首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogenetic relationships within the magnoliid basal angiosperm genus Pseuduvaria (Annonaceae) are investigated using chloroplast DNA sequences from five regions: psbA-trnH spacer, trnL-F, matK, rbcL, and atpB-rbcL spacer. Over 4000 nucleotides from 51 species (of the total 53) were sequenced. The five cpDNA datasets were analyzed separately and in combination using maximum parsimony (MP), maximum likelihood (ML), and Bayesian methods. The phylogenetic trees constructed using all three phylogenetic methods, based on the combined data, strongly support the monophyly of Pseuduvaria following the inclusion of Craibella phuyensis. The trees generated using MP were less well resolved, but relationships are similar to those obtained using the other methods. ML and Bayesian analyses recovered trees with short branch lengths, showing five main clades. This study highlights the evolutionary changes in seven selected morphological characters (floral sex, stamen and carpel numbers, inner petal color, presence of inner petal glands, flowering peduncle length, and monocarp size). Although floral unisexuality is ancestral within the genus, several evolutionary lineages reveal reversal to bisexuality. Other phylogenetic transitions include the evolution of sapromyophily, and fruit-bat frugivory and seed dispersal, thus allowing a wide range of adaptations for species survival.  相似文献   

2.
The congenital fusion of carpels, or syncarpy, is considered a key innovation as it is found in more than 80% of angiosperms. Within the magnoliids however, syncarpy has rarely evolved. Two alternative evolutionary origins of syncarpy were suggested in order to explain the evolution of this feature: multiplication of a single carpel vs. fusion of a moderate number of carpels. The magnoliid family Annonaceae provides an ideal situation to test these hypotheses as two African genera, Isolona and Monodora, are syncarpous in an otherwise apocarpous family with multicarpellate and unicarpellate genera. In addition to syncarpy, the evolution of six other morphological characters was studied. Well-supported phylogenetic relationships of African Annonaceae and in particular those of Isolona and Monodora were reconstructed. Six plastid regions were sequenced and analyzed using maximum parsimony and Bayesian inference methods. The Bayesian posterior mapping approach to study character evolution was used as it accounts for both mapping and phylogenetic uncertainty, and also allows multiple state changes along the branches. Our phylogenetic analyses recovered a fully resolved clade comprising twelve genera endemic to Africa, including Isolona and Monodora, which was nested within the so-called long-branch clade. This is the largest and most species-rich clade of African genera identified to date within Annonaceae. The two syncarpous genera were inferred with maximum support to be sister to a clade characterized by genera with multicarpellate apocarpous gynoecia, supporting the hypothesis that syncarpy arose by fusion of a moderate number of carpels. This hypothesis was also favoured when studying the floral anatomy of both genera. Annonaceae provide the only case of a clear evolution of syncarpy within an otherwise apocarpous magnoliid family. The results presented here offer a better understanding of the evolution of syncarpy in Annonaceae and within angiosperms in general.  相似文献   

3.
The plastid trnL-F region has proved useful in molecular phylogenetic studies addressing diverse evolutionary questions from biogeographic history to character evolution in a broad range of plant groups. An important assumption for phylogenetic reconstruction is that data used in combined analyses contain the same phylogenetic signal. The trnL-F region is often used in combined analyses of multiple chloroplast markers. These markers are assumed to contain congruent phylogenetic signal due to lack of recombination. Here we show that trnL-F sequences display a phylogenetic signal conflicting with that of other chloroplast markers in Annonaceae, and we demonstrate that this conflict results from ancient paralogy. TrnL-F copy 2 diverged from trnL-F copy 1 (as used in family-wide phylogenetic analyses) in a direct ancestor of the Annonaceae. Although this divergence dates back 88 million years or more, the exons of both copies appear to be intact. In this case, assuming that (putative) chloroplast markers contain the same phylogenetic signal results in an incorrect topology and an incorrect estimate of ages. Our study demonstrates that researchers should be cautious when interpreting gene phylogenies, irrespective of the genome from which they are presumed to have been sampled.  相似文献   

