首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We identified and characterized a malate dehydrogenase from Streptomyces coelicolor A3(2) (ScMDH). The molecular mass of ScMDH was 73,353.5 Da with two 36,675.0 Da subunits as analyzed by matrix-assisted laser-desorption ionization–time-of-flight mass spectrometry (MALDI-TOF-MS). The detailed kinetic parameters of recombinant ScMDH are reported here. Heat inactivation studies showed that ScMDH was more thermostable than most MDHs from other organisms, except for a few extremely thermophile bacteria. Recombinant ScMDH was highly NAD+-specific and displayed about 400-fold (k cat) and 1,050-fold (k cat?K m) preferences for oxaloacetate reduction over malate oxidation. Substrate inhibition studies showed that ScMDH activity was inhibited by excess oxaloacetate (K i=5.8 mM) and excess L-malate (K i=12.8 mM). Moreover, ScMDH activity was not affected by most metal ions, but was strongly inhibited by Fe2+ and Zn2+. Taken together, our findings indicate that ScMDH is significantly thermostable and presents a remarkably high catalytic efficiency for malate synthesis.  相似文献   

2.
Genomic analysis of a hyperthermophilic archaeon, Thermococcus sp. NA1, revealed the presence of an 1,497 bp open reading frame, encoding a protein of 499 amino acids. The deduced amino acid sequence was similar to thermostable carboxypeptidase 1 from Pyrococcus furiosus, a member of peptidase family M32. Five motifs, including the HEXXH motif with two histidines coordinated with the active site metal, were conserved. The carboxypeptidase gene was cloned and overexpressed in Escherichia coli. Molecular masses assessed by SDS-PAGE and gel filtration were 61 kDa and 125 kDa respectively, which points to a dimeric structure for the recombinant enzyme, designated TNA1_CP. The enzyme showed optimum activity toward Z-Ala-Arg at pH 6.5 and 70-80 degrees C (k(cat)/K(m)=8.3 mM(-1) s(-1)). In comparison with that of P. furiosus CP (k(cat)/K(m)=667 mM(-1) s(-1)), TNA1_CP exhibited 80-fold lower catalytic efficiency. The enzyme showed broad substrate specificity with a preference for basic, aliphatic, and aromatic C-terminal amino acids. This broad specificity was confirmed by C-terminal ladder sequencing of porcine N-acetyl-renin substrate by TNA1_CP.  相似文献   

3.
Previously, we reported the biochemical properties of RGA1 that is expressed in Escherichia coli (Seo et al., 1997). The activities of RGA1 that hydrolyzes and binds guanine nucleotide were dependent on the MgCl(2) concentration. The steady state rate constant (k(cat) ) for GTP hydrolysis of RGA1 at 2 mM MgCl(2) was 0.0075 +/- 0.0001 min(-1). Here, we examined the effects of pH and cations on the GTPase activity. The optimum pH at 2 mM MgCl(2) was approximately 6.0; whereas, the pH at 2 mM NH(4)Cl was approximately 4.0. The result from the cation dependence on the GTPase (guanosine 5'-triphosphatase) activity of RGA1 under the same condition showed that the GTP hydrolysis rate (k(cat)= 0.0353 min(-1)) under the condition of 2 mM NH(4)Cl at pH 4.0 was the highest. It corresponded to about 3.24-fold of the k(cat) value of 0.0109 min(-1) in the presence of 2 mM MgCl(2) at pH 6.0.  相似文献   

