首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.

Background

The mammalian Vps10p sorting receptor family is a group of 5 type I membrane homologs (Sortilin, SorLA, and SorCS1-3). These receptors bind various cargo proteins via their luminal Vps10p domains and have been shown to mediate a variety of intracellular sorting and trafficking functions. These proteins are highly expressed in the brain. SorLA has been shown to be down regulated in Alzheimer's disease brains, interact with ApoE, and modulate Aβ production. Sortilin has been shown to be part of proNGF mediated death signaling that results from a complex of Sortilin, p75NTR and proNGF. We have investigated and provide evidence for γ-secretase cleavage of this family of proteins.

Results

We provide evidence that these receptors are substrates for presenilin dependent γ-secretase cleavage. γ-Secretase cleavage of these sorting receptors is inhibited by γ-secretase inhibitors and does not occur in PS1/PS2 knockout cells. Like most γ-secretase substrates, we find that ectodomain shedding precedes γ-secretase cleavage. The ectodomain cleavage is inhibited by a metalloprotease inhibitor and activated by PMA suggesting that it is mediated by an α-secretase like cleavage.

Conclusion

These data indicate that the α- and γ-secretase cleavages of the mammalian Vps10p sorting receptors occur in a fashion analogous to other known γ-secretase substrates, and could possibly regulate the biological functions of these proteins.  相似文献   

2.
Li T  Li YM  Ahn K  Price DL  Sisodia SS  Wong PC 《PloS one》2011,6(11):e28179
Increase in the generation and deposition of amyloid-β (Aβ) plays a central role in the development of Alzheimer's Disease (AD). Elevation of the activity of γ-secretase, a key enzyme required for the generation for Aβ, can thus be a potential risk factor in AD. However, it is not known whether γ-secretase can be upregulated in vivo. While in vitro studies showed that expression of all four components of γ-secretase (Nicastrin, Presenilin, Pen-2 and Aph-1) are required for upregulation of γ-secretase, it remains to be established as to whether this is true in vivo. To investigate whether overexpressing a single component of the γ-secretase complex is sufficient to elevate its level and activity in the brain, we analyzed transgenic mice expressing either wild type or familial AD (fAD) associated mutant PS1. In contrast to cell culture studies, overexpression of either wild type or mutant PS1 is sufficient to increase levels of Nicastrin and Pen-2, and elevate the level of active γ-secretase complex, enzymatic activity of γ-secretase and the deposition of Aβ in brains of mice. Importantly, γ-secretase comprised of mutant PS1 is less active than that of wild type PS1-containing γ-secretase; however, γ-secretase comprised of mutant PS1 cleaves at the Aβ42 site of APP-CTFs more efficiently than at the Aβ40 site, resulting in greater accumulation of Aβ deposits in the brain. Our data suggest that whereas fAD-linked PS1 mutants cause early onset disease, upregulation of PS1/γ-secretase activity may be a risk factor for late onset sporadic AD.  相似文献   

3.
Mutations in presenilins are the major cause of familial Alzheimer's disease (FAD), leading to impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Presenilins are the catalytic subunits of γ-secretase, which itself is critically involved in the processing of amyloid precursor protein to release neurotoxic amyloid β (Aβ). Besides Aβ generation, there is growing evidence that presenilins play an essential role in the formation and maintenance of synapses. To further elucidate the effect of presenilin1 (PS1) on synapses, we performed longitudinal in vivo two-photon imaging of dendritic spines in the somatosensory cortex of transgenic mice over-expressing either human wild-type PS1 or the FAD-mutated variant A246E (FAD-PS1). Interestingly, the consequences of transgene expression were different in two subtypes of cortical dendrites. On apical layer 5 dendrites, we found an enhanced spine density in both mice over-expressing human wild-type presenilin1 and FAD-PS1, whereas on basal layer 3 dendrites only over-expression of FAD-PS1 increased the spine density. Time-lapse imaging revealed no differences in kinetically distinct classes of dendritic spines nor was the shape of spines affected. Although γ-secretase-dependent processing of synapse-relevant proteins seemed to be unaltered, higher expression levels of ryanodine receptors suggest a modified Ca(2+) homeostasis in PS1 over-expressing mice. However, the conditional depletion of PS1 in single cortical neurons had no observable impact on dendritic spines. In consequence, our results favor the view that PS1 influences dendritic spine plasticity in a gain-of-function but γ-secretase-independent manner.  相似文献   

