首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of dansyl-labeled glycosides with di-, tetra-, and hexasaccharides carrying the terminal N-acetyllactosamine (LacNAc) sequence were synthesized as acceptor substrates for α2,6- and α2,3-sialyltransferases. As an alternative design, dansyl-labeled LacNAc glycoside carrying a long-spacer linked glycan was engineered by replacement of the LacNAc or lactose units with an alkyl chain. In addition, we designed a dansyl-labeled bi-antennary LacNAc glycoside as an N-linked oligosaccharide mimetic, such as asialo-α1-acid glycoprotein. The kinetic parameters for the transfer reaction of synthesized dansyl-labeled glycosides by sialyltransferases were determined by the fluorescent HPLC method. The catalytic efficiencies (V max/K m) of acceptor substrates carrying the terminal LacNAc sequence with various length glycans in the array for α2,6- and α2,3-sialyltransferases decreased in a glycan length-dependent manner. Furthermore, of the acceptor substrates tested, dansyl-labeled bi-antennary LacNAc glycoside displayed the most favorable K m value for α2,6- and α2,3-sialyltransferases.  相似文献   

2.
Highly water-soluble, artificial glycopolypeptides with a gamma-polyglutamic acid (gamma-PGA) backbone derived from Bacillus subtilis sp. and multivalent sialyloligosaccharide units have been chemoenzymatically synthesized as potential polymeric inhibitors of infection by bird and human influenza viruses. 5-Trifluoroacetamidopentyl beta-N-acetyllactosaminide and 5-trifluoroacetamidopentyl beta-lactoside were enzymatically synthesized from LacNAc and lactose, respectively, by cellulase-mediated condensation with 5-trifluoroacetamido-1-pentanol. After deacetylation, the resulting 5-aminopentyl beta-LacNAc and beta-lactoside glycosides were coupled to the alpha-carboxyl groups of the gamma-PGA side chains. The artificial glycopolypeptides carrying LacNAc and lactose were further converted to Neu5Acalpha2-(3/6)Galbeta1-4Glcbeta and Neu5Acalpha2-(3/6)Galbeta1-4GlcNAcbeta sialyloligosaccharide units by alpha2,3- and alpha2,6-sialyltransferase, respectively. The interaction of these glycopolypeptides with various influenza virus strains has been investigated by three different methods. Glycopolypeptides carrying Neu5Acalpha2,6LacNAc inhibited hemagglutination mediated by influenza A and B viruses, and their relative binding affinities for hemagglutinin were 10(2)- to 10(4)-fold higher than that of the naturally occurring fetuin control. A glycopolypeptide carrying Neu5Acalpha2,6LacNAc inhibited infection by A/Memphis/1/71 (H3N2) 93 times more strongly than fetuin, as assessed by cytopathic effects on virus-infected MDCK cells. The avian virus [A/duck/Hong kong/4/78 (H5N3)] bound strongly to Neu5Acalpha2,3LacNAc/Lac-carrying glycopolypeptides, whereas the human virus [A/Memphis/1/71 (H3N2)] bound to Neu5Acalpha2,6LacNAc in preference to Neu5Acalpha2,6Lac. Taken together, these results indicate that the binding of viruses to terminal sialic acids is markedly affected by the structure of the asialo portion, in this case either LacNAc or lactose, in the sugar chain of glycopolypeptides.  相似文献   