4.
洪平杏(Armeniaca hongpingensis C. L. Li)是杏属的一个狭域分布种,基于形态观察被推测为杏(A.vulgaris Lam.)和梅(A. mume Sieb.)的天然杂交种,但目前尚无该种与杏、梅亲缘关系的分子系统学研究。本文以洪平杏的成株和实生苗以及包括杏、梅在内的6种(含1变种)杏属植物为研究材料,分别采用核基因(ITS和SBEI)和叶绿体基因(mat K和ycf1b)序列构建系统发育树,并采用mat K、ycf1b和SBEI基因序列构建单倍型网络图,探讨该物种与杏、梅及杏梅(A. mume Sieb. var. bungo Makino)之间的亲缘关系。基于核基因和叶绿体基因序列分别构建的系统发育树均显示,洪平杏的成株及其全部实生苗个体单独聚为一支,且具有较高的支持率(分别为99/79、71/81),独立于杏属其他种之外。而基于核基因ITS序列的系统发育分析结果表明,洪平杏除极少数成株与杏、杏梅聚为一支外,其余所有成株与实生苗聚为2大支(支持率分别为0.82和0.97),而没有克隆的与梅聚在一起。单倍型分析结果表明,该物种的成株与实生苗在SBEI和ycf1b基因序列中均未检测到杏或梅的单倍型,仅有少数(2/9)的实生苗个体在叶绿体mat K基因序列中检测到杏的单倍型。研究结果不支持将洪平杏定为杏和梅的天然杂交种的观点,推测洪平杏应为一个独立的物种,与杏之间的亲缘关系更近并且存在可检测到的基因流。  相似文献   

5.
Phylogeny and Classification of Prunus sensu lato (Rosaceae)   总被引:3,自引:0,他引:3  
The classification of the economically important genus Prunus L. sensu lato (s.L) is controversial due to the high levels of convergent or the parallel evolution of morphological characters. In the present study, phylogenetic analyses of fifteen main segregates of Prunus s.I. represented by eighty-four species were conducted with maximum parsimony and Bayesian approaches using twelve chloroplast regions (atpB- rbcL, matK, ndhF, psbA-trnH, rbcL, rpL 16, rpoC1, rps16, trnS-G, trnL, trnL-F and ycfl) and three nuclear genes (ITS, s6pdh and Sbel) to explore their infrageneric used to develop a new, phylogeny-based classification relationships. The results of these analyses were of Prunus s.I. Our phylogenetic reconstructions resolved three main clades of Prunus s.I. with strong supports. We adopted a broad-sensed genus, Prunus, and recognised three subgenera corresponding to the three main clades: subgenus Padus, subgenus Cerasus and subgenus Prunus. Seven sections of subgenus Prunus were recognised. The dwarf cherries, which were previously assigned to subgenus Cerasus, were included in this subgenus Prunus. One new section name, Prunus L. subgenus Prunus section Persicae (T. T. yu & L. T. Lu) S. L. Zhou and one new species name, Prunus tianshanica (Pojarkov) S. Shi, were proposed.  相似文献   

6.
Genus Pinus is a widely dispersed genus of conifer plants in the Northern Hemisphere. However, the inadequate accessibility of genomic knowledge limits our understanding of molecular phylogeny and evolution of Pinus species. In this study, the evolutionary features of complete plastid genome and the phylogeny of the Pinus genus were studied. A total of thirteen divergent hotspot regions (trnk-UUU, matK, trnQ-UUG, atpF, atpH, rpoC1, rpoC2, rpoB, ycf2, ycf1, trnD-GUC, trnY-GUA, and trnH-GUG) were identified that would be utilized as possible genetic markers for determination of phylogeny and population genetics analysis of Pinus species. Furthermore, seven genes (petD, psaI, psaM, matK, rps18, ycf1, and ycf2) with positive selection site in Pinus species were identified. Based on the whole genome this phylogenetic study showed that twenty-four Pinus species form a significant genealogical clade. Divergence time showed that the Pinus species originated about 100 million years ago (MYA) (95% HPD, 101.76.35–109.79 MYA), in lateral stages of Cretaceous. Moreover, two of the subgenera are consequently originated in 85.05 MYA (95% HPD, 81.04–88.02 MYA). This study provides a phylogenetic relationship and a chronological framework for the future study of the molecular evolution of the Pinus species.  相似文献   