4.
5.
Presenilin-1 (PS1) is the catalytic subunit of γ-secretase, and mutations in this protein cause familial Alzheimer Disease (FAD). However, little is known about how these mutations affect the active site of γ-secretase. Here, we show that PS1 mutations alter the S2 subsite within the active site of γ-secretase using a multiple photoaffinity probe approach called "photophore walking." Moreover, we developed a unique in vitro assay with a biotinylated recombinant Notch1 substrate and demonstrated that PS1 FAD mutations directly and significantly reduced γ-secretase activity for Notch1 cleavage. Substitution of the Notch Cys-1752 residue, which interacts with the S2 subsite, with Val, Met, or Ile has little effect on wild-type PS1 but leads to more efficient substrates for mutant PS1s. This study indicates that alteration of this S2 subsite plays an important role in determining the activity and specificity of γ-secretase for APP and Notch1 processing, which provides structural basis and insights on how certain PS1 FAD mutations lead to AD pathogenesis.  相似文献   

6.
The endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG) have opposing effects on cholangiocarcinoma growth. Implicated in cancer, Notch signaling requires the γ-secretase complex for activation. The aims of this study were to determine if the opposing effects of endocannabinoids depend on the differential activation of the Notch receptors and to demonstrate that the differential activation of these receptors are due to presenilin 1 containing- and presenilin 2 containing-γ-secretase complexes. Mz-ChA-1 cells were treated with AEA or 2-AG. Notch receptor expression, activation, and nuclear translocation were determined. Specific roles for Notch 1 and 2 on cannabinoid-induced effects were determined by transient transfection of Notch 1 or 2 shRNA vectors before stimulation with AEA or 2-AG. Expression of presenilin 1 and 2 was determined after AEA or 2-AG treatment, and the involvement of presenilin 1 and 2 in the cannabinoid-induced effects was demonstrated in cell lines with low presenilin 1 or 2 expression. Antiproliferative effects of AEA required increased Notch 1 mRNA, activation, and nuclear translocation, whereas the growth-promoting effects induced by 2-AG required increased Notch 2 mRNA expression, activation, and nuclear translocation. AEA increased presenilin 1 expression and recruitment into the γ-secretase complex, whereas 2-AG increased expression and recruitment of presenilin 2. The development of novel therapeutic strategies aimed at modulating the endocannabinoid system or mimicking the mode of action of AEA on Notch signaling pathways would prove beneficial for cholangiocarcinoma management.  相似文献   

7.
Neurexins are a large family of neuronal plasma membrane proteins, which function as trans-synaptic receptors during synaptic differentiation. The binding of presynaptic neurexins to postsynaptic partners, such as neuroligins, has been proposed to participate in a signaling pathway that regulates synapse formation/stabilization. The identification of mutations in neurexin genes associated with autism and mental retardation suggests that dysfunction of neurexins may underlie synaptic defects associated with brain disorders. However, the mechanisms that regulate neurexin function at synapses are still unclear. Here, we show that neurexins are proteolytically processed by presenilins (PS), the catalytic components of the γ-secretase complex that mediates the intramembraneous cleavage of several type I membrane proteins. Inhibition of PS/γ-secretase by using pharmacological and genetic approaches induces a drastic accumulation of neurexin C-terminal fragments (CTFs) in cultured rat hippocampal neurons and mouse brain. Neurexin-CTFs accumulate mainly at the presynaptic terminals of PS conditional double knockout (PS cDKO) mice lacking both PS genes in glutamatergic neurons of the forebrain. The fact that loss of PS function enhances neurexin accumulation at glutamatergic terminals mediated by neuroligin-1 suggests that PS regulate the processing of neurexins at glutamatergic synapses. Interestingly, presenilin 1 (PS1) is recruited to glutamatergic terminals mediated by neuroligin-1, thus concentrating PS1 at terminals containing β-neurexins. Furthermore, familial Alzheimer's disease (FAD)-linked PS1 mutations differentially affect β-neurexin-1 processing. Expression of PS1 M146L and PS1 H163R mutants in PS-/- cells rescues the processing of β-neurexin-1, whereas PS1 C410Y and PS1 ΔE9 fail to rescue the processing defect. These results suggest that PS regulate the synaptic function and processing of neurexins at glutamatergic synapses, and that impaired neurexin processing by PS may play a role in FAD.  相似文献   

8.
9.
Mutations in the genes encoding presenilins (PS1 and PS2) account for the majority of cases of early-onset Alzheimer's disease. PS1 and PS2 form the catalytic center of γ-secretase, an enzyme responsible for intramembraneous proteolysis of several type I transmembrane proteins. Many γ-secretase substrates are coupled to intracellular signaling events such as cAMP-response element binding protein and Rac1/p21-activated kinase pathways, which are associated with synaptic function. Here, we have examined the activation of these pathways in neurons lacking PS1 expression or γ-secretase activity. We found evidence for heightened steady-state activation of cAMP-response element binding protein, Rac1, and p21-activated kinase signaling in PS-deficient neurons. Our study highlights the importance of PS-dependent proteolytic cleavage of γ-secretase substrates in regulating neuronal signal transduction.  相似文献   

10.
Insulin, insulin like growth factor (IGF)-1, and AMP-activated protein kinase (AMPK) signaling regulate independently angiogenesis through vascular endothelial growth factor (VEGF) expression. In the present study, we investigated a potential cross-talk between these signaling pathways on hypoxia-inducible factor (HIF)-1alpha and VEGF expression. Retinal epithelial ARPE-19 cells were treated with AICAR, an AMPK activator, alone or in combination with insulin and IGF-1. AICAR stimulated VEGF mRNA expression, but did not modify the insulin- and IGF-1-induced VEGF expression. We have investigated the effect of AICAR on insulin and IGF-1 signaling pathways. We observed that AICAR increased insulin- and IGF-1-induced phosphorylation of PKB, whereas phosphorylation of S6K-1 was decreased. Moreover, AICAR and metformin inhibited the ability of insulin and IGF-1 to induce HIF-1alpha expression. These results show that AICAR and insulin/IGF-1 regulate VEGF expression through different mechanisms.  相似文献   

11.
Both VEGF and insulin are implicated in the pathogenesis of diabetic retinopathy. While it has been established for many years that the number of cell surface receptors impacts upon VEGF and insulin action, little is known about the precise machinery and proteins driving VEGF-R2 and IR degradation. Here, we investigate the role of Hepatocyte growth factor-Regulated tyrosine kinase Substrate (Hrs), a regulator of RTK trafficking, in VEGF and insulin signaling. We report that ectopic expression of Hrs increases VEGF-R2 and IR number and tyrosine phosphorylation, leading to amplification of their downstream signaling. The UIM (Ubiquitin Interacting Motif) domain of Hrs is required for Hrs-induced increases in VEGF-R2, but not in IR. Furthermore, Hrs is tyrosine-phosphorylated in response to VEGF and insulin. We show that the UIM domain is required for Hrs phosphorylation in response to VEGF, but not to insulin. Importantly, Hrs co-localizes with both VEGF-R2 and IR and co-immunoprecipitates with both in a manner independent of the Hrs-UIM domain. Finally, we demonstrate that Hrs inhibits Nedd4-mediated VEGF-R2 degradation and acts additively with Grb10. We conclude that Hrs is a positive regulator of VEGF-R2 and IR signaling and that ectopic expression of Hrs protects both VEGF-R2 and IR from degradation.  相似文献   

12.
Dendritic cell (DC)-derived cytokines play a key role in specifying adaptive immune responses tailored to the type of pathogen encountered and the local tissue environment. However, little is known about how DCs perceive the local environment. We investigated whether endogenous Notch signaling could affect DC responses to pathogenic stimuli. We demonstrate that concurrent Notch and TLR stimulation results in a unique cytokine profile in mouse bone-marrow derived DCs characterized by enhanced IL-10 and IL-2, and reduced IL-12 expression compared with TLR ligation alone. Unexpectedly, modulation of cytokine production occurred through a noncanonical Notch signaling pathway, independent of γ-secretase activity. Modulation required de novo protein synthesis, and PI3K, JNK, and ERK activity were necessary for enhanced IL-2 expression, whereas modulation of IL-10 required only PI3K activity. Further, we show that this γ-secretase-independent Notch pathway can induce PI3K activity. In contrast, expression of the canonical Notch target gene Hes1 was suppressed in DCs stimulated with Notch and TLR ligands simultaneously. Thus, our data suggest that Notch acts as an endogenous signal that modulates cytokine expression of DCs through a noncanonical pathway and therefore has the potential to tailor the subsequent adaptive immune response in a tissue- and/or stage-dependent manner.  相似文献   

13.
γ-secretase, which assembles as a tetrameric complex, is an aspartyl protease that proteolytically cleaves substrate proteins within their membrane-spanning domain; a process also known as regulated intramembrane proteolysis (RIP). RIP regulates signaling pathways by abrogating or releasing signaling molecules. Since the discovery, already > 15 years ago, of its catalytic component, presenilin, and even much earlier with the identification of amyloid precursor protein as its first substrate, γ-secretase has been commonly associated with Alzheimer's disease. However, starting with Notch and thereafter a continuously increasing number of novel substrates, γ-secretase is becoming linked to an equally broader range of biological processes. This review presents an updated overview of the current knowledge on the diverse molecular mechanisms and signaling pathways controlled by γ-secretase, with a focus on organ development, homeostasis and dysfunction. This article is part of a Special Issue entitled: Intramembrane Proteases.  相似文献   

14.
Assemblies of β-amyloid (Aβ) peptides are pathological mediators of Alzheimer's Disease (AD) and are produced by the sequential cleavages of amyloid precursor protein (APP) by β-secretase (BACE1) and γ-secretase. The generation of Aβ is coupled to neuronal activity, but the molecular basis is unknown. Here, we report that the immediate early gene Arc is required for activity-dependent generation of Aβ. Arc is a postsynaptic protein that recruits endophilin2/3 and dynamin to early/recycling endosomes that traffic AMPA receptors to reduce synaptic strength in both hebbian and non-hebbian forms of plasticity. The Arc-endosome also traffics APP and BACE1, and Arc physically associates with presenilin1 (PS1) to regulate γ-secretase trafficking and confer activity dependence. Genetic deletion of Arc reduces Aβ load in a transgenic mouse model of AD. In concert with the finding that patients with AD can express anomalously high levels of Arc, we hypothesize that Arc participates in the pathogenesis of AD.  相似文献   

15.
Synaptic degeneration is one of the earliest hallmarks of Alzheimer disease (AD) and results in loss of cognitive function. One of the causative agents for the synaptic degeneration is the amyloid β-peptide (Aβ), which is formed from its precursor protein by two sequential cleavages mediated by β- and γ-secretase. We have earlier shown that γ-secretase activity is enriched in synaptic compartments, suggesting that the synaptotoxic Aβ is produced locally. Proteins that interact with γ-secretase at the synapse and regulate the production of Aβ can therefore be potential therapeutic targets. We used a recently developed affinity purification approach to identify γ-secretase associated proteins (GSAPs) in synaptic membranes and synaptic vesicles prepared from rat brain. Liquid chromatography-tandem mass spectrometry analysis of the affinity purified samples revealed the known γ-secretase components presenilin-1, nicastrin and Aph-1b along with a number of novel potential GSAPs. To investigate the effect of these GSAPs on APP processing, we performed siRNA experiments to knock down the expression of the GSAPs and measured the Aβ levels. Silencing of NADH dehydrogenase [ubiquinone] iron-sulfur protein 7 (NDUFS7) resulted in a decrease in Aβ levels whereas silencing of tubulin polymerization promoting protein (TPPP) resulted in an increase in Aβ levels. Treatment with γ-secretase inhibitors often results in Notch-related side effects and therefore we also studied the effect of the siRNAs on Notch processing. Interestingly, silencing of TPPP or NDUFS7 did not affect cleavage of Notch. We also studied the expression of TPPP and NDUFS7 in control and AD brain and found NDUFS7 to be highly expressed in vulnerable neurons such as pyramidal neurons in the hippocampus, whereas TPPP was found to accumulate in intraneuronal granules and fibrous structures in hippocampus from AD cases. In summary, we here report on two proteins, TPPP and NDUFS7, which interact with γ-secretase and alter the Aβ levels without affecting Notch cleavage.  相似文献   

16.
γ-Secretase has been a therapeutical target for its key role in cleaving APP to generate β-amyloid (Aβ), the primary constituents of senile plaques and a hallmark of Alzheimer’s disease (AD) pathology. Recently, γ-secretase-associating proteins showed promising role in specifically modulating APP processing while sparing Notch signaling; however, the underlying mechanism is still unclear. A co-immunoprecipitation (Co-IP) coupled with mass spectrometry proteomic assay for Presenilin1 (PS1, the catalytic subunit of γ-secretase) was firstly conducted to find more γ-secretase-associating proteins. Gene ontology analysis of these results identified Rab21 as a potential PS1 interacting protein, and the interaction between them was validated by reciprocal Co-IP and immunofluorescence assay. Then, molecular and biochemical methods were used to investigate the effect of Rab21 on APP processing. Results showed that overexpression of Rab21 enhanced Aβ generation, while silencing of Rab21 reduced the accumulation of Aβ, which resulted due to change in γ-secretase activity rather than α- or β-secretase. Finally, we demonstrated that Rab21 had no effect on γ-secretase complex synthesis or metabolism but enhanced PS1 endocytosis and translocation to late endosome/lysosome. In conclusion, we identified a novel γ-secretase-associating protein Rab21 and illustrate that Rab21 promotes γ-secretase internalization and translocation to late endosome/lysosome. Moreover, silencing of Rab21 decreases the γ-secretase activity in APP processing thus production of Aβ. All these results open new gateways towards the understanding of γ-secretase-associating proteins in APP processing and make inhibition of Rab21 a promising strategy for AD therapy.  相似文献   

17.
The Type III TGF-β receptor, betaglycan, is a widely expressed proteoglycan co-receptor for TGF-β superfamily ligands. The full-length protein undergoes ectodomain cleavage with release of a soluble ectodomain fragment. The fate of the resulting transmembrane-cytoplasmic fragment, however, has never been explored. We demonstrate here that the transmembrane-cytoplasmic fragment is stable in transfected cells and in cell lines expressing endogenous betaglycan. Production of this fragment is inhibited by the ectodomain shedding inhibitor TAPI-2. Treatment of cells with inhibitors of the intramembrane protease γ-secretase stabilizes this fragment, suggesting that it is a substrate of γ-secretase. Expression of the transmembrane-cytoplasmic fragment as well as γ-secretase inhibitor stabilization are independent of TGF-β1 or -β2 and are unaffected by mutation of the cytoplasmic domain serines that undergo phosphorylation. γ-Secretase inhibition or the expression of a transmembrane-cytoplasmic fragment in HepG2 cells blunted TGF-β2 signaling. Our findings thus suggest that the transmembrane-cytoplasmic fragment remaining after betaglycan ectodomain cleavage is stable and a substrate of γ-secretase, which may have significant implications for the TGF-β signaling response.  相似文献   

18.
Accumulation of the β-amyloid (Aβ) peptides is one of the major pathologic hallmarks in the brains of Alzheimer's disease (AD) patients. Aβ is generated by sequential proteolytic cleavage of the amyloid precursor protein (APP) catalyzed by β- and γ-secretases. Inhibition of Aβ production by γ-secretase inhibitors (GSIs) is thus being pursued as a target for treatment of AD. In addition to processing APP, γ-secretase also catalyzes proteolytic cleavage of other transmembrane substrates, with the best characterized one being the cell surface receptor Notch. GSIs reduce Aβ production in animals and humans but also cause significant side effects because of the inhibition of Notch processing. The development of GSIs that reduce Aβ production and have less Notch-mediated side effect liability is therefore an important goal. γ-Secretase is a large membrane protein complex with four components, two of which have multiple isoforms: presenilin (PS1 or PS2), aph-1 (aph-1a or aph-1b), nicastrin, and pen-2. Here we describe the reconstitution of four γ-secretase complexes in Sf9 cells containing PS1--aph-1a, PS1--aph-1b, PS2--aph-1a, and PS2--aph-1b complexes. While PS1--aph-1a, PS1--aph-1b, and PS2--aph-1a complexes displayed robust γ-secretase activity, the reconstituted PS2--aph-1b complex was devoid of detectable γ-secretase activity. γ-Secretase complexes containing PS1 produced a higher proportion of the toxic species Aβ42 than γ-secretase complexes containing PS2. Using the reconstitution system, we identified MRK-560 and SCH 1500022 as highly selective inhibitors of PS1 γ-secretase activity. These findings may provide important insights into developing a new generation of γ-secretase inhibitors with improved side effect profiles.  相似文献   

19.
The proteolytic cleavage of a precursor protein into alpha- and beta-subunits by furin is required to form functional insulin receptor (IR). In this study, we examined if IR undergoes the additional presenilin (PS)/gamma-secretase-dependent processing. In cells treated with gamma-secretase inhibitors or expressing the dominant-negative PS1 variant led to the accumulation of an endogenous IR C-terminal fragment. In the presence of proteasome inhibitors, we detected a PS/gamma-secretase cleavage product of the IR, termed the IR intracellular domain (ICD). Cellular fractionation and confocal microscopy analyses showed that the IR-ICD is predominantly detected in the nucleus. These data indicate that IR is a tyrosine kinase receptor, which undergoes PS/gamma-secretase-dependent processing. We also show that the autophosphorylation levels of the IR beta-subunit upon insulin stimulation were decreased by the inactivation of PS/gamma-secretase, raising the possibility that the PS/gamma-secretase proteolysis of IR may play a modulatory role in insulin signaling.  相似文献   

20.
AD (Alzheimer's disease) is a neurodegenerative disease characterized by a gradual loss of neurons and the accumulation of neurotoxic Aβ (amyloid β-peptide) and hyperphosphorylated tau. The discovery of mutations in three genes, PSEN1 (presenilin 1), PSEN2 (presenilin 2) and APP (amyloid precursor protein), in patients with FAD (familial AD) has made an important contribution towards an understanding of the disease aetiology; however, a complete molecular mechanism is still lacking. Both presenilins belong to the γ-secretase complex, and serve as the catalytic entity needed for the final cleavage of APP into Aβ. PSEN only functions within the γ-secretase complex through intra- and inter-molecular interactions with three other membrane components, including nicastrin, Aph-1 (anterior pharynx defective-1) and Pen-2 (PSEN enhancer-2). However, although the list of γ-secretase substrates is still expanding, other non-catalytic activities of presenilins are also increasing the complexity behind its molecular contribution towards AD. These γ-secretase-independent roles are so far mainly attributed to PSEN1, including the transport of membrane proteins, cell adhesion, ER (endoplasmic reticulum) Ca(2+) regulation and cell signalling. In the present minireview, we discuss the current understanding of the γ-secretase-independent roles of PSENs and their possible implications in respect of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号