3.
Several bacterial sialyltransferases have been reported to be multifunctional also catalysing sialidase and trans-sialidase reactions. In this study, we examined the trans-sialylation efficacy and regioselectivity of mutants of the multifunctional Pasteurella multocida sialyltransferase (PmST) for catalysing the synthesis of 3′- and 6′-sialyllactose using casein glycomacropeptide as sialyl-donor and lactose as acceptor. The mutation P34H led to a 980-fold increase in α-2,6-sialyltransferase activity (with cytidine-5′-monophospho-N-acetylneuraminic acid as donor), while its α-2,3-sialyltransferase activity was abolished. Histidine in this position is conserved in α-2,6-sialyltransferases and has been suggested, and recently confirmed, to be the determinant for strict regiospecificity in the sialyltransferase reaction. Our data verified this theorem. In trans-sialidase reactions, the P34H mutant displayed a distinct preference for 6′-sialyllactose synthesis but low levels of 3′-sialyllactose were also produced. The sialyllactose yield was however lower than when using PmSTWT under optimal conditions for 6′-sialyllactose formation. The discrepancy in regiospecificity between the two reactions could indicate subtle differences in the substrate binding site in the two reactions. In contrast, the two mutations E271F and R313Y led to preferential synthesis of 3′-sialyllactose over 6′-sialyllactose and the double mutant (PmSTE271F/R313Y) exhibited the highest α-2,3-regioselectivity via reduced sialidase and α-2,6-trans-sialidase activity. The double mutant PmSTE271F/R313Y thus showed the highest α-2,3-regioselectivity and constitutes an interesting enzyme for regioselective synthesis of α-2,3-sialylated glycans. This study has expanded the understanding of the structure-function relationship of multifunctional, bacterial sialyltransferases and provided new enzymes for regioselective glycan sialylation.  相似文献   

4.
Galan MC  Venot AP  Boons GJ 《Biochemistry》2003,42(28):8522-8529
A range of N-acetyllactosamine derivatives (compounds 4-7) that have restricted mobilities around their glycosidic linkages have been employed to determine how small changes in conformational properties of an oligosaccharide acceptor affect catalytic efficiencies of glycosylations by alpha-2,6- and alpha-2,3-sialyltransferases and alpha-1,3-fucosyltransferases IV and VI. Restriction of conformational mobility was achieved by introducing tethers of different length and chemical composition between the C-6 and C-2' hydroxyl of LacNAc. Compound 4 is a 2',6-anhydro derivative which is highly constrained and can adopt only two unusual conformations at the LacNAc glycosidic linkage. Compound 5 is modified by a methylene acetal tether and can exist in a larger range of conformations; however, the Phi dihedral angle is restricted to values smaller than 30 degrees, which are not entirely similar to minimum energy conformations of LacNAc. The ethylene-tethered 6 can attain conformations in the relatively large energy plateau of LacNAc that include syn conformations A and B, whereas compound 7, which is modified by a methylamide tether, can only reside in the B-conformer. 2',6-Dimethoxy derivative 2 was employed to determine the effect of alkylation of the C-6 and C-2' hydroxyls of 5 and 6 whereas 3 was used to reveal the effects of the C-6 amide and C-2' alkylation of 7. The apparent kinetic parameters of transfer to the conformationally constrained 4-7 and reference compounds 1-3 catalyzed by alpha-2,6- and alpha-2,3-sialyltransferases and alpha-1,3-fucosyltransferases IV and VI were determined, and the results correlated with their conformational properties. The data for 4-6 showed that each enzyme recognizes N-acetyllactosamine in a low minimum energy conformation. A small change in conformational properties such as in compound 5 resulted in a significant loss of catalytic activity. Larger conformational changes such as in compound 4 abolished all activity of the sialyltransferases whereas the fucosyltransferases showed some activity, albeit very low. The kinetic data for compounds 4 and 5 demonstrate clearly that different glycosyltransferases respond differently to conformational changes, and the fucosyltransferases lost less activity than the sialyltransferases. Correlating apparent kinetic parameters of conformationally constrained 6 and 7 and their reference compounds 2 and 3 further supports the fact that different enzymes respond differently and indicates that sialyltransferases and fucosyltransferases recognize N-acetyllactosamine in a different conformation. Collectively, the data presented here indicate that small conformational changes of an oligosaccharide acceptor induced by, for example, the protein structure can be employed to modulate the patterns of protein glycosylation.  相似文献   

