首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 169 毫秒
1.
Extraction of relevant information from highly complex environments is a prerequisite to survival. Within odour mixtures, such information is contained in the odours of specific elements or in the mixture configuration perceived as a whole unique odour. For instance, an AB mixture of the element A (ethyl isobutyrate) and the element B (ethyl maltol) generates a configural AB percept in humans and apparently in another species, the rabbit. Here, we examined whether the memory of such a configuration is distinct from the memory of the individual odorants. Taking advantage of the newborn rabbit''s ability to learn odour mixtures, we combined behavioural and pharmacological tools to specifically eliminate elemental memory of A and B after conditioning to the AB mixture and evaluate consequences on configural memory of AB. The amnesic treatment suppressed responsiveness to A and B but not to AB. Two other experiments confirmed the specific perception and particular memory of the AB mixture. These data demonstrate the existence of configurations in certain odour mixtures and their representation as unique objects: after learning, animals form a configural memory of these mixtures, which coexists with, but is relatively dissociated from, memory of their elements. This capability emerges very early in life.  相似文献   

2.
Perception of odors, i.e. usually of mixtures of odorants, is elemental (the odorants'' odor qualities are perceived in the mixture) or configural (the odor quality of the mixture differs from the one of each odorant). In human adults, the Red Cordial (RC) mixture is a configurally-processed, 6-odorant mixture. It evokes a red cordial odor quality while none of the elements carries that odor. Interestingly, in newborn rabbits, the same RC mixture is weak configurally perceived: the newborns behaviorally respond to all the elements after conditioning to the whole mixture, but not to the mixture after conditioning to a single element. Thus, they perceive in the RC mixture both the odor quality of the RC configuration and the quality of each element. Here, we aimed to determine whether this perception is modulated by quantitative (number of elements) and/or qualitative bits of information (nature of elements) previously learned by the animals. Newborns were conditioned to RC sub-mixtures of different complexity and composition before behavioral testing to RC. Pups generalized their sucking-related response to RC after learning at least 4 odorants. In contrast, after conditioning to sub-mixtures of another 6-odorant mixture, the elementally perceived MV mixture, pups responded to MV after learning one or two odorants. The different generalization to RC and MV mixtures after learning some of their elements is discussed according to three hypotheses: i) the configural perception of RC sub-mixtures, ii) the ratio of familiar/unfamiliar individual information elementally and configurally perceived, iii) the perception of RC becoming purely elemental. The results allow the first hypothesis to be dismissed, while further experiments are required to distinguish between the remaining two.  相似文献   

3.
In four human learning experiments (Pavlovian skin conductance, causal learning, speeded classification task), we evaluated several associative learning theories that assume either an elemental (modified unique cue model and Harris’ model) or a configural (Pearce’s configural theory and an extension of it) form of stimulus processing. The experiments used two modified patterning problems (A/B/C+, AB/BC/AC+ vs. ABC-; A+, BC+ vs. ABC-). Pearce’s configural theory successfully predicted all of our data reflecting early stimulus processing, while the predictions of the elemental theories were in accord with all of our data reflecting later stages of stimulus processing. Our results suggest that the form of stimulus representation depends on the amount of time available for stimulus processing. Our findings highlight the necessity to investigate stimulus processing during conditioning on a finer time scale than usually done in contemporary research.  相似文献   

4.
Infant rats learn to prefer stimuli paired with pain, presumably due to the importance of learning to prefer the caregiver to receive protection and food. With maturity, a more 'adult-like' learning system emerges that includes the amygdala and avoidance/fear learning. The attachment and 'adult-like' systems appear to co-exist in older pups with maternal presence engaging the attachment system by lowering corticosterone (CORT). Specifically, odor-shock conditioning (11 odor-0.5 mA shock trials) in 12-day-old pups results in an odor aversion, although an odor preference is learned if the mother is present during conditioning. Here, we propose a mechanism to explain pups ability to 'switch' between the dual learning systems by exploring the effect of maternal presence on hypothalamic paraventricular nucleus (PVN) neural activity, norepinephrine (NE) levels and learning. Maternal presence attenuates both PVN neural activity and PVN NE levels during odor-shock conditioning. Intra-PVN NE receptor antagonist infusion blocked the odor aversion learning with maternal absence, while intra-PVN NE receptor agonist infusion permitted odor aversion learning with maternal presence. These data suggest maternal control over pup learning acts through attenuation of PVN NE to reduce the CORT required for pup odor aversion learning. Moreover, these data also represent pups' continued maternal dependence for nursing, while enabling aversion learning outside the nest to prepare for pups future independent living.  相似文献   

