首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
W Li  C Zhao  C Xia  W E Antholine  D H Petering 《Biochemistry》2001,40(25):7559-7568
Properties of the interaction of bleomycin (Blm) and metallobleomycins [M = Zn, Cu(II), Fe(III), and HO(2)-Co(III)] with site-specific and nonspecific DNA oligomers, d(GGAAGCTTCC)(2) (I) and d(GGAAATTTCC)(2) (II), respectively, were investigated. With both 10-mers association constants increased in the series Blm A(2), ZnBlm A(2), Cu(II)Blm A(2), Fe(III)Blm A(2), and HO(2)-Co(III)Blm A(2). Generally, the metallobleomycins were bound with a modestly higher affinity to I. One-dimensional (1)H NMR spectra of the imino proton region of I in the presence of this series of compounds revealed that Blm and Zn- and CuBlm bind in fast exchange on the NMR time scale, while the Fe and Co complexes bind in slow exchange. Blm, ZnBlm, and Cu(II)Blm caused little perturbation of the UV circular dichroism spectrum of I or II. In contrast, Fe(III)Blm and HO(2)-Co(III)Blm induced hypochromic effects in the CD spectrum of I and altered the spectrum of II to a smaller extent. On the basis of these results, the DNA binding structures and properties of Blm A(2), ZnBlm A(2), and CuBlm A(2) differ substantially from those of Fe(III)Blm A(2) and HO(2)-Co(III)Blm A(2).  相似文献   

2.
Bleomycin (Blm) is an antitumor agent which binds to specific sequences of DNA and as HO(2)-Fe(III)Blm causes single and double strand cleavage. In the present investigation, binding of O(2)-Co(II)Blm to a native DNA polymer, calf thymus DNA, was examined using conventional Raman spectroscopy. O(2)-Co(II)Blm is a model for O(2)-Fe(II)Blm, the direct precursor of HO(2)-Fe(III)Blm. Although the DNA polymer retained a predominant B-form structure, Raman spectral evidence was obtained for localized structural changes to A, C and Z-DNA forms. The presence of these alternate DNA forms within B-DNA implied the presence of B/A, B/C and B/Z junctions. The observed changes in DNA secondary structure were attributed to perturbation of structural water resulting from binding of O(2)-Co(II)Blm within the minor groove.  相似文献   

3.
The aerobic redox reaction of Fe(III)bleomycin (Blm) and ascorbate was examined in the absence of DNA and in the presence of 7.5 and 25 calf thymus DNA base pairs per-drug molecule, in order to investigate the effect of DNA binding on the properties of FeBlm activation and DNA strand cleavage. Under these successive conditions, the rate of initial reduction of Fe(III)Blm became progressively slower and biphasic. Using 7.5 base pairs per-molecule of FeBlm, 2-3 times as much drug reacted in the faster step as with the larger DNA to drug ratio. In each case, the more rapid process was identified with the reaction of high spin Fe(III)Blm-DNA. With the smaller ratio, dioxygen consumption, formation of HO(2)-Fe(III)Blm-DNA, and production of DNA strand breaks as measured by the formation of base propenal were largely rate limited by the initial reaction of ascorbate with Fe(III)Blm-DNA. After a burst of reaction with the larger ratio of base pairs to Fe(III)Blm, a small fraction of the total Fe(III)Blm, representing high spin Fe(III)Blm, entered a steady state as HO(2)-Fe(III)Blm-DNA. Thereafter, reaction of dioxygen and base propenal formation occurred slowly with similar first-order rate kinetics. In order to explain these results, it is hypothesized that the metal domain-linker of Fe(III)Blm adopts two conformations with respect to DNA. One, at specific binding sites, is relatively unreactive with ascorbate. The other, present at non-specific sites as HPO(4)-Fe(III)Blm, is readily reactive with ascorbate to generate HO(2)-Fe(III)Blm-DNA. At the larger base pair to drug ratio, movement of Fe(III)Blm between specific and non-specific sites to generate HO(2)-Fe(III)Blm is a necessary part of the mechanism of strand scission.  相似文献   

4.
The aerobic oxidation of Co(II)bleomycin bound to calf thymus DNA has been investigated in relation to the mechanism of reaction in solution in the absence of DNA. Kinetics of dioxygenation of the Co(II) complex were followed by spectrophotometric and electron spin resonance spectroscopy as well as dioxygen analysis. The reaction is slower than when carried out in solution; its rate is inversely related to the ratio of DNA base pairs to Co(II)bleomycin. The subsequent oxidation reaction, observed spectrophotometrically and by dioxygen analysis, is second order in cobalt complex. The calculated second order rate constant is also inversely related to the base pair to metal complex ratio. Once this ratio exceeds three, the reaction rate slows significantly with each additional increment of DNA added to the starting reaction mixture. Taking advantage of the high stability of O(2)-Co(II)bleomycin bound to greater than a 3-fold excess of DNA base pairs, it could be demonstrated that the rate constant for oxidation of two O(2)-Co(II)bleomycin molecules is much slower than that for O(2)-Co(II)bleomycin plus Co(II)bleomycin. With the same technique it was observed that the metal centers of O(2)-Co(II)bleomycin and Fe(II)bleomycin also undergo oxidation. The binding to DNA of both solution products of the oxidation of Co(II)bleomycin by O2 was examined by 1H NMR spectroscopy. Peroxy-Co(III)bleomycin, Form I, binds with higher affinity than Co(III)bleomycin, Form II. At lower ionic strength, the size of the DNA binding site for each form is about 2 base pairs/molecule of drug.  相似文献   

5.
The hypothesis was investigated that axial ligands bound to Fe(III)-bleomycin [Fe(III)Blm] are destabilized at specific 5'-guanine-pyrimidine-3' binding sites but are stable at nonselective dinucleotides. DNA oligomers and calf-thymus DNA were used in reactions with L-Fe(III)Blm, where phosphate and cyanide served as examples of large and small ligands (L). Both ligands underwent dissociation when L-Fe(III)Blm was bound to d(GGAAGCTTCC)2 (I) but not d(GGAAATTTCCC)2 (II) and at large ratios of calf-thymus DNA to drug. Fe(III)Blm is high spin in 20 mM phosphate buffer, signifying the presence of a phosphate adduct. In the titration of HPO4-Fe(III)Blm with calf-thymus DNA, a large excess of DNA was needed to reach the low-spin state, consistent with an equilibrium competition between phosphate and DNA for Fe(III)Blm. Equilibrium constants for binding Fe(III)Blm and CN-Fe(III)Blm to calf-thymus DNA (6.8x10(5) M(-1) and 5.9x10(4) M(-1), respectively, in HEPES buffer at 25 degrees C and pH 7.4) showed that the CN- ligand also reduced the affinity of DNA for the drug. The kinetics of dissociation of CN- from CN-Fe(III)Blm-DNA were slow and first order in bound drug. The reversible nature of these dissociation reactions was shown using 1H NMR spectroscopy of Fe(III)Blm-I in the absence and presence of large excesses of CN- or phosphate. The results are discussed in terms of a two-state hypothesis for the binding of L-Fe(III)Blm to specific and nonspecific dinucleotides. It is proposed that steric restrictions at specific sites inhibit binding of these ligands.  相似文献   

6.
The reaction of Co(II)bleomycin with dioxygen has been investigated. Dioxygen binds to the Co(II) complex within the time of mixing according to electron spin resonance and uv-visible spectroscopy and dioxygen analysis. Then, two dioxygenated cobalt centers react, releasing 1 mol of O2 and forming an intermediate characterized by a few highly shifted 1H NMR resonances and loss of the ESR spectrum. This is thought to be a dioxygen-bridged dimer of cobalt bleomycin molecules. Time-dependent absorbance and dioxygen measurements yield the same second order rate constant for this step of the reaction. According to uv-visible and NMR spectral analysis, the intermediate decays into diamagnetic products in a first order rate process. High performance liquid chromatography and 1H NMR studies demonstrate that the product contains two bleomycin species of equal concentration. One component is Co(III)bleomycin, designated Form II. The other is the peroxide adduct of Co(III)bleomycin, Form I, as determined by direct determination of hydrogen peroxide, which is slowly released from the product at low pH. In contrast, hydrogen peroxide is readily detected during the reaction of Co(II)Blm with O2. In isolation, Form I is unstable at pH 7 and is converted within 24 h into a mixture of Form I and Form II.  相似文献   

7.
The reactions of RO(2)* radicals with Fe(H(2)O)(6)(2+) were studied, R[double bond]H; CH(3); CH(2)COOH; CH(2)CN; CH(2)C(CH(3))(2)OH; CH(2)OH; CHCl(2)/CCl(3). All these processes involve the following reactions: Fe(H(2)O)(6)(2+)+RO(2)*<==>(H(2)O)(5)Fe(III)[bond]OOR(2+) K(1) approximately 250 M(-1); (H(2)O)(5)Fe(III)[bond]OOR(2+)+H(3)O(+)/H(2)O-->Fe(H(2)O)(6)(3+)+ROOH+H(2)O/OH(-); (H(2)O)(5)Fe(III)[bond]OOR(2+)+2Fe(H(2)O)(6)(2+)-->3Fe(H(2)O)(6)(3+)+ROH; 2 RO(2)*-->Products; RO(2)*+(H(2)O)(5)Fe(III)[bond]OOR(2+)-->Fe(H(2)O)(6)(2+)+products. The values of k(1) and k(3) [reaction is clearly not an elementary reaction] approach the ligand exchange rate of Fe(H(2)O)(6)(2+), i.e. these reactions follow an inner sphere mechanism and the rate determining step is the ligand exchange step. The rate of reaction is several orders of magnitude faster than that of the Fenton reaction. Surprisingly enough the K(1) values are nearly independent of the redox potential of the radical and are considerably higher than calculated from the relevant redox potentials. These results indicate that the ROO(-) ligands considerably stabilise the Fe(III) complex, this stabilisation is smaller for radicals with electron withdrawing groups which raise the redox potential of the radical but decrease the basicity of the ROO(-) ligands, two effects which seem to nearly cancel each other. Finally, the results clearly indicate that reaction (5) is relatively fast and affects the nature of the final products. The contribution of these reactions to oxidation processes involving 'Fenton-like' processes is discussed.  相似文献   

8.
Heme oxygenase (HO) catalyzes heme degradation by utilizing O(2) and reducing equivalents to produce biliverdin IX alpha, iron, and CO. To avoid product inhibition, the heme[bond]HO complex (heme[bond]HO) is structured to markedly increase its affinity for O(2) while suppressing its affinity for CO. We determined the crystal structures of rat ferrous heme[bond]HO and heme[bond]HO bound to CO, CN(-), and NO at 2.3, 1.8, 2.0, and 1.7 A resolution, respectively. The heme pocket of ferrous heme-HO has the same conformation as that of the previously determined ferric form, but no ligand is visible on the distal side of the ferrous heme. Fe[bond]CO and Fe[bond]CN(-) are tilted, whereas the Fe[bond]NO is bent. The structure of heme[bond]HO bound to NO is identical to that bound to N(3)(-), which is also bent as in the case of O(2). Notably, in the CO- and CN(-)-bound forms, the heme and its ligands shift toward the alpha-meso carbon, and the distal F-helix shifts in the opposite direction. These shifts allow CO or CN(-) to bind in a tilted fashion without a collision between the distal ligand and Gly139 O and cause disruption of one salt bridge between the heme and basic residue. The structural identity of the ferrous and ferric states of heme[bond]HO indicates that these shifts are not produced on reduction of heme iron. Neither such conformational changes nor a heme shift occurs on NO or N(3)(-) binding. Heme[bond]HO therefore recognizes CO and O(2) by their binding geometries. The marked reduction in the ratio of affinities of CO to O(2) for heme[bond]HO achieved by an increase in O(2) affinity [Migita, C. T., Matera, K. M., Ikeda-Saito, M., Olson, J. S., Fujii, H., Yoshimura, T., Zhou, H., and Yoshida, T. (1998) J. Biol. Chem. 273, 945-949] is explained by hydrogen bonding and polar interactions that are favorable for O(2) binding, as well as by characteristic structural changes in the CO-bound form.  相似文献   

9.
The ability of ferritin as an Fe(II) detoxifier and Fe(III) storage protein is limited by its ability to recognize and incorporate Fe(II), which is then oxidized and mineralized at internal protein sites. The Cr(III) amine complex [Cr(N(CH(2)CH(2)NH(2))(3)(H(2)O)(OH)](2+) [abbreviated as Cr(TREN)] is a kinetically inert inhibitor of iron incorporation and mineralization in ferritin. Unlike other inhibitors, Cr(TREN) can only exchange its two aqua/hydroxy ligands. Competition studies between Cr(TREN) and Tb(III) binding have been performed in horse spleen ferritin (HoSF) to probe uptake of Fe(II). From these studies, we propose that Cr(TREN) inhibits Fe(II) uptake by obstructing the routes of metal uptake and by disrupting the early recognition events at the protein surface that precede metal ion uptake. Using an improved luminescence approach to quantify Tb(III) binding to the protein, we demonstrate that Tb(III) cannot interfere with Cr(TREN) binding to ferritin, but that Cr(TREN) dramatically inhibits Tb(III) binding. We show that bound Tb(III) serves as a reliable reporter for Cr(TREN) binding, as the latter efficiently quenches the Tb(III) luminescence via inter-ion energy transfer. Two types of Cr(TREN) binding sites were successfully distinguished from these competition experiments. A common Tb(III)/Cr(TREN) site was identified with stoichiometry of approximately 0.6 equivalents of metal cation per ferritin subunit. We propose that the sites along the three-fold channels and the ferroxidase sites are common binding sites for Tb(III) and Cr(TREN). The remaining Cr(TREN) (2.4 equivalents of metal ions/subunit) does not compete with Tb(III) but rather blocks Tb(III) access into the cavity and decreases the protein's affinity for Tb(III).  相似文献   

10.
The 1 : 1 reactions of three neutral Co(III) oxidants, Co(acac)3, Co(NH3)3(NO2)3 and Co(acac)2(NH3)(NO2), with reduced parsley (Petroselinum crispum) [2Fe--2S] ferredoxin (which carries a substantial negative charge), have been studied at 25 degrees C, pH 8.0 (Tris/HCl), I0.10 (NaCl). Whereas it has previously been demonstrated that with Co(NH3)6+ as oxidant the reaction if completely blocked by redox-inactive Cr(NH3)63+, the neutral oxidants are only partially blocked by this same complex. The effects of three Cr(III) complexes, Cr(NH3)63+%, Cr(en)33+ and (en)2Cr . mu(OH,O2CCH3) . CR(en)24+ have been investigated. Kinetic data for the response of 3+, neutral, as well as 1--oxidants to the presence of 3+ (and 4+) Cr(III) complexes can now be rationalized in terms of a single functional site on the protein for electron transfer. Electrostatics have a significant influence on association at this site.  相似文献   

11.
Studies on diiron dithiolato complexes have proven fruitful for modeling the active site of the [FeFe]-hydrogenases. Here we present a departure from the classical Fe(2)S(2) motif by examining the viability of Fe(2)N(2) butterfly compounds as functional models for the diiron active site of [FeFe]-hydrogenases. Derivatization of Fe(2)(BC)(CO)(6) (1, BC=benzo-[c]-cinnoline) with PMe(3) affords Fe(2)(BC)(CO)(4)(PMe(3))(2), which subsequently undergoes protonation at the Fe-Fe bond. The hydride [(mu-H)Fe(2)(BC)(CO)(4)(PMe(3))(2)]PF(6) was characterized crystallographically as the C(2v) isomer. It represents a rare example of a hydrido diiron complex that exists as observable isomers, depending on the location of the phosphine ligands--diapical and apical-basal. This hydride catalyzes the electrochemical reduction of protons.  相似文献   

12.
Two novel cobalt(III) mixed-polypyridyl complexes [Co(phen)(2)(dpta)](3+) and [Co(phen)(2)(amtp)](3+) (phen=1,10-phenanthroline, dpta=dipyrido-[3,2-a;2',3'-c]- thien-[3,4-c]azine, amtp=3-amino-1,2,4-triazino[5,6-f]1,10-phenanthroline) have been synthesized and characterized. The interaction of these complexes with calf thymus DNA was investigated by spectroscopic, cyclic voltammetry, and viscosity measurements. Results suggest that the two complexes bind to DNA via an intercalative mode. Moreover, these Co(III) complexes have been found to promote the photocleavage of plasmid DNA pBR322 under irradiation at 365nm. The mechanism studies reveal that hydroxyl radical (OH()) is likely to be the reactive species responsible for the cleavage of plasmid DNA by [Co(phen)(2)(dpta)](3+) and superoxide anion radical (O(2)(-)) acts as the key role in the cleavage reaction of plasmid DNA by [Co(phen)(2)(amtp)](3+).  相似文献   

13.
Endonuclease IV (nfo) mutant of Escherichia coli.   总被引:59,自引:26,他引:33       下载免费PDF全文
A cloned gene, designated nfo, caused overproduction of an EDTA-resistant endonuclease specific for apurinic-apyrimidinic sites in DNA. The sedimentation coefficient of the enzyme was similar to that of endonuclease IV. An insertion mutation was constructed in vitro and transferred from a plasmid to the Escherichia coli chromosome. nfo mutants had an increased sensitivity to the alkylating agents methyl methanesulfonate and mitomycin C and to the oxidants tert-butyl hydroperoxide and bleomycin. The nfo mutation enhanced the killing of xth (exonuclease III) mutants by methyl methanesulfonate, H2O2, tert-butyl hydroperoxide, and gamma rays, and it enhanced their mutability by methyl methanesulfonate. It also increased the temperature sensitivity of an xth dut (dUTPase) mutant that is defective in the repair of uracil-containing DNA. These results are consistent with earlier findings that endonuclease IV and exonuclease III both cleave DNA 5' to an apurinic-apyrimidinic site and that exonuclease III is more active. However, nfo mutants were more sensitive to tert-butyl hydroperoxide and to bleomycin than were xth mutants, suggesting that endonuclease IV might recognize some lesions that exonuclease III does not. The mutants displayed no marked increase in sensitivity to 254-nm UV radiation, and the addition of an nth (endonuclease III) mutation to nfo or nfo xth mutants did not significantly increase their sensitivity to any of the agents tested.  相似文献   

14.
During the ESR spectroscopic titration of nitrosyl-iron bleomycin, ON---Fe(II)Blm, with DNA, its metal domain undergoes a change in environment as the DNA base pair to drug ratio increases to 50 to 1. The 15N---O stretching frequency of ON---Fe(II)Blm occurs at 1589 cm−1, similar to that for nitrosyl hemoglobin and myoglobin. Upon addition of DNA (3 base pairs per drug molecule), this vibration is substantially broadened. Injection of O2 into a solution of ON---Fe(II)BlmDNA converts the ESR signal of the nitrosyl species to low spin Fe(III) BlmDNA. NO is largely oxidized to NO2. The combination of these products suggests that the initial reaction of ON---Fe(II)Blm with O2 generates Fe(III)Blm and peroxynitrite, O2NO. If peroxynitrite is formed in the reaction, it does not cause detectable DNA damage. The structural integrity of a supercoiled DNA plasmid, pBR322, is not compromised and no base propenals are produced during this reaction.  相似文献   

15.
Binding structures of metal complexes of deglyco-peplomycin (dPEP) on DNA were investigated by comparing dPEP complexes with those of bleomycin (BLM) using DNA fiber EPR spectroscopy. A low spin species of Fe(III)dPEP observed in the DNA pellet changed irreversibly to several high spin species after the fabrication of the DNA fibers. The g values of the high spin species were different from those of Fe(III)BLM. The high spin species could not be nitrosylated reductively to ON-Fe(II)dPEP, suggesting that some nitrogen atoms coordinated to the Fe(III) were displaced on the DNA fibers. On the other hand, O(2)-Co(II)dPEP remained intact on the fibers similarly to O(2)-Co(II)BLM but with an increased randomness in the orientation on the DNA. In contrast to Cu(II)BLM, a considerable amount of Cu(II)dPEP bound almost randomly on B-form DNA fibers. These results indicated that the sugar moiety in peplomycin or bleomycin is playing an important role in enhancing the stability of the metal-binding domain and in the stereospecificity of the binding on DNA.  相似文献   