5.
Genome sequence data were used to clone and express two sialyltransferase enzymes of the GT-42 family from Helicobacter acinonychis ATCC 51104, a gastric disease isolate from Cheetahs. The deposited genome sequence for these genes contains a large number of tandem repeat sequences in each of them: HAC1267 (RQKELE)(15) and HAC1268 (EEKLLEFKNI)(13). We obtained two clones with different numbers of repeat sequences for the HAC1267 gene homolog and a single clone for the HAC1268 gene homolog. Both genes could be expressed in Escherichia coli and sialyltransferase activity was measured using synthetic acceptor substrates containing a variety of terminal sugars. Both enzymes were shown to have a preference for N-acetyllactosamine, and they each made a product with a different linkage to the terminal galactose. HAC1267 is a mono-functional α2,3-sialyltransferase, whereas HAC1268 is a mono-functional α2,6-sialyltransferase and is the first member of GT-42 to show α2,6-sialyltransferase activity.  相似文献   

6.
Divalent glycosides carrying N-acetyl-d-glucosamine (GlcNAc) and N-acetyllactosamine (LacNAc) were designed and prepared as glycomimetics. First, hexan-1,6-diyl bis-(2-acetamido-2-deoxy-beta-d-glucopyranoside) (GlcNAc-Hx-GlcNAc) and 3,6-dioxaoct-1,8-diyl bis-(2-acetamido-2-deoxy-beta-d-glucopyranoside) (GlcNAc-Doo-GlcNAc) were enzymatically synthesized by transglycosylation of an N,N'N',N'-tetraacetylchitotetraose [(GlcNAc)(4)] donor with a primary diol acceptor, utilizing a chitinolytic enzyme from Amycolatopsis orientalis. The resulting divalent glycosides were further converted to the respective hexan-1,6-diyl bis-[beta-d-galactopyranosyl-(1-->4)-2-acetamido-2-deoxy-beta-d-glucopyranoside] (LacNAc-Hx-LacNAc) and 6-(2-acetamido-2-deoxy-beta-d-glucopyranosyl)-hexyl beta-d-galactopyranosyl-(1-->4)-2-acetamido-2-deoxy-beta-d-glucopyranoside (LacNAc-Hx-GlcNAc), and respective 3,6-dioxaoct-1,8-diyl bis-[beta-d-galactopyranosyl-(1-->4)-2-acetamido-2-deoxy-beta-d-glucopyranoside] (LacNAc-Doo-LacNAc) and 8-(2-acetamido-2-deoxy-beta-d-glucopyranosyl)-3,6-dioxaoctyl beta-d-galactopyranosyl-(1-->4)-2-acetamido-2-deoxy-beta-d-glucopyranoside (LacNAc-Doo-GlcNAc) by galactosyltransferase. The interaction of wheat germ agglutinin (WGA) with a series of divalent glycosides and related compounds were studied using a biosensor based on surface plasmon resonance (SPR) and by precipitation analysis. Our results demonstrated that divalent glycosides carrying GlcNAc on both sides and GlcNAc and LacNAc on each side are capable of precipitating WGA as divalent ligands, but that the corresponding monovalent controls and divalent glycosides carrying LacNAc on both sides are unable to precipitate the lectin and bind as univalent ligands.  相似文献   

7.
The N-glycan pattern of an IgG antibody, attached at a conserved site within the fragment crystallizable (Fc) region, is a critical antibody quality attribute whose structural variability can also impact antibody function. For tailoring the Fc glycoprofile, glycoengineering in cell lines as well as Fc amino acid mutations have been applied. Multiple glycoengineered Chinese hamster ovary cell lines were generated, including defucosylated (FUT8KO), α-2,6-sialylated (ST6KI), and defucosylated α-2,6-sialylated (FUT8KOST6KI), expressing either a wild-type anti-CD20 IgG (WT) or phenylalanine to alanine (F241A) mutant. Matrix-assisted laser desorption ionization-time of flight mass spectrometry characterization of antibody N-glycans revealed that the F241A mutation significantly increased galactosylation and sialylation content and glycan branching. Furthermore, overexpression of recombinant human α-2,6-sialyltransferase resulted in a predominance of α-2,6-sialylation rather than α-2,3-sialylation for both WT and heavily sialylated F241A antibody N-glycans. Interestingly, knocking out α-1,6-fucosyltransferase (FUT8KO), which removed core fucose, lowered the content of N-glycans with terminal Gal and increased levels of terminal GlcNAc and Man5 groups on WT antibody. Further complement-dependent cytotoxicity (CDC) analysis revealed that, regardless of the production cells, WT antibody samples have higher cytotoxic CDC activity with more exposed Gal residues compared to their individual F241A mutants. However, the FUT8KO WT antibody, with a large fraction of bi-GlcNAc structures (G0), displayed the lowest CDC activity of all WT antibody samples. Furthermore, for the F241A mutants, a higher CDC activity was observed for α-2,6- compared to α-2,3-sialylation. Antibody-dependent cellular cytotoxicity (ADCC) analysis revealed that the defucosylated WT and F241A mutants showed enhanced in vitro ADCC performance compared to their fucosylated counterparts, with the defucosylated WT antibodies displaying the highest overall ADCC activity, regardless of sialic acid substitution. Moreover, the FcγRIIIA receptor binding by antibodies did not always correspond directly with ADCC result. This study demonstrates that glycoengineering and protein engineering can both promote and inhibit antibody effector functions and represent practical approaches for varying glycan composition and functionalities during antibody development.  相似文献   

8.
Human lung tumor alpha1,3/4-L-fucosyltransferase (FT) was purified (2000-fold, 29% recovery) from 290 g of tissue by including a chromatography step on Affinity Gel-GDP. Two molecular forms (FTA, larger size carrying 15% alpha1,4-FT activity; FTB, the major form with 85% activity) were separated by further fractionation on a Sephacryl S-100 HR column. A difference in the electrophoretic mobilities of these two activities was also found on native polyacrylamide gel electrophoresis (PAGE). Both forms were devoid of typical alpha1,2-fucosylating activity but were associated with the novel alpha1,2-fucosylating ability of converting the Lewis a determinant to Lewis b. Based on percentage activity toward 2-O-MeGalbeta1,3GlcNAcbeta-O-Bn, both forms exhibited the same extent of activity toward various acceptors, which included sulfated, sialylated, or methylated LacNAc type 1 or type 2 as well as mucin core 2 acceptors. However, FTA and FTB exhibited a difference in their ability to act on mucin core 2 3'-sialyl LacNAc (activities 24.2% and 40.8%, respectively, as compared to 2-O-MeGalbeta1,3GlcNAcbeta-O-Bn). The unsubstituted LacNAc type 1 acceptors were 15-20 times as active as the corresponding LacNAc type 2 acceptors. The 3-O-substitution on the beta1,4-linked Gal (methyl, sulfate, or sialyl) in mucin core 2 acceptors increased the efficiency of these acceptors five- to eightfold. The most efficient acceptor for FTA and FTB was 3-O-sulfoGalbeta1,3GlcNAcbeta-O-Al (K(m) 100 and 47 microM, respectively). The K(m) (mM) values for 2-O-methyl Galbeta1,3GlcNAcbeta-O-Bn and 3-O-sialyl Galbeta1,3GlcNAcbeta-O-Bn were 0.40 and 2.5 (FTA) and 0.16 and 0.67 (FTB), respectively. The 35-kDa glycoprotein ancrod (from Malayan pit viper venom) containing 36% complex N-glycans with the antennae NeuAcalpha2,3Galbeta1,3GlcNAcbeta- acted as the best macromolecular acceptor substrate (K(m): 45 microM), as examined with FTB. On desialylation the acceptor efficiency dropped to approximately 50% (K(m) for asialo ancrod: 167 microM). Sialylglycoproteