained by monitoring Cy3 fluorescence display a distinct lag phase that increases with increasing duplex DNA length, reflecting the transient formation of partially unwound DNA intermediates. These Cy3 FRET time-courses are identical with those obtained using a chemical quenched-flow kinetic assay developed previously. The signal from the Cy5 fluorescence probe shows additional effects that appear to specifically monitor the RecD helicase subunit. The continuous nature of this fluorescence assay enabled us to acquire more precise time-courses for many more duplex DNA lengths in a significantly reduced amount of time, compared to quenched-flow methods. Global analysis of the Cy3 and Cy5 FRET time-courses, using an n-step sequential DNA unwinding model, indicates that RecBCD unwinds duplex DNA with an average unwinding rate constant of kU = 200(+/-40) steps s(-1) (mkU = 680(+/-12)bp s(-1)) and an average kinetic step size, m = 3.4 (+/-0.6) bp step(-1) (5 mM ATP, 10 mM MgCl(2), 30 mM NaCl, pH 7.0, 5% (v/v) glycerol, 25.0 degrees C), in excellent agreement with the kinetic parameters determined using quenched-flow techniques. Under these same conditions, the RecBC enzyme unwinds DNA with a very similar rate. These methods will facilitate detailed studies of the mechanisms of DNA unwinding and translocation of the RecBCD and RecBC helicases.  相似文献   

4.
G Deng  R Wu 《Nucleic acids research》1981,9(16):4173-4188
Terminal deoxynucleotidyl transferase (E.C.2.7.7.3.1.) from calf thymus was used to add homopolymer tails to duplex DNA with 3' protruding, even, or 3' recessive ends. A gel electrophoresis method was employed to analyze the tail length and the percent of DNA with tails. In all the tailing reactions, dA, dT, and dC tails from CoCl2-containing buffer were longer than those from MnCl2 - or MgCl2 - containing buffers, whereas dG tails from MnCl2 -containing buffer were the longest. By varying the ratio of dNTP over DNA terminus and the concentration of terminal transferase, optimal conditions were found for adding dG or dC tails of 10-25 nucleotides in length and dA and dT tails of 20-40 nucleotides in length to duplex DNA with all types of 3' termini.  相似文献   

5.
Escherichiacoli RecBCD is a bipolar DNA helicase possessing two motor subunits (RecB, a 3′-to-5′ translocase, and RecD, a 5′-to-3′ translocase) that is involved in the major pathway of recombinational repair. Previous studies indicated that the minimal kinetic mechanism needed to describe the ATP-dependent unwinding of blunt-ended DNA by RecBCD in vitro is a sequential n-step mechanism with two to three additional kinetic steps prior to initiating DNA unwinding. Since RecBCD can “melt out” ∼ 6 bp upon binding to the end of a blunt-ended DNA duplex in a Mg2+-dependent but ATP-independent reaction, we investigated the effects of noncomplementary single-stranded (ss) DNA tails [3′-(dT)6 and 5′-(dT)6 or 5′-(dT)10] on the mechanism of RecBCD and RecBC unwinding of duplex DNA using rapid kinetic methods. As with blunt-ended DNA, RecBCD unwinding of DNA possessing 3′-(dT)6 and 5′-(dT)6 noncomplementary ssDNA tails is well described by a sequential n-step mechanism with the same unwinding rate (mkU = 774 ± 16 bp s− 1) and kinetic step size (m = 3.3 ± 1.3 bp), yet two to three additional kinetic steps are still required prior to initiation of DNA unwinding (kC = 45 ± 2 s− 1). However, when the noncomplementary 5′ ssDNA tail is extended to 10 nt [5′-(dT)10 and 3′-(dT)6], the DNA end structure for which RecBCD displays optimal binding affinity, the additional kinetic steps are no longer needed, although a slightly slower unwinding rate (mkU = 538 ± 24 bp s− 1) is observed with a similar kinetic step size (m = 3.9 ± 0.5 bp). The RecBC DNA helicase (without the RecD subunit) does not initiate unwinding efficiently from a blunt DNA end. However, RecBC does initiate well from a DNA end possessing noncomplementary twin 5′-(dT)6 and 3′-(dT)6 tails, and unwinding can be described by a simple uniform n-step sequential scheme, without the need for the additional kC initiation steps, with a similar kinetic step size (m = 4.4 ± 1.7 bp) and unwinding rate (mkobs = 396 ± 15 bp s− 1). These results suggest that the additional kinetic steps with rate constant kC required for RecBCD to initiate unwinding of blunt-ended and twin (dT)6-tailed DNA reflect processes needed to engage the RecD motor with the 5′ ssDNA.  相似文献   

6.
The RecBC enzyme of Escherichia coli promotes genetic recombination of phage or bacterial chromosomes. The purified enzyme travels through duplex DNA, unwinding and rewinding the DNA with the transient production of potentially recombinogenic single-stranded DNA. The studies reported here are aimed at understanding which chromosomal forms allow the entry of RecBC enzyme and hence may undergo RecBC enzyme-mediated recombination. Circular duplex molecules, whether covalently closed, nicked or containing single-stranded gaps of 10 to 774 nucleotides, are not detectably unwound by RecBC enzyme. Linear duplex molecules are readily unwound if they have a nearly flush-ended terminus whose 5' and 3' ends are offset by no more than about 25 nucleotides; molecules with longer single-stranded tails are poorly bound by RecBC enzyme and are infrequently unwound. The single-strand endonuclease activity of RecBC enzyme can slowly cleave gapped circles to produce molecules presumably capable of being unwound. These results provide an enzymatic basis for the recombinogenicity of double-stranded DNA ends established from genetic studies of RecBC enzyme and Chi sites, recognition sites for RecBC enzyme-mediated DNA strand cleavage.  相似文献   

7.
G F Gerard 《Biochemistry》1981,20(2):256-265
The mechanism of action of the ribonuclease H (RNase H) activity associated with Moloney murine leukemia virus RNA-directed DNA polymerase (RNase H I) and the two-subunit (alpha beta) form of avian myeloblastosis virus DNA polymerase were compared by utilizing the model substrate (A)n.(dT)n and polyacrylamide gel electrophoresis in 7 M urea to analyze digestion products. Examination on 25% polyacrylamide gels revealed that a larger proportion of the RNase H I oligonucleotide products generated by limited digestion of [3H](A)(1100).(dT)n were acid insoluble (15-26 nucleotides long) than acid soluble (less than 15 nucleotides long), while the opposite was true for products generated by alpha beta RNase H. RNase H I was capable of attacking RNA in RNA.DNA in the 5' to 3' and 3' to 5' directions, as demonstrated by the use of [3H,3'- or 5'-32P](A)(380).(dT)n and cellulose--[3H](A)n.(dT)n. Both RNase H I and alpha beta RNase H degraded [3H]-(A)n.(dT)n with a partially processive mechanism, based upon classical substrate competition experiments and analyses of the kinetics of degradation of [3H,3'- or 5'-32P](A)(380).(dT)n. That is, both enzymes remain bound to a RNA.DNA substrate through a finite number of hydrolytic events but dissociate before the RNA is completely degraded. Both RNase H I and alpha beta RNase H were capable of degrading [14C](A)n in [3H](C)n-[14C](A)n-[32P](dA)n.(dT)n, suggesting that retroviral RNase H is capable of removing the tRNA primer at the 5' terminus of minus strand DNA at the appropriate time during retroviral DNA synthesis in vitro.  相似文献   

8.
Duplex DNA with a contiguous single-stranded tail was nearly as effective as single-stranded DNA in acting as a cofactor for the ATPase activity of recA protein at neutral pH and concentrations of MgCl2 that support homologous pairing. The ATP hydrolysis reached a steady state rate that was proportional to the length of the duplex DNA attached to a short 5' single-stranded tail after a lag. Separation of the single-stranded tail from most of the duplex portion of the molecule by restriction enzyme cleavage led to a gradual decline in ATP hydrolysis. Measurement of the rate of hydrolysis as a function of DNA concentration for both tailed duplex DNA and single-stranded DNA cofactors indicated that the binding site size of recA protein on a duplex DNA lattice, about 4 base pairs, is similar to that on a single-stranded DNA lattice, about four nucleotides. The length of the lag phase preceding steady state hydrolysis depended on the DNA concentration, length of the duplex region, and the polarity of the single-stranded tail, but was comparatively independent of tail length for tails over 70 nucleotides in length. The lag was 5-10 times longer for 3' than for 5' single-stranded tailed duplex DNA molecules, whereas the steady state rates of hydrolysis were lower. These observations show that, after nucleation of a recA protein complex on the single-stranded tail, the protein samples the entire duplex region via an interaction that is labile and not strongly polarized.  相似文献   

9.
Structure-specific DNA binding and bipolar helicase activities of PcrA   总被引:3,自引:0,他引:3  
  相似文献   

10.
Werner syndrome is a hereditary premature aging disorder characterized by genome instability. The product of the gene defective in WS, WRN, is a helicase/exonuclease that presumably functions in DNA metabolism. To understand the DNA structures WRN acts upon in vivo, we examined its substrate preferences for unwinding. WRN unwound a 3'-single-stranded (ss)DNA-tailed duplex substrate with streptavidin bound to the end of the 3'-ssDNA tail, suggesting that WRN does not require a free DNA end to unwind the duplex; however, WRN was completely blocked by streptavidin bound to the 3'-ssDNA tail 6 nucleotides upstream of the single-stranded/double-stranded DNA junction. WRN efficiently unwound the forked duplex with streptavidin bound just upstream of the junction, suggesting that WRN recognizes elements of the fork structure to initiate unwinding. WRN unwound two important intermediates of replication/repair, a 5'-ssDNA flap substrate and a synthetic replication fork. WRN was able to translocate on the lagging strand of the synthetic replication fork to unwind duplex ahead of the fork. For the 5'-flap structure, WRN specifically displaced the 5'-flap oligonucleotide, suggesting a role of WRN in Okazaki fragment processing. The ability of WRN to target DNA replication/repair intermediates may be relevant to its role in genome stability maintenance.  相似文献   

11.
Pre-steady-state chemical quenched-flow techniques were used to study DNA unwinding catalyzed by Escherichia coli UvrD helicase (helicase II), a member of the SF1 helicase superfamily. Single turnover experiments, with respect to unwinding of a DNA oligonucleotide, were used to examine the DNA substrate and UvrD concentration requirements for rapid DNA unwinding by pre-bound UvrD helicase. In excess UvrD at low DNA concentrations (1 nM), the bulk of the DNA is unwound rapidly by pre-bound UvrD complexes upon addition of ATP, but with time-courses that display a distinct lag phase for formation of fully unwound DNA, indicating that unwinding occurs in discrete steps, with a "step size" of four to five base-pairs as previously reported. Optimum unwinding by pre-bound UvrD-DNA complexes requires a 3' single-stranded (ss) DNA tail of 36-40 nt, whereas productive complexes do not form readily on DNA with 3'-tail lengths 相似文献   

12.
PcrA is an essential helicase in gram-positive bacteria, and a gene encoding this helicase has been identified in all such organisms whose genomes have been sequenced so far. The precise role of PcrA that makes it essential for cell growth is not known; however, PcrA does not appear to be necessary for chromosome replication. The pcrA gene was identified in the genome of Bacillus anthracis on the basis of its sequence homology to the corresponding genes of Bacillus subtilis and Staphylococcus aureus, with which it shares 76 and 72% similarity, respectively. The pcrA gene of B. anthracis was isolated by PCR amplification and cloning into Escherichia coli. The PcrA protein was overexpressed with a His6 fusion at its amino-terminal end. The purified His-PcrA protein showed ATPase activity that was stimulated in the presence of single-stranded (ss) DNA (ssDNA). Interestingly, PcrA showed robust 3'-->5' as well as 5'-->3' helicase activities, with substrates containing a duplex region and a 3' or 5' ss poly(dT) tail. PcrA also efficiently unwound oligonucleotides containing a duplex region and a 5' or 3' ss tail with the potential to form a secondary structure. DNA binding experiments showed that PcrA bound much more efficiently to oligonucleotides containing a duplex region and a 5' or 3' ss tail with a potential to form a secondary structure than to those with ssDNAs or duplex DNAs with ss poly(dT) tails. Our results suggest that specialized DNA structures and/or sequences represent natural substrates of PcrA in biochemical processes that are essential for the growth and survival of gram-positive organisms, including B. anthracis.  相似文献   

13.
The adenovirus-encoded 140-kDa DNA polymerase (Ad Pol) and the 59-kDa DNA binding protein (Ad DBP) are both required for the replication of viral DNA in vivo and in vitro. Previous studies demonstrated that, when poly(dT).oligo(dA) was used as a template-primer, both proteins were required for poly(dA) synthesis. In this report, the interaction between the Ad Pol and Ad DBP was further investigated using poly(dT).oligo(dA) as well as a linear duplex molecule containing 3' poly(dT) tails. DNA synthesis with the tailed template required Ad Pol, Ad DBP, and an oligo(dA) primer hydrogen bonded to the poly(dT) tails. Incorporation was stimulated 8-10-fold by ATP; however, no evidence of ATP hydrolysis to ADP was observed. Synthesis was initiated at either end of the tailed molecule and proceeded through the duplex region to the end of the molecule. This ability to translocate through duplex DNA and to synthesize long poly(dA) chains suggests that the Ad Pol.Ad DBP complex can act efficiently in the elongation reactions involved in the replication of Ad DNA (both type I and type II). During the replication reaction, substantial hydrolysis of deoxynucleoside triphosphates to the corresponding deoxynucleoside monophosphates occurred. This reaction required DNA synthesis and most likely reflects an idling reaction similar to that observed with other DNA polymerases containing 3'----5' exonuclease activity in which the polymerase first incorporates and then hydrolyzes a dNMP.  相似文献   

14.
Escherichia coli DNA helicases: mechanisms of DNA unwinding   总被引:12,自引:0,他引:12  
DNA helicases are ubiquitous enzymes that catalyse the unwinding of duplex DNA during replication, recombination and repair. These enzymes have been studied extensively; however, the specific details of how any helicase unwinds duplex DNA are unknown. Although it is clear that not all helicases unwind duplex DNA in an identical way, many helicases possess similar properties, which are thus likely to be of general importance to their mechanism of action. For example, since helicases appear generally to be oligomeric enzymes, the hypothesis is presented in this review that the functionally active forms of DNA helicases are oligomeric. The oligomeric nature of helicases provides them with multiple DNA-binding sites, allowing the transient formation of ternary structures, such that at an unwinding fork, the helicase can bind either single-stranded and duplex DNA simultaneously or two strands of single-stranded DNA. Modulation of the relative affinities of these binding sites for single-stranded versus duplex DNA through ATP binding and hydrolysis would then provide the basis for a cycling mechanism for processive unwinding of DNA by helicases. The properties of the Escherichia coli DNA helicases are reviewed and possible mechanisms by which helicases might unwind duplex DNA are discussed in view of their oligomeric structures, with emphasis on the E. coli Rep, RecBCD and phage T7 gene 4 helicases.  相似文献   

15.
16.
The human Rad51 recombinase is essential for the repair of double-strand breaks in DNA that occur in somatic cells after exposure to ionising irradiation, or in germ line cells undergoing meiotic recombination. The initiation of double-strand break repair is thought to involve resection of the double-strand break to produce 3'-ended single-stranded (ss) tails that invade homologous duplex DNA. Here, we have used purified proteins to set up a defined in vitro system for the initial strand invasion step of double-strand break repair. We show that (i) hRad51 binds to the ssDNA of tailed duplex DNA molecules, and (ii) hRad51 catalyses the invasion of tailed duplex DNA into homologous covalently closed DNA. Invasion is stimulated by the single-strand DNA binding protein RPA, and by the hRad52 protein. Strikingly, hRad51 forms terminal nucleoprotein filaments on either 3' or 5'-ssDNA tails and promotes strand invasion without regard for the polarity of the tail. Taken together, these results show that hRad51 is recruited to regions of ssDNA occurring at resected double-strand breaks, and that hRad51 shows no intrinsic polarity preference at the strand invasion step that initiates double-strand break repair.  相似文献   

17.
Complete enzymatic synthesis of DNA containing the SV40 origin of replication   总被引:62,自引:0,他引:62  
The replication of simian virus 40 origin-containing DNA has been reconstituted in vitro with SV40 large T antigen and purified proteins isolated from HeLa cells. Covalently closed circular DNA (RF I') daughter molecules are formed in the presence of T antigen, a single-stranded DNA binding protein and DNA polymerase alpha-primase complex, together with ribonuclease H, DNA ligase, topoisomerase II, and a double-stranded specific exonuclease that has been purified to homogeneity. The 44-kDa exonuclease-digested oligo(rA) annealed to poly(dT) in the 5'----3' direction. DNA ligase and the 5'----3' exonuclease were essential for RF I' formation. Covalently closed circular duplex DNA and full length linear single-stranded DNA were detected by alkaline gel electrophoresis as products of the complete system. DNA replication in the absence of either DNA ligase or the 5'----3' exonuclease yielded DNA products that were half length (approximately 1500 nucleotides) and smaller Okazaki-like fragments (approximately 200 nucleotides). Hybridization experiments showed that the longer chains were synthesized from the leading strand template, while the small products were synthesized from the lagging strand template. These results suggest that the RNA primers attached to 5' ends of replicated DNA are completely removed by the 5'----3' exonuclease, with the assistance of RNase H.  相似文献   

18.
Ribonuclease II is a processive 3'- to 5'-exoribonuclease in Escherichia coli with two binding sites: a catalytic site associated with the first few 3'-nucleotides and an anchor site binding nucleotides approximately 15 to 25 from the 3'-end. When RNase II degrades single-stranded helical poly(C), the enzyme-substrate complex dissociates at discrete intervals of 12 nucleotides. RNase II stalled at the last rC of single-stranded 3'-(rC)(n)(dC)(m) oligonucleotides. The more residues released, the faster the stalled complex dissociated and the less it inhibited RNase II activity, i.e. the enzyme-substrate association weakened progressively. Using phosphodiesterase I (PDE I) as a probe, a method was developed to identify cytidine residues in (32)P-oligonucleotides interacting with a protein. PAGE bands corresponding to nucleotides 1-6 from the 3'-end were consistent with interaction at the catalytic site, and following a gap, bands approximately 15 to 25 from the 3'-end, with anchor site association. Both 3' and 5' binding were necessary to maintain the complex. Of most significance, the original anchor site nucleotides remained fixed at the anchor site while the 3'-end was pulled, or threaded, through the catalytic site, i.e. the substrate did not 'slide' through the enzyme. DNA oligonucleotides with double-stranded stem-loops were good competitive inhibitors of RNase II. A 3'-single-stranded arm was essential, while optimal binding required both 5'- and 3'-arms. PDE I probing indicated that the nucleotides at the anchor site were specified by the spatial distance from the catalytic site, and on only one of the duplex strands. When degradation of a structured RNA paused or stopped, the RNase II-product commenced cycles of dissociation-reassociation. Duplex strand binding by RNase II made complex DNA or RNA structures accessible to degradation by other nucleases and further verified the PDE I footprinting method.  相似文献   

19.
Three peptide amides, HPRK(Py)(4)HPRK-NH(2) (PyH-12), HPRK(Py)(3)HPRK-NH(2) (PyH-11) and HPRK(Py)(2)HPRK-NH(2) (PyH-10), incorporating two HPRK motifs and various 4-amino-1-methylpyrrole-2-carboxylic acid residues (Py) were synthesized by solid-phase peptide methodology. The binding of these three peptides to a 5'-32P-labeled 158-mer DNA duplex (Watson fragment) and to a 5'-32P-labeled 135-mer DNA duplex (complementary Crick fragment) was investigated by quantitative DNase I footprinting. On the 158-mer Watson strand, the most distinctive DNase I blockages seen with all three peptides occur around positions 105-112 and 76-79, corresponding to the sequences 5'-GAGAAAAT-3' and 5'-CGGT-3', respectively. However, on the complementary Crick strand, only PyH-12 strongly discriminates the 5'-TTT-3' site around positions 108-110 whereas both PyH-11 and PyH-10 have moderate binding around positions 102-112 comprising the sequence 5'-ATTTTCTCCTT-3'. Possible bidentate and single interactions of the side-chain functions and alpha-amino protons of the peptides with DNA bases are discussed.  相似文献   

20.
The DNA intermediates and final products formed by the Type I restriction endonuclease, EcoB, were further characterized. DNA cleaved on only one strand (hemi-restricted DNA) contains gaps of approximately 70-100 nucleotides, while the fully restricted products contain 3'-single-stranded tails averaging approximately 70-100 nucleotides for each strand cleaved. The gaps and tails are formed with the release of an equal number of nucleotides as small oligonucleotides that are soluble in acid. After purification, neither the hemi-restricted nor the fully restricted DNAs are cleaved again by EcoB. There is no apparent specificity for which strand of a duplex is initially cleaved by EcoB, nor is there specificity with respect to the composition of the 3'-terminal nucleotide formed on the DNA or the 3'- or 5'-terminal nucleotides of the acid-soluble oligonucleotides released during DNA cleavage. The structure formed at the 5' terminus of the DNA product which blocks phosphorylation by T4 polynucleotide kinase remains unknown, but its removal with phage lambda exonuclease allows at least some reutilization of recognition sites by EcoB as well as phosphorylation of the newly formed 5' termini. To explain the complex mechanism of this enzyme, it is suggested that the unidentified 5'-tails prevent wasteful rerestriction from occurring, whereas the 3'-single-stranded tails create DNA which, when nonhomologous to chromosomal DNA, cannot be rescued because such tails are not substrate for DNA polymerases. However, when homologous chromosomal DNA exists, the randomly cleaved large fragments with these tails can easily be assimilated by recA-mediated genetic recombination, thus stimulating DNA exchange between related organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号