16.
The copper(II) complex of the clinically used antitumor agent bleomycin (Blm) has cytotoxic as well as antitumor properties. To understand the relationship of the bleomycin ligand, copper bleomycin, and other possible metal complexes of this agent, kinetic studies of the formation of Cu(II)Blm, ligand substitution reactions of CuBlm with ethylenediaminetetraaletic acid, and the redox reaction of CuBlm with thiols have been completed and interpreted along with previous studies of the thermodynamic stability of Cu2+ with bleomycin. Cu(II)Bm is found to be kinetically and thermodynamically stable in ligand substitution processes and is only slowly reduced and dissociated by sulfhydryl reagents. The rate constant of reduction of the complex by 2-mercaptoethanol (2-ME) at pH 7.4 and 25 degrees C is 9.5 X 10(-3) M-1 sec-1, explaining the inhibition of Fe2+-dependent strand scission of DNA by Cu2+ in the presence of 2-ME. CuBlm forms in preference to Fe(II)Blm and cannot be reduced and dissociated rapidly enough by thiols to liberate Blm and form the reactive iron complex. In agreement with the observed chemical stability of CuBlm, it is also shown that the complex is stable in human plasma and in the presence of Ehrlich cells suspended in ascites fluid. Interestingly, little CuBlm enters these cells to carry out cytotoxic reactions. Finally, it is shown that both Cu2+ and Zn2+, at equivalent concentrations to Fe2+, effectively inhibit the strand scission of DNA by Fe(II)Blm plus oxygen. However, at substoichiometric amounts of Cu2+, the ferroxidase activity of Blm enables the drug to remain effective in the strand-scission reaction, despite the lowered Cu-free Blm/Fe2+ ratio. These results are discussed in light of the proposed mechanism of action of bleomycin.  相似文献   

17.
D T Cronce  W D Horrocks 《Biochemistry》1992,31(34):7963-7969
Excitation spectroscopy of the 7F0----5D0 transition of Eu3+ and diffusion-enhanced energy transfer are used to study metal-binding characteristics of the calcium-binding protein parvalbumin from codfish. Energy is transferred from Eu3+ ions occupying the CD- and EF-binding sites to the freely-diffusing Co(III) coordination complex energy acceptors: [Co(NH3)6]3+, [Co(NH3)5H2O]3+, [CoF(NH3)5]2+, [CoCl(NH3)5]2+, [Co(NO2)3(NH3)3], and [Co(ox)3]3-. In the absence of these inorganic energy acceptors, the excited-state lifetimes of Eu3+ bound to the CD and EF sites are indistinguishable, even in D2O; however, in the presence of the positively charged energy acceptor complexes, the Eu3+ probes in the cod parvalbumin have different excited-state lifetimes due to a greater energy-transfer site from Eu3+ in the CD site than from this ion in the EF site. The observation of distinct lifetimes for Eu3+ in the two sites allows the study of the relative binding site affinities and selectivity, using other members of the lanthanide ion series. Our results indicate that during the course of a titration of the metal-free protein, Eu3+ fills the two sites simultaneously. Eu3+ is competitively displaced by other Ln3+ ions, with the CD site showing a preference for the larger Ln3+ ions while the EF site shows little, if any, competitive selectivity across the Ln3+ ion series.  相似文献   

18.
The octahedral complex tetraammine(chloroaquo)cobalt(III) dichloride is shown to be the HCl hydrolysis product of both P1,2-bidentate tetraammine(pyrophosphato)cobalt(III) [Co(NH3)4HP2O7 or CoPP] and bidentate tetraammine(phosphato)cobalt(III) [Co(NH3)4PO4 or CoP]. The complex crystallizes in the orthorhombic space group Pna21 with cell dimensions a = 13.033(2)A, b = 6.710(1)A, and c = 10.318(2)A; the crystal structure was refined to a final disagreement index of 0.033. The average of the four Co-N distances is 1.944 +/- 6A. The Co-Cl distance is 2.257(2)A and the Co-O(W) distance is 1.971(4)A. Both protons of the coordinated water molecule are engaged in strong hydrogen bonds to the two nonbonded chloride counterions with O(W)-Cl distances of 3.087(6)A and 3.123(6)A. Each nonbonded chloride is engaged in seven hydrogen bonding interactions resulting from the high ratio of hydrogen bond donors to acceptors in the CoP structure. Cobalt bisphosphate (CoP2) is the final enzyme hydrolysis product when CoPP is used as substrate in the yeast inorganic pyrophosphatase reaction. The bridge oxygen atom is the site of initial CoPP cleavage both for HCl catalyzed hydrolysis as well as for enzyme catalyzed hydrolysis.  相似文献   

19.
Identification and characterization of a metal ion binding site in an RNA pseudoknot was accomplished using cobalt (III) hexammine, Co(NH3)63+, as a probe for magnesium (II) hexahydrate, Mg(H2O)62+, in nuclear magnetic resonance (NMR) structural studies. The pseudoknot causes efficient -1 ribosomal frameshifting in mouse mammary tumor virus. Divalent metal ions, such as Mg2+, are critical for RNA structure and function; Mg2+preferentially stabilizes the pseudoknot relative to its constituent hairpins. The use of Co(NH3)63+as a substitute for Mg2+was investigated by ultraviolet absorbance melting curves, NMR titrations of the imino protons, and analysis of NMR spectra in the presence of Mg2+or Co (NH3)63+. The structure of the pseudoknot-Co(NH3)63+complex reveals an ion-binding pocket formed by a short, two-nucleotide loop and the major groove of a stem. Co(NH3)63+stabilizes the sharp loop-to-stem turn and reduces the electrostatic repulsion of the phosphates in three proximal strands. Hydrogen bonds are identified between the Co(NH3)63+protons and non-bridging phosphate oxygen atoms, 2' hydroxyl groups, and nitrogen and oxygen acceptors on the bases. The binding site is significantly different from that previously characterized in the major groove surface of tandem G.U base-pairs, but is similar to those observed in crystal structures of a fragment of the 5 S rRNA and the P5c helix of the Tetrahymena thermophila group I intron. Changes in chemical shifts occurred at the same pseudoknot protons on addition of Mg2+as on addition of Co(NH3)63+, indicating that both ions bind at the same site. Ion binding dissociation constants of approximately 0.6 mM and 5 mM (in 200 mM Na+and a temperature of 15 degrees C) were obtained for Co(NH3)63+and Mg2+, respectively, from the change in chemical shift as a function of metal ion concentration. An extensive array of non-sequence-specific hydrogen bond acceptors coupled with conserved structural elements within the binding pocket suggest a general mode of divalent metal ion stabilization of this type of frameshifter pseudoknot. These results provide new thermodynamic and structural insights into the role divalent metal ions play in stabilizing RNA tertiary structural motifs such as pseudoknots.  相似文献   

20.
Four new complexes of uracilato and 5-halouracilato with the divalent metal ions Cu(II), Zn(II) and Ni(II) were obtained and structurally characterized. [Cu(uracilato- N(1))(2)(NH(3))(2)].2(H(2)O) (1) and [Cu(5-chlorouracilato-N(1))(2)(NH(3))(2)](H(2)O)(2) (2) complexes present distorted square planar co-ordination geometry around the metal ion. Although an additional axial water molecule is present [Cu(II)-OH(2)=2.89 A (for 1) and 2.52 A (for 2)] in both cases, only in the complex 2 would be considered in the limit of a bond distance. The Zn(II) in [Zn(5-chlorouracilato-N(1))(NH(3))(3)].(5-chlorouracilato-N(1)).(H(2)O) presents a tetrahedral co-ordination with three ammonia molecules and the N(1) of the corresponding uracilato moiety. A non-coordinated uracilato molecule is present as a counterion and a recognition between co-ordinated and free ligands, by means a tandem of H-bonds, should be mentioned. Finally, the complex [Ni(5-chlorouracilato-N(1))(2)(en)(2)] (H(2)O)(2) (where en is ethylenediamine) presents a typical octahedral trans co-ordination with additional hydrogen bonds between 5-chlorouracilato and the NH(2) groups of ethylenediamine units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号