4.
Park SH  Park KH  Oh BC  Alli I  Lee BH 《New biotechnology》2011,28(6):639-648
Genomic analysis of the hyperthermophilic archaeon Pyrococcus furiosus revealed the presence of an open reading frame (ORF PF0356) similar to the enzymes in glycoside hydrolase family 1. This β-glycosidase, designated PFTG (P. furiosus thermostable glycosidase), was cloned and expressed in Escherichia coli. The expressed enzyme was purified by heat treatment and Ni-NTA affinity chromatography. The gene was composed of 1,452 bp encoding 483 amino acids for a protein with a predicted molecular mass of 56,326 Da. The temperature and pH optima were 100°C and 5.0 in sodium citrate buffer, respectively. The substrate specificity of PFTG suggests that it possesses characteristics of both β-galactosidase and β-mannosidase activities. However, through kinetic studies by ITC (Isothermal Titration Colorimetry) which is very sensitive method for enzyme kinetics, PF0356 enzyme revealed the highest catalytic efficiency toward p-nitrophenyl-β-d-mannopyranoside (3.02 k(cat)/K(m)) and mannobiose (4.32 k(cat)/K(m)). The enzyme showed transglycosylation and transgalactosylation activities toward cellobiose, lactose and mannooligosaccharides that could produce GOS (galactooligosaccharides) and MOS (maltooligosaccharides). This novel hyperthermostable β-glycosidase may be useful for food and pharmaceutical applications.  相似文献   

5.
An ionically unbound and thermostable polyphenol oxidase (PPO) was extracted from the leaf of Musa paradisiaca. The enzyme was purified 2.54-fold with a total yield of 9.5% by ammonium sulfate precipitation followed by Sephadex G-100 gel filtration chromatography. The purified enzyme exhibited a clear single band on native polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate (SDS) PAGE. It was found to be monomeric protein with molecular mass of about 40 kD. The zymographic study using crude extract as enzyme source showed a very clear band around 40 kD and a faint band at around 15 kD, which might be isozymes. The enzyme was optimally active at pH 7.0 and 50°C temperature. The enzyme was active in wide range of pH (4.0-9.0) and temperature (30-90°C). From the thermal inactivation studies in the range 60-75°C, the half-life (t(1/2)) values of the enzyme ranged from 17 to 77?min. The inactivation energy (Ea) value of PPO was estimated to be 91.3?kJ mol(-1). It showed higher specificity with catechol (K(m)?=?8?mM) as compared to 4-methylcatechol (K(m)?=?10?mM). Among metal ions and reagents tested, Cu(2+), Fe(2+), Hg(2+), Mn(2+), Ni(2+), protocatechuic acid, and ferrulic acid enhanced the enzyme activity, while K(+), Na(+), Co(2+), kojic acid, ascorbic acid, ethylenediamine tetraacetic acid (EDTA), sodium azide, β-mercaptoethanol, and L-cysteine inhibited the activity of the enzyme.  相似文献   

6.
The soluble pyridine nucleotide transhydrogenase (STH) is an energy-independent flavoprotein that directly catalyzes hydride transfer between NAD(H) and NADP(H) to maintain homeostasis of these two redox cofactors. The sth gene in Escherichia coli was cloned and expressed as a fused protein (EcSTH). The purified EcSTH displayed maximal activity at 35 °C, pH 7.5. Heat-inactivation studies showed that EcSTH retains 50% activity after 5 h at 50 °C. The enzyme was stable at 4 °C for 25 days. The apparent K(m) values of EcSTH were 68.29 μM for NADPH and 133.2 μM for thio-NAD(+) . The k(cat) /K(m) ratios showed that EcSTH had a 1.25-fold preference for NADPH over thio-NAD(+) . Product inhibition studies showed that EcSTH activity was strongly inhibited by excess NADPH, but not by thio-NAD(+) . EcSTH activity was enhanced by 2 mM adenine nucleotide and inhibited by divalent metal ions: Mn(2+) , Co(2+) , Zn(2+) , Ni(2+) and Cu(2+) . However, after preincubation for 30 min, most divalent metal ions had little effect on EcSTH activity, except Zn(2+) , Ni(2+) and Cu(2+) . The enzymatic analysis could provide the important basic knowledge for EcSTH utilizations.  相似文献   

7.
Succinate:ubiquinone reductase was shown to catalyze the oxidation of L- and D-stereoisomers of malate by artificial electron acceptors and ubiquinone. The rate of malate oxidation by succinate:ubiquinone reductase is by two orders of magnitude lower than that for the natural substrate--succinate. The values of kinetic constants for the oxidation of D- and L-stereoisomers of malate are equal to: V infinity = 0.1 mumol/min/mg protein, Km = 2 mM and V infinity = 0.05 mumol/min/mg protein, Km = 2 mM, respectively. The malate dehydrogenase activity is fully inhibited by the inhibitors of the dicarboxylate-binding site of the enzyme, i.e., N-ethylmaleimide and malonate and is practically insensitive to carboxin, a specific inhibitor of the ubiquinone-binding center. The enol form of oxaloacetate was shown to be the product of malate oxidation by succinate:ubiquinone reductase. The kinetics of inhibition of the enzyme activity by the ketone and enol forms of oxaloacetate was studied. Both forms of oxaloacetate effectively inhibit the succinate:ubiquinone reductase reaction.  相似文献   

8.
An isocitrate dehydrogenase from Zymomonas mobilis was overexpressed in Escherichia coli as a fused protein (ZmIDH). The molecular mass of recombinant ZmIDH, together with its 6× His partner, was estimated to be 74 kDa by gel filtration chromatography, suggesting a homodimeric structure. The purified recombinant ZmIDH displayed maximal activity at 55 °C, pH 8.0 with Mn(2+) and pH 8.5 with Mg(2+). Heat inactivation studies showed that the recombinant ZmIDH was rapidly inactivated above 40 °C. In addition, the recombinant ZmIDH activity was completely dependent on the divalent cation and Mn(2+) was the most effective cation. The recombinant ZmIDH displayed a 165-fold (k(cat)/K(m)) preference for NAD(+) over NADP(+) with Mg(2+), and a 142-fold greater specificity for NAD(+) than NADP(+) with Mn(2+). Therefore, the recombinant ZmIDH has remarkably high coenzyme preference for NAD(+). The catalytic efficiency (k(cat)/K(m)) of the recombinant ZmIDH was found to be much lower than that of its NADP(+)-dependent counterparts. The poor performance of the recombinant ZmIDH in decarboxylating might be improved by protein engineering techniques, thus making ZmIDH a potential genetic modification target for the development of optimized Z. mobilis strains.  相似文献   

9.
A rat brain cDNA encoding for a novel protein with agmatinase activity was cloned and functionally expressed. The protein was expressed as a histidine-tagged fusion product with a molecular weight of about 63 kDa. Agmatine hydrolysis was strictly dependent on Mn(2+); K(m) and k(cat) values were 2.5+/-0.2 mM and 0.8+/-0.2 s(-1), respectively. The product putrescine was a linear competitive inhibitor (K(i)=5+/-0.5 mM). The substrate specificity, metal ion requirement and pH optimum (9.5) coincide with those reported for Escherichia coli agmatinase, the best characterized of the agmatinases. However, as indicated by the k(cat)/K(m) (320 M(-1)s(-1)), the recombinant protein was about 290-fold less efficient than the bacterial enzyme. The deduced amino sequence revealed great differences with all known agmatinases, thus excluding the protein from the arginase family. It was, however, highly identical (>85%) to the predicted sequences for fragments of hypothetical or unnamed LIM domain-containing proteins. As a suggestion, the agmatinase activity is adscribed to a protein with an active site that promiscuously catalyze a reaction other than the one it evolved to catalyze.  相似文献   

10.
Substrate-based design of reversible Pin1 inhibitors   总被引:1,自引:0,他引:1  
Human Pin1, a peptidyl-prolyl cis/trans isomerase with high specificity to -Ser/Thr(PO(3)H(2))-Pro- motifs, is required for cell cycle progression. In an effort to design reversible Pin1 inhibitors by using a substrate structure based approach, a panel of peptides were applied to systematically analyze the minimal structural requirements for Pin1 substrate recognition. Pin1 catalysis (k(cat)/K(m) < 5 mM(-1) s(-1)) for Ala-Pro, Ser-Pro, and Ser(PO(3)H(2))-Pro was detected using direct UV-visible spectrophotometric detection of prolyl isomerization, while weak competitive inhibition of Pin1 by these dipeptides was observed (K(i) > 1 mM). Substrates with chain lengths extending from either the P2 to P1' or the P1 to P2' subsite gave k(cat)/K(m) values of 100 mM(-1) s(-1) for Ala-Ser(PO(3)H(2))-Pro and 38 mM(-1) s(-1) for Ser(PO(3)H(2))-Pro-Arg. For both Pin1 and its yeast homologue Ess1, the optimal subsite recognition elements comprise five amino acid residues with the essential Ser(PO(3)H(2)) in the middle position. The resulting substrate Ac-Ala-Ala-Ser(PO(3)H(2))-Pro-Arg-NH-4-nitroanilide possesses a very low cis/trans interconversion barrier in the presence of either Pin1 or Ess1, with k(cat)/K(m) = 9300 mM(-1) s(-1) and 12000 mM(-1) s(-1), respectively. The D-Ser(PO(3)H(2)) residue preceding proline could serve as a substrate-deactivating determinant without compromising ground state affinity. Similarly, substitution of the amide bond preceding proline with a thioxo amide bond produces a potent inhibitor. Pin1 is reversibly inhibited by such substrate analogue inhibitors with IC(50) values in the low micromolar range. The D-amino acid containing inhibitor also exhibits remarkable stability against phosphatase activity in cell lysate.  相似文献   

11.
The role of general acid-base catalysis in the enzymatic mechanism of NADP+-dependent malic enzyme was examined by detailed steady-state kinetic studies through site-directed mutagenesis of the Tyr(91) and Lys(162) residues in the putative catalytic site of the enzyme. Y91F and K162A mutants showed approx. 200- and 27000-fold decreases in k(cat) values respectively, which could be partially recovered with ammonium chloride. Neither mutant had an effect on the partial dehydrogenase activity of the enzyme. However, both Y91F and K162A mutants caused decreases in the k(cat) values of the partial decarboxylase activity of the enzyme by approx. 14- and 3250-fold respectively. The pH-log(k(cat)) profile of K162A was found to be different from the bell-shaped profile pattern of wild-type enzyme as it lacked a basic pK(a) value. Oxaloacetate, in the presence of NADPH, can be converted by malic enzyme into L-malate by reduction and into enolpyruvate by decarboxylation activities. Compared with wild-type, the K162A mutant preferred oxaloacetate reduction to decarboxylation. These results are consistent with the function of Lys(162) as a general acid that protonates the C-3 of enolpyruvate to form pyruvate. The Tyr(91) residue could form a hydrogen bond with Lys(162) to act as a catalytic dyad that contributes a proton to complete the enol-keto tautomerization.  相似文献   

12.
A hydroxynitrile lyase was isolated and purified to homogeneity from seeds of Eriobotrya japonica (loquat). The final yield, of 36% with 49-fold purification, was obtained by 30-80% (NH(4))(2)SO(4) fractionation and column chromatography on DEAE-Toyopearl and Concanavalin A Sepharose 4B, which suggested the presence of a carbohydrate side chain. The purified enzyme was a monomer with a molecular mass of 72 kDa as determined by gel filtration, and 62.3 kDa as determined by SDS-gel electrophoresis. The N-terminal sequence is reported. The enzyme was a flavoprotein containing FAD as a prosthetic group, and it exhibited a K(m) of 161 microM and a k(cat)/K(m) of 348 s(-1) mM(-1) for mandelonitrile. The optimum pH and temperature were pH 5.5 and 40 degrees C respectively. The enzyme showed excellent stability with regard to pH and temperature. Metal ions were not required for its activity, while activity was significantly inhibited by CuSO(4), HgCl(2), AgNO(3), FeCl(3), beta-mercaptoethanol, iodoacetic acid, phenylmethylsulfonylfluoride, and diethylpyrocarbonate. The specificity constant (k(cat)/K(m)) of the enzyme was investigated for the first time using various aldehydes as substrates. The enzyme was active toward aromatic and aliphatic aldehydes, and showed a preference for smaller substrates over bulky one.  相似文献   

13.
Catalytic reaction pathway for the mitogen-activated protein kinase ERK2   总被引:2,自引:0,他引:2  
Prowse CN  Hagopian JC  Cobb MH  Ahn NG  Lew J 《Biochemistry》2000,39(20):6258-6266
The structural, functional, and regulatory properties of the mitogen-activated protein kinases (MAP kinases) have long attracted considerable attention owing to the critical role that these enzymes play in signal transduction. While several MAP kinase X-ray crystal structures currently exist, there is by comparison little mechanistic information available to correlate the structural data with the known biochemical properties of these molecules. We have employed steady-state kinetic and solvent viscosometric techniques to characterize the catalytic reaction pathway of the MAP kinase ERK2 with respect to the phosphorylation of a protein substrate, myelin basic protein (MBP), and a synthetic peptide substrate, ERKtide. A minor viscosity effect on k(cat) with respect to the phosphorylation of MBP was observed (k(cat) = 10 +/- 2 s(-1), k(cat)(eta) = 0.18 +/- 0.05), indicating that substrate processing occurs via slow phosphoryl group transfer (12 +/- 4 s(-1)) followed by the faster release of products (56 +/- 4 s(-1)). At an MBP concentration extrapolated to infinity, no significant viscosity effect on k(cat)/K(m(ATP)) was observed (k(cat)/K(m(ATP)) = 0.2 +/- 0.1 microM(-1) s(-1), k(cat)/K(m(ATP))(eta) = -0.08 +/- 0.04), consistent with rapid-equilibrium binding of the nucleotide. In contrast, at saturating ATP, a full viscosity effect on k(cat)/K(m) for MBP was apparent (k(cat)/K(m(MBP)) = 2.4 +/- 1 microM(-1) s(-1), k(cat)/K(m(MBP))(eta) = 1.0 +/- 0.1), while no viscosity effect was observed on k(cat)/K(m) for the phosphorylation of ERKtide (k(cat)/K(m(ERKtide)) = (4 +/- 2) x 10(-3) microM(-1) s(-1), k(cat)/K(m(ERKtide))(eta) = -0.02 +/- 0.02). This is consistent with the diffusion-limited binding of MBP, in contrast to the rapid-equilibrium binding of ERKtide, to form the ternary Michaelis complex. Calculated values for binding constants show that the estimated value for K(d(MBP)) (/= 1.5 mM). The dramatically higher catalytic efficiency of MBP in comparison to that of ERKtide ( approximately 600-fold difference) is largely attributable to the slow dissociation rate of MBP (/=56 s(-1)), from the ERK2 active site.  相似文献   

14.
Abstract Malate dehydrogenase from the syntrophic propionate-oxidizing bacterium strain MPOB was purified 42-fold. The native enzyme had an apparent molecular mass of 68 kDa and consisted of two subunits of 35 kDa. The enzyme exhibited maximum activity with oxaloacetate at pH 8.5 and 60 °C. The K m for oxaloacetate was 50 μM and for NADH 30 μM. The K m values for l-malate and NAD were 4 and 1.1 mM, respectively. Substrate inhibition was found at oxaloacetate concentrations higher than 250 μM. The N-terminal amino acid sequence of the enzyme was similar to the sequences of a variety of other malate dehydrogenases from plants, animals and micro-organisms.  相似文献   

15.
Trypsin from pyloric caeca of Monterey sardine was purified by fractionation with ammonium sulfate, gel filtration, affinity and ionic exchange chromatography. Fraction 102, obtained from ionic exchange chromatography, generated one band in sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and isoelectric focusing. The molecular mass of the isolated trypsin was 25 kDa and showed esterase-specific activity on Nalpha-p-tosyl-L-arginine methyl ester (TAME) that was 4.5 times greater than amidase-specific activity on N-benzoyl-L-arginine-p-nitroanilide. The purified enzyme was partially inhibited by the serine-protease phenyl-methyl-sulfonyl fluoride (PMSF) inhibitor and fully inhibited by the soybean trypsin inhibitor (SBTI) and benzamidine, but was not inhibited by the metallo-protease inactivator EDTA or the chymotrypsin inhibitor tosyl-L-phenylalanine chloromethyl-ketone. The optimum pH for activity was 8.0 and maximum stability was observed between pH 7 and 8. A marked loss in stability was observed below pH 4 and above pH 11. Activity was optimum at 50 degrees C and lost activity at higher temperatures. The kinetic trypsin constants K(m) and k(cat) were 0.051 mM and 2.12 s(-1), respectively, while the catalytic efficiency (k(cat)/K(m)) was 41 s(-1) mM(-1). General characteristics of the Monterey sardine trypsin resemble those of trypsins from other fish, especially trypsins from the anchovy Engraulis japonica and Engraulis encrasicholus and the sardine Sardinops melanostica.  相似文献   

16.
A malate dehydrogenase (MDH) from Streptomyces avermitilis MA-4680 (SaMDH) has been expressed and purified as a fusion protein. The molecular mass of SaMDH is about 35 kDa determined by SDS-PAGE. The recombinant SaMDH has a maximum activity at pH 8.0. The enzyme shows the optimal temperature around 42°C and displays a half-life (t 1/2) of 160 min at 50°C which is more thermostable than reported MDHs from most bacteria and fungi. The k cat value of SaMDH is about 240-fold of that for malate oxidation. In addition, the k cat/K m ratio shows that SaMDH has about 1,246-fold preference for oxaloacetate (OAA) reduction over l-malate oxidation. The recombinant SaMDH may also use NADPH as a cofactor although it is a highly NAD(H)-specific enzyme. There was no activity detected when malate and NADP+ were used as substrates. Substrate inhibition studies show that SaMDH activity is strongly inhibited by excess OAA with NADH, but is not sensitive to excess l-malate. Enzymatic activity is enhanced by the addition of Na+, NH4 +, Ca2+, Cu2+ and Mg2+ and inhibited by addition of Hg2+ and Zn2+. MDH is widely used in coenzyme regeneration, antigen immunoassays and bioreactors. The enzymatic analysis could provide the important basic knowledge for its utilizations.  相似文献   

17.
An aminopeptidase from zebrafish (Danio rerio) was purified 1247-fold to homogeneity with 35.4% recovery by column chromatography successively on DEAE-sephacel, hydroxyapatite, and phenyl-sepharose. The molecular mass of the enzyme was estimated at 98 kDa by SDS-PAGE and gel filtration. Optimum temperature and pH of the enzyme were 45°C and 7.5, respectively. The enzyme preferentially hydrolyzed substrate Leu-MCA with k(cat)/K(m) of 4.2×10(6)M(-1)s(-1) and an activation energy of 68.9 kJ M(-1) [corrected], respectively. It was specifically inhibited by bestatin, puromycin and metal-chelating agents, and Zn(2+) seemed to be its metal cofactor(s). Some l-amino acids significantly inhibited its activity, and l-cysteine was a non-competitive inhibitor with a K(i) of 0.27 mM. According to the peptide mass fingerprint analysis, the enzyme was highly matched with the predicted D. rerio aminopeptidase puromycin sensitive (gi: 255683530) (EC 3.4.11.14), suggesting that the present enzyme is a puromycin-sensitive aminopeptidase of zebrafish.  相似文献   

18.
A novel protease designated protease-A-17N-1, was purified from the halo-alkalophilic Bacillus sp. 17N-1, and found active in media containing dithiothreitol and EDTAK(2). This enzyme maintained significant activity from pH 6.00 to 9.00, showed optimum k(cat)/K(m) value at pH 7.50 and 33 degrees C. It was observed that only specific inhibitors of cysteine proteinases inhibited its activity. The pH-(k(cat)/K(m)) profile of protease-A-17N-1 was described by three pK(a)s in the acid limb, and one in the alkaline limb. Both are more likely due t3o the protonic dissociation of an acidic residue, and the development and subsequent deprotonation of an ion-pair, respectively, in its catalytic site, characteristic for cysteine proteinases. Moreover, both the obtained estimates of rate constant k(1) and the ratio k(2)/k(-1) at 25 degrees C, from the temperature-(k(cat)/K(m)) profile of protease-A-17N-1, were found similar to those estimated from the proton inventories of the same parameter, verifying the reliability of the latter methodology. Besides, the bowed-downward proton inventories of k(cat)/K(m), as well as the large inverse SIE observed for this parameter, in combination with its dependence versus temperature, were showed unambiguously that k(cat)/K(m) = k(1). Such results suggest that the novel enzyme is more likely to be a cysteine proteinase functioning via a general acid-base mechanism.  相似文献   

19.
Macrophoma commelinae isolated from spots on leaves of Commelina communis has the ability to transform 5-acetyl-4-methoxy-6-methyl-2-pyrone (1) to 4-acetyl-3-methoxy-5-methylbenzoic acid (macrophomic acid, 2). This biotransformation includes the condensation of the 2-pyrone ring with a C3-unit precursor to form a substituted benzoic acid. We optimized conditions for induction of enzyme activity in M. commelinae, identified oxalacetate as a C3-unit precursor with cell extract, and purified the novel enzyme, macrophomate synthase. Oxalacetate inhibited the enzyme activity at a concentration higher than 5 mM, and magnesium chloride stimulated the enzyme activity. Kinetic analyses gave K(m) of 1.7 mM for 1 at 5 mM oxalacetate, K(m) of 1.2 mM for oxalacetate at 5 mM 1, and k(cat) of 0.46 s(-1) per subunit. Pyruvate was a weak substrate, with K(m) of 35.2 mM and k(cat) of 0.027 s(-1) at 5 mM 1. We cloned and sequenced a cDNA encoding the macrophomate synthase. The cDNA of 1,225 bp contained an open reading frame that encoded a polypeptide of 339 amino acid residues and 36,244 Da, the sequence of which showed no significant similarity with known proteins in a homology search with BLAST programs. Transformed E. coli cells carrying the cDNA encoding the mature protein of macrophomate synthase overproduced macrophomate synthase under the control of the T7 phage promoter induced by IPTG. The purified enzyme showed the same values of K(m) and optimum pH as the native macrophomate synthase.  相似文献   

20.
The Meiothermus ruber alkaline phosphatase gene was cloned, expressed in Escherichia coli cells, and sequenced. The enzyme precursor, including the putative signal peptide, was shown to consist of 503 residues (deduced molecular mass 54,229 Da). The recombinant enzyme showed the maximal activity at 60-65 degrees C and pH 11.0 and had K(m) = 0.055 mM as estimated with p-nitrophenyl phosphate (pNPP). The enzyme proved to be moderately thermostable, retaining 50% activity after 6 h incubation at 60 degrees C and being completely inactivated in 2 h at 80 degrees C. In substrate specificity assays, the highest enzymic activity was observed with pNPP and dATP. Vanadate, inorganic phosphate, and SDS inhibited M. ruber alkaline phosphatase, while thiol-reducing agents had virtually no effect. The enzymic activity strongly depended on exogenous Mg2+ and declined in the presence of EDTA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号