7.
Recent molecular phylogenetic analyses of Primula have greatly enhanced our understanding of the infrageneric relationships of the genus,but the subgenera Auganthus and Carolinella remain meagerly sampled and poorly understood.In the present study,nucleotide sequence data of three chloroplast DNA regions (matK,rps16,and trnL-F) were used to infer phylogenetic relationships of the subgenera Auganthus and Carolinella.Sequence data were acquired and analyzed for 70 species of Primula and its close relatives.Th...  相似文献   

8.
There is currently international interest in the application of DNA barcoding as a tool for plant species discrimination and identification. In this study, we evaluated the utility of five candidate plant DNA barcoding regions [rbcL, matK, trnH-psbA, trnL-F and internal transcribed spacer (ITS)] in Eurasian yews. This group of species is taxonomically difficult because of a lack of clear-cut morphologically differences between species and hence represents a good test case for DNA barcoding. Forty-seven accessions were analysed, representing all taxa treated in current floristic works and covering most of the distribution range of Taxus in Eurasia. As single loci, trnL-F and ITS showed the highest species discriminatory power, each resolving 11 of 11 lineages (= barcode taxa). Species discrimination using matK, trnH-psbA and rbcL individually was lower, with matK resolving 8 of 10, trnH-psbA 7 of 11 and rbcL 5 of 11 successfully sequenced lineages. The proposed CBOL core barcode (rbcL + matK) resolved 8 of 11 lineages. Combining loci generally increased the robustness (measured by clade support) of the barcoding discrimination. Based on overall performance, trnL-F and ITS, separately or combined, are proposed as barcode for Eurasian Taxus. DNA barcoding discriminated recognized taxa of Eurasian Taxus, namely T. baccata, T. cuspidata, T. fuana and T. sumatrana, and identified seven lineages among the T. wallichiana group, some with distinct geographical distributions and morphologies, and potentially representing new species. Using the proposed DNA barcode, a technical system can be established to rapidly and reliably identify Taxus species in Eurasia for conservation protection and for monitoring illegal trade.  相似文献   

9.
10.
The occurrence of nonfunctional trnF pseudogenes has been rarely described in flowering plants. However, we describe the first large-scale supernetwork for the Brassiccaeae built from gene trees for 5 loci (adh, chs, matK, trnL-F, and ITS) and report multiple independent origins for trnF pseudogenes in crucifers. The duplicated regions of the original trnF gene are comprised of its anticodon domain and several other highly structured motifs not related to the original gene. Length variation of the trnL-F intergenic spacer region in different taxa ranges from 219 to 900 bp as a result of differences in pseudocopy number (1-14). It is speculated that functional constraints favor 2-3 or 5-6 copies, as found in Arabidopsis and Boechera. The phylogenetic distribution of microstructural changes for the trnL-F region supports ancient patterns of divergence in crucifer evolution for some but not all gene loci.  相似文献   

11.
To evaluate the monophyly of subtribe Pleurothallidinae (Epidendreae: Orchidaceae) and the component genera and to reveal evolutionary relationships and trends, we sequenced the nuclear ribosomal DNA internal transcribed spacers (ITS1 and ITS2) and 5.8S gene for 185 taxa. In addition, to improve the overall assessments along the spine of the topology, we added plastid sequences from matK, the trnL intron, and the trnL-F intergenic spacer for a representative subset of those taxa in the ITS study. All results were highly congruent, and so we then combined the sequence data from all three data sets in a separate analysis of 58 representative taxa. There is strong support in most analyses for the monophyly of Pleurothallidinae and in some for inclusion of Dilomilis and Neocognauxia of Laeliinae. Although most genera in the nine clades identified in the analyses are monophyletic, all data sets are highly congruent in revealing the polyphyly of Pleurothallis and its constitutent subgenera as presently understood. The high degree of homoplasy in morphological characters, especially floral characters, limits their usefulness in phylogenetic reconstruction of the subtribe.  相似文献   

12.
? Premise of the study: The opuntias (nopales, prickly pears) are not only culturally, ecologically, economically, and medicinally important, but are renowned for their taxonomic difficulty due to interspecific hybridization, polyploidy, and morphological variability. Evolutionary relationships in these stem succulents have been insufficiently studied; thus, delimitation of Opuntia s.s. and major subclades, as well as the biogeographic history of this enigmatic group, remain unresolved. ? Methods: We sequenced the plastid intergenic spacers atpB-rbcL, ndhF-rpl32, psbJ-petA, and trnL-trnF, the plastid genes matK and ycf1, the nuclear gene ppc, and ITS to reconstruct the phylogeny of tribe Opuntieae, including Opuntia s.s. We used phylogenetic hypotheses to infer the biogeographic history, divergence times, and potential reticulate evolution of Opuntieae. ? Key results: Within Opuntieae, a clade of Tacinga, Opuntia lilae, Brasiliopuntia, and O. schickendantzii is sister to a well-supported Opuntia s.s., which includes Nopalea. Opuntia s.s. originated in southwestern South America (SA) and then expanded to the Central Andean Valleys and the desert region of western North America (NA). Two major clades evolved in NA, which subsequently diversified into eight subclades. These expanded north to Canada and south to Central America and the Caribbean, eventually returning back to SA primarily via allopolyploid taxa. Dating approaches suggest that most of the major subclades in Opuntia s.s. originated during the Pliocene. ? Conclusions: Opuntia s.s. is a well-supported clade that includes Nopalea. The clade originated in southwestern SA, but the NA radiation was the most extensive, resulting in broad morphological diversity and frequent species formation through reticulate evolution and polyploidy.  相似文献   

13.
The taxonomic position of Castanopsis longzhouica C. C. Huang & Y. T. Chang has been controversial. Various authors included it in Castanopsis (D. Don) Spach, or Lithocarpus Bl. based on morphology, palynology and wood anatomy. In order to investigate this issue, sequences of nuclear ITS and the chloroplast genes matK and trnL-F of C. longzhouica were analyzed together with 72 representatives of 7 genera within Fagaceae. As for species of Lithocarpus , there were a 1-bp insertion and two unique 3-bp deletions from ITS2 of C. longzhouica distinguishing it from Castanopsis . The phylogenetic analyses on the separate ITS data and the joint data (ITS+ matK + trnL-F ) strongly supported a derived position of C. longzhouica within a clade consisting of members of Lithocarpus . The result is consistent with previous suggestions based on wood anatomy, suggesting that C. longzhouica should be transferred to Lithocarpus . In addition, the shallow cup-shaped, loose incoherent-scale and indehiscent cupule and the concave scar of C. longzhouica suggests a close relationship to species of Lithocarpus . Based on these data, the new combination Lithocarpus longzhouicus (C. C. Huang & Y. T. Chang) J. Q. Li & L. Chen is proposed.  相似文献   

14.
A Molecular Phylogeny of Costaceae (Zingiberales)   总被引:1,自引:0,他引:1  
The phylogenetic relationships of Costaceae, a tropical monocotyledonous family sister to the gingers (Zingiberaceae), were investigated with a combination of two chloroplast loci (the trnL-F locus, including the trnL intron, the 3'trnL exon, and the trnL-F intergenic spacer, and the trnK locus, including the trnK intron and the matK coding region) and one nuclear locus (ITS1-5.8s-ITS2). The resulting parsimony analysis of selected taxa that demonstrate the range of floral morphological variation in the family shows that the Cadalvena-type [corrected] floral morphology is ancestral to the group and that both Tapeinochilos species and a Monocostus + Dimerocostus clade represent recent divergences. The genus Costus is broadly paraphyletic but Costus subgenus Eucostus K. Schum. represents a large monophyletic radiation that is poorly resolved. Within this clade, secondary analyses suggest that pollination syndrome, traditionally used for taxonomic and classification purposes within the genus Costus, is a relatively plastic trait of limited phylogenetic utility. This represents the first detailed investigation into intrageneric and interspecific evolutionary relationships within the family Costaceae and presents some novel evolutionary trends with respect to floral morphology and biogeography.  相似文献   

15.
Coding regions of the rbcL and matK genes of cp DNA and internal transcribed spacers (ITS) of nuclear ribosomal DNA were sequenced to study phylogenetic relationships within and among all four genera of Trilliaceae: Trillium, Paris, Daiswa and Kinugasa . The rbcL gene has evolved much slower than matK and in particular ITS; hence the phylogenetic trees based on the rbcL gene show a much lower resolution than trees based on either matK or ITS. The general topology of phylogenetic trees resulting from separate parsimony analyses of the matK and ITS sequences are relatively congruent, with the exception of the placement of T. pusillum . Both matK and ITS phylogenies reveal that T. rivale diverges at the base of the trees. In both trees, Paris, Daiswa and Kinugasa form a relatively weakly supported group. Within this group, the allo-octaploid Kinugasa japonica is the sister group of Daiswa species. The Paris–Daiswa – Kinugasa group, the major Trillium group, and T. undulatum and T. govanianum showed a loosely related topology, but their affinities are not evident according to these two molecular markers. However, phylogenetic analysis of amino acid sequences derived from matK shows that T. rivale together with clades T. undulatum–T. govanianum, Daiswa–Kinugasa and Paris is basally diverged as a sister group to the remainder of Trillium .  相似文献   

16.
For Nicotiana, with 75 naturally occurring species (40 diploids and 35 allopolyploids), we produced 4656bp of plastid DNA sequence for 87 accessions and various outgroups. The loci sequenced were trnL intron and trnL-F spacer, trnS-G spacer and two genes, ndhF and matK. Parsimony and Bayesian analyses yielded identical relationships for the diploids, and these are consistent with other data, producing the best-supported phylogenetic assessment currently available for the genus. For the allopolyploids, the line of maternal inheritance is traced via the plastid tree. Nicotiana and the Australian endemic tribe Anthocercideae form a sister pair. Symonanthus is sister to the rest of Anthocercideae. Nicotiana sect. Tomentosae is sister to the rest of the genus. The maternal parent of the allopolyploid species of N. sect. Polydicliae were ancestors of the same species, but the allopolyploids were produced at different times, thus making such sections paraphyletic to their extant diploid relatives. Nicotiana is likely to have evolved in southern South America east of the Andes and later dispersed to Africa, Australia, and southwestern North America.  相似文献   

17.
Phylogenetic analyses of Meliaceae, including representatives of all four currently recognized subfamilies and all but two tribes (32 genera and 35 species, respectively), were carried out using DNA sequence data from three regions: plastid genes rbcL, matK (partial), and nuclear 26S rDNA (partial). Individual and combined phylogenetic analyses were performed for the rbcL, matK, and 26S rDNA data sets. Although the percentage of informative characters is highest in the segment of matK sequenced, rbcL provides the greatest number of informative characters of the three regions, resulting in the best resolved trees. Results of parsimony analyses support the recognition of only two subfamilies (Melioideae and Swietenioideae), which are sister groups. Melieae are the only tribe recognized previously that are strongly supported as monophyletic. The members of the two small monogeneric subfamilies, Quivisianthe and Capuronianthus, fall within Melioideae and Swietenioideae, respectively, supporting their taxonomic inclusion in these groups. Furthermore, the data indicate a close relationship between Aglaieae and Guareeae and a possible monophyletic origin of Cedreleae of Swietenioideae. For Trichilieae (Melioideae) and Swietenieae (Swietenioideae) lack of monophyly is indicated.  相似文献   

18.
A natural hybrid species in Petrocosmea named Longianthera in Yanshan County,Yunnan Province is confirmed for the first time based on molecular and morphological evidence.The character count procedure of the variable characters show that Longianthera populations are characteristic of the intermediate morphological traits between its putative parents Yanshan and Petrocosmea martinii.The nuclear ribosomal internal transcribed spacer region and three chloroplast regions of matK,trnL-F,and trnT-L are sequenced in the putativehybrid and the related species.Both alignment of DNA sequences and the phylogenetic trees could exclude all the other species in Petrocosmea as the parental species except for Yanshan and P martinii.Eight haplotypes in the 31 internal transcribed spacer sequences and six haplotypes in 42 cpDNA sequences were found from 14 individuals of Longianthera populations.The analyses of DNA sequences,haplotypes,and phylogenetic trees indicate that Longianthera is likely a hybrid species between its putative parents Yanshan and P martinii,in which Yanshan might be the most possible maternal parent.Several factors may contribute to the natural hybridization between these two parental species in Petrocosmea,such as the overlapped geographic distribution,habitats,flowering periods,and shared pollinators.Finally,the new species of Yanshan and the natural hybrid species of Longianthera are described.  相似文献   

19.
The monophyly of and phylogenetic relationships within the orchid tribe Maxillarieae Pfitzer were evaluated using parsimony analyses of combined nuclear ribosomal and plastid DNA sequence data of ITS 1 and 2, matK, and the trnL intron and the trnL-F intergene spacer. Each of the separate analyses produced highly congruent but weakly supported patterns (by the bootstrap), so these were combined in a single analysis. Analysis of 90 ingroup taxa (representing ~35% of currently recognized genera) and four outgroup taxa produced resolved and highly supported cladograms. Based on the cladograms, we recognize six subtribes: Eriopsidinae, Oncidiinae (including Pachyphyllinae, Ornithocephalinae, and Telipogoninae), Stanhopeinae, Coeliopsidinae, Maxillariinae (including Lycastinae and Bifrenariinae), and Zygopetalinae (including Cryptarrheninae, Dichaeinae, Huntleyinae, and Warreinae). Stanhopeinae were sampled most intensively; their generic relationships were highly resolved in the analysis and largely agree with currently accepted generic concepts based on morphology. Coeliopsidinae (Coeliopsis, Lycomormium, Peristeria) are sister to Stanhopeinae. Correlations are drawn among phylogeny, pollination mechanisms, and life history traits.  相似文献   

20.
In this paper we included a very broad representation of grass family diversity (84% of tribes and 42% of genera). Phylogenetic inference was based on three plastid DNA regions rbcL, matK and trnL-F, using maximum parsimony and Bayesian methods. Our results resolved most of the subfamily relationships within the major clades (BEP and PACCMAD), which had previously been unclear, such as, among others the: (i) BEP and PACCMAD sister relationship, (ii) composition of clades and the sister-relationship of Ehrhartoideae and Bambusoideae + Pooideae, (iii) paraphyly of tribe Bambuseae, (iv) position of Gynerium as sister to Panicoideae, (v) phylogenetic position of Micrairoideae. With the presence of a relatively large amount of missing data, we were able to increase taxon sampling substantially in our analyses from 107 to 295 taxa. However, bootstrap support and to a lesser extent Bayesian inference posterior probabilities were generally lower in analyses involving missing data than those not including them. We produced a fully resolved phylogenetic summary tree for the grass family at subfamily level and indicated the most likely relationships of all included tribes in our analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号