5.
Two appetitive conditioning experiments with rats investigated whether the degree of generalization between a compound and its component parts is fixed or variable. Both experiments used a two-stage transfer design. In Stage 1, the elemental groups learned that a compound and its component parts signaled the same outcome (i.e. C+, D+, CD+), whereas the configural groups learned that a compound and its component parts signaled different outcomes (i.e. C+, D+, CD-, where '+' is pellets and '-' is no pellets). In Stage 2, the rats were tested for reductions in generalization. Experiment 1 found no evidence that past configural learning reduced generalization when a new set of alike-treated A and B elements were presented in compound for the first time. Experiment 2 found no evidence that past configural learning reduced generalization when the stimuli of Stage 1 were presented in a new C-, D-, CD+ relation. In contrast to findings with humans, these results suggest that past experience plays a minor role in how stimuli are encoded in animal conditioning.  相似文献   

6.
Our olfactory system is confronted with complex mixtures of odorants, often recognized as single entities due to odor blending (e.g., coffee). In contrast, we are also able to discriminate odors from complex mixtures (e.g., off-odors). Therefore, the olfactory system is able to engage either configural or elemental processes when confronted with mixtures. However, the rules that govern the involvement of these processes during odor perception remain poorly understood. In our first experiment, we examined whether simple odorant mixtures (binary/ternary) could elicit configural perception. Twenty untrained subjects were asked to evaluate the odor typicality of mixtures and their constituents. The results revealed a significant increase in odor typicality in some but not all mixtures as compared with the single components, which suggest that perceptual odor blending can occur only in specific mixtures (configural processing). In our second experiment, we tested the hypothesis that general olfactory expertise can improve elemental perception of mixtures. Thirty-two trained subjects evaluated the odor typicality of the stimuli presented during the first experiment, and their responses were compared with those obtained from the untrained panelists. The results support the idea that general training with odors increases the elemental perception of binary and ternary blending mixtures.  相似文献   

7.
Three experiments were conducted using a conditioned taste aversion procedure with rats to examine the effect of nonreinforced presentations of a conditioned stimulus (CS) on its ability to compete with a target stimulus for manifest conditioned responding. Two CSs (A and B) were presented in a serial compound and then paired with the unconditioned stimulus. CS A was first paired with the US and then presented without the US (i.e., extinction) prior to reinforced presentation of the AB compound. Experiment 1 showed that A was poor at competing with B for conditioned responding when given conditioning and extinction prior to reinforcement of AB relative to a group that received both A and B for the first time during compound conditioning. That is, an extinguished A stimulus allowed greater manifest acquisition to B. Experiment 2 found that extinction treatment produced a poor CR to the pretrained and extinguished CS itself following compound conditioning. Experiment 3 found that interposing a retention interval after extinction of A and prior to compound conditioning enhanced A's ability to compete with B. The results of these experiments are discussed with regard to different theories of extinction and associative competition.  相似文献   

8.
【目的】为了探究桔小实蝇 Bactrocera dorsalis (Hendel)雄成虫的嗅觉学习能力。【方法】本研究采用经典性嗅觉条件反射训练法(classical olfactory conditioning)在室内对固定的羽化后14-17日龄的桔小实蝇雄成虫进行气味与食物的联合学习训练, 即薄荷精油和10%蔗糖溶液联合的奖赏性训练(appetitive conditioning)以及甲基丁香酚(methyl eugenol, ME)和饱和盐溶液联合的惩罚性训练(aversive conditioning),并以伸喙反射行为(proboscis extension reflex, PER)作为学习与否的判定标准。【结果】经过奖赏性训练后,桔小实蝇雄成虫对薄荷精油的伸喙反射率可从0%增加至68%;而经过惩罚性训练后,桔小实蝇对甲基丁香酚的伸喙反射率可从100%降低至36.54%,且这种伸喙反射率的变化是通过气味条件刺激(conditioned stimulus)和食物非条件刺激(unconditioned stimulus)的对称性联合而产生的。【结论】结果表明,桔小实蝇雄性成虫具有较强的联系性嗅觉学习能力,并且两种刺激的联合是形成学习记忆的必要条件。  相似文献   

9.
目的 蜜蜂天生具有丰富的嗅觉辨识能力,觅食、交配、导航以及社交活动均依赖其嗅觉系统,是研究嗅觉感知和学习记忆的行为及神经机制的理想模型。蜜蜂既能够将某个复合气味作为一个整体也可以将复合气味的各组成成分进行辨别和区分,但是在特征依赖的联合记忆中依据何种原则进行加工并存储到长期记忆还不清楚。方法 本文利用特征阳性(feature positive:AB+,B-)和特征阴性(feature negative:AB-,B+)的奖赏性嗅觉条件化,训练蜜蜂对复合气味和成分气味的辨别,并检测蜜蜂对复合气味(AB)、成分气味(B)以及特征气味(A)的中长时记忆(3 h)和长时记忆(24 h)。结果 在特征阳性的奖赏性嗅觉条件化中,蜜蜂对训练过的气味可以形成稳定的中长时和长时记忆,并且对复合气味中的特征气味的记忆与复合气味的记忆呈现高度相似。但在特征阴性的奖赏性嗅觉条件化中,蜜蜂虽能够在3 h和24 h对训练过的两种气味具有显著的伸喙反应差异,且对特征阴性的气味无显著反应,但对复合气味的反应随时间的推移而增加。结论 实验结果表明,蜜蜂选择性地将与奖赏信息联合出现的气味巩固到长时记忆中,但并未依据特征成分加工储存到长时记忆中。奖赏信息预示着食物源,与生存息息相关,表明对环境信息进行选择性的记忆巩固加工并储存可能是低等动物高效地编码生存相关信息的重要策略。  相似文献   

10.
Lethbridge R  Hou Q  Harley CW  Yuan Q 《PloS one》2012,7(4):e35024
Rat pup odor preference learning follows pairing of bulbar beta-adrenoceptor activation with olfactory input. We hypothesize that NMDA receptor (NMDAR)-mediated olfactory input to mitral cells is enhanced during training, such that increased calcium facilitates and shapes the critical cAMP pattern. Here, we demonstrate, in vitro, that olfactory nerve stimulation, at sniffing frequencies, paired with beta-adrenoceptor activation, potentiates olfactory nerve-evoked mitral cell firing. This potentiation is blocked by a NMDAR antagonist and by increased inhibition. Glomerular disinhibition also induces NMDAR-sensitive potentiation. In vivo, in parallel, behavioral learning is prevented by glomerular infusion of an NMDAR antagonist or a GABA(A) receptor agonist. A glomerular GABA(A) receptor antagonist paired with odor can induce NMDAR-dependent learning. The NMDA GluN1 subunit is phosphorylated in odor-specific glomeruli within 5 min of training suggesting early activation, and enhanced calcium entry, during acquisition. The GluN1 subunit is down-regulated 3 h after learning; and at 24 h post-training the GluN2B subunit is down-regulated. These events may assist memory stability. Ex vivo experiments using bulbs from trained rat pups reveal an increase in the AMPA/NMDA EPSC ratio post-training, consistent with an increase in AMPA receptor insertion and/or the decrease in NMDAR subunits. These results support a model of a cAMP/NMDA interaction in generating rat pup odor preference learning.  相似文献   

11.
Mushroom bodies are central brain structures and essentially involved in insect olfactory learning. Within the mushroom bodies γ-aminobutyric acid (GABA)-immunoreactive feedback neurons are the most prominent neuron group. The plasticity of inhibitory neural activity within the mushroom body was investigated by analyzing modulations of odor responses of feedback neurons during olfactory learning in vivo. In the honeybee, Apis mellifera, feedback neurons were intracellularly recorded at their neurites. They produced complex patterns of action potentials without experimental stimulation. Summating postsynaptic potentials indicate that their synaptic input region lies within the lobes. Odor and antennal sucrose stimuli evoked excitatory phasic-tonic responses. Individual neurons responded to various odors; responses of different neurons to the same odor were highly variable. Response modulations were determined by comparing odor responses of feedback neurons before and after one-trial olfactory conditioning or sensitisation. Shortly after pairing an odor stimulus with a sucrose reward, odor-induced spike activity of feedback neurons decreased. Repeated odor stimulations alone, equally spaced as in the conditioning experiment, did not affect the odor-induced excitation. A single sensitisation trial also did not alter odor responses. These findings indicate that the level of odor-induced inhibition within the mushroom bodies is specifically modulated by experience. Accepted: 9 September 1999  相似文献   

12.
In three experiments rats were given pre-exposure to two compound flavours, AX and BX, the two compounds being presented for some subjects on alternate trials (the intermixed schedule) and, for others, in separate blocks of trials (the blocked schedule). After aversion conditioning with A (in Experiments 1 and 2), the inhibitory properties of B were tested using both retardation (Experiment 1) and summation tests (Experiment 2). The results failed to support the proposal [Anim. Learn. Behav. 23 (1995) 361] that B should acquire inhibitory properties in the intermixed condition (the "Espinet effect"). Experiment 3 demonstrated that generalisation to BX after conditioning with AX was attenuated by intermixed pre-exposure (a perceptual learning effect). This pattern of results challenges the hypothesis that inhibitory learning during intermixed pre-exposure to AX and BX can account for both the Espinet and the perceptual learning effects.  相似文献   

13.
Rats were used in two flavor-aversion experiments to determine if within-compound associations could be detected with a taste+odor compound that would not support taste-mediated odor potentation. In Experiment 1, following taste+odor compound conditioning, postconditioning taste extinction significantly weakened the odor aversion. In Experiment 2, following taste+odor compound conditioning, postconditioning taste inflation significantly strengthened the odor aversion. There was no evidence that taste potentiated the odor aversion in either Experiment 1 or 2. Thus, the results demonstrate that the presence of within-compound associations is not sufficient to produce taste-mediated odor potentiation. We offer a mediated conditioning explanation to account for the results of these two experiments.  相似文献   

14.
The aim of the present study was to determine whether different subsets of B cells characterize synovial fluid (SF) or synovial tissue (ST) of seropositive or seronegative rheumatoid arthritis (RA) with respect to the peripheral blood (PB). PB, SF and ST of 14 autoantibody (AB)-positive (rheumatoid factor [RF]-IgM, RF-IgA, anti-citrullinated peptide [CCP]), 13 negative RA and 13 no-RA chronic arthritides were examined for B-cell subsets (Bm1-Bm5 and IgD-CD27 classifications), zeta-associated protein kinase-70 (ZAP70) expression on B cells and cytokine levels (interleukin [IL]-1β, tumor necrosis factor [TNF]-α, IL-6, IL-8 and monocyte chemotactic protein [MCP]-1). Synovial tissues were classified as aggregate and diffuse patterns. No differences were found in B-cell percentages or in subsets in PB and SF between AB(+) and AB(-) RA and no-RA. In both AB(+) and AB(-) RA (and no-RA), the percentage of CD19(+)/ZAP70(+) was higher in SF than in PB (AB(+): P = 0.03; AB(-): P = 0.01; no-RA: P = 0.01). Moreover, SF of both AB(+) and AB(-) RA (and no-RA) patients was characterized by a higher percentage of IgD-CD27(+) and IgD-CD27(-) B cells and lower percentage of IgD(+)CD27(-) (P < 0.05) B cells compared to PB. In SF, ZAP70 positivity is more represented in B cell CD27(+)/IgD(-)/CD38(-). The aggregate synovitis pattern was characterized by higher percentages of Bm5 cells in SF compared with the diffuse pattern (P = 0.05). These data suggest that no difference exists between AB(+) and AB(-) in B-cell subset compartmentalization. CD27(+)/IgD(-)/ZAP70(+) memory B cells accumulate preferentially in the joints of RA, suggesting a dynamic maturation of the B cells in this compartment.  相似文献   

15.
The present paper describes a quick and efficient method for assessing olfactory discrimination learning in mice. In training mice received trials in which one odor (CS+) was paired with sugar and another odor (CS-) was paired with no sugar. When the mice were subsequently placed in a chamber with CS+ odor at one end and CS- odor at the other, they spent more time digging in CS+ than in CS- odor. In Experiment 2 mice trained with this procedure and tested after 60 days also spent more time digging in CS+ than CS- in the test phase, indicating that this olfactory discrimination task is effective for assessing long-term memory. In addition to the outbred strain of CD1 mice used in Experiments 1 and 2, C57Bl/6NCr/BR and DBA/2NCr/BR mice used in Experiment 3 also acquired this learned odor discrimination. Moreover, Experiment 4 showed that DBA animals were capable of acquiring this odor discrimination after receiving only two training trials (one exposure each to CS+ and CS-) per day for 4 days.  相似文献   

16.
Associative learning allows animals to establish links between stimuli based on their concomitance. In the case of Pavlovian conditioning, a single stimulus A (the conditional stimulus, CS) is reinforced unambiguously with an unconditional stimulus (US) eliciting an innate response. This conditioning constitutes an ‘elemental’ association to elicit a learnt response from A+ without US presentation after learning. However, associative learning may involve a ‘complex’ CS composed of several components. In that case, the compound may predict a different outcome than the components taken separately, leading to ambiguity and requiring the animal to perform so-called non-elemental discrimination. Here, we focus on such a non-elemental task, the negative patterning (NP) problem, and provide the first evidence of NP solving in Drosophila. We show that Drosophila learn to discriminate a simple component (A or B) associated with electric shocks (+) from an odour mixture composed either partly (called ‘feature-negative discrimination’ A+ versus AB) or entirely (called ‘NP’ A+B+ versus AB) of the shock-associated components. Furthermore, we show that conditioning repetition results in a transition from an elemental to a configural representation of the mixture required to solve the NP task, highlighting the cognitive flexibility of Drosophila.  相似文献   

17.
Many insects find resources by means of the olfactory cues of general odors after learning. To evaluate behavioral responses to the odor of a particular chemical after learning with reward or punishment quantitatively, we developed a standardized odor-training method in the German cockroach, Blattella germanica (Linnaeus), an important urban pest species. A classical olfactory conditioning procedure for a preference test was modified to become applicable to a single odor, by which a (?)-menthol or vanillin odor was independently associated with sucrose (reward) or sodium chloride solution (punishment). The strength of the association with the odor was evaluated with the increase or decrease in visit frequencies to the odor source after olfactory conditioning. The frequency increased after (?)-menthol was presented with a reward, while it did not change with the rewarded vanillin odor. With both odors, the frequency decreased significantly after training with a punishment. These results indicate that cockroaches learn a single compound odor presented as a conditioned stimulus, although the association of the odor with a reward or punishment depends on the chemical. This olfactory conditioning method can not only facilitate the analysis of cockroach behavior elicited by a learned single chemical odor, but also quantify the potential attractiveness or repellency of the chemical after learning.  相似文献   

18.
Ozone effects on plant species mixtures could depend on the characteristics of the species involved, their mixing ratio, or on environmental conditions. Predicting long-term effects on the dynamics of plant communities requires an understanding of the interactions involved. The present experiment was designed to determine the effects of ozone on grassland species in relation to mixing ratio and soil water content (irrigation) using binary mixtures. The grass Trisetum flavescens was grown in potted replacement-series mixtures with Centaurea jacea (Experiment A) or Trifolium pratense (Experiment B). The plants were exposed to three concentrations of ozone in open-top chambers in two irrigation treatments. Total above-ground dry weight over three growth periods was measured. The competitive ability of T. flavescens was expressed as the competitive ratio ( CR T). In Experiment B, total above-ground dry weight was reduced by elevated ozone and by reduced soil moisture, and significant interactions were found for ozone × irrigation and ozone × ratio. In Experiment A these effects were not significant. Under well watered conditions, CR T tended to be reduced by elevated ozone in Experiment A, but increased significantly in Experiment B, indicating the importance of the competing species in modifying the ozone effect on T. flavescens . In both experiments reduced irrigation decreased the magnitude of ozone effects on biomass production, which could be related to observed reductions in specific leaf conductance. The results suggest that under well watered conditions the effect of elevated ozone on the competitive balance between species depends on the species mixture, but that the mixing ratio is less important.  相似文献   

19.
The distribution of c-Fos-immunopositive neurons was examined in the mitral/tufted and granular cell layers in the medium part of the main olfactory bulbs of 18-day-old rats after they had been trained for propionic acid vapour-guided search for dam in the Y-maze. On the next day these pups exhibited a strong preference for the propionic acid odor as compared to the control pups trained for this task without the odor cue and odor-familiarized pups exposed to propionic acid as a novel neutral stimulus. Exposure to propionic acid produced a moderate activation of c-Fos expression, mainly in the granular layer of the dorsomedial part of the bulb. Training in the Y-maze devoid of odor cues resulted in diffuse increase in the number of c-Fos-positive neurons both in the mitral and granular cell layers in all parts of the olfactory bulb. Maze training with the odor cue produced activation of c-Fos expression (which significantly exceeded the non-odor Y-maze group) in the dorsomedial olfactory bulb. These data suggest that associative olfactory conditioning results in activation of c-Fos expression that combines the effect of diffuse motivational excitation and specific olfactory input to the neurons which process odor cues.  相似文献   

20.
Recordings in the locust antennal lobe (AL) reveal activity-dependent, stimulus-specific changes in projection neuron (PN) and local neuron response patterns over repeated odor trials. During the first few trials, PN response intensity decreases, while spike time precision increases, and coherent oscillations, absent at first, quickly emerge. We examined this "fast odor learning" with a realistic computational model of the AL. Activity-dependent facilitation of AL inhibitory synapses was sufficient to simulate physiological recordings of fast learning. In addition, in experiments with noisy inputs, a network including synaptic facilitation of both inhibition and excitation responded with reliable spatiotemporal patterns from trial to trial despite the noise. A network lacking fast plasticity, however, responded with patterns that varied across trials, reflecting the input variability. Thus, our study suggests that fast olfactory learning results from stimulus-specific, activity-dependent synaptic facilitation and may improve the signal-to-noise ratio for repeatedly encountered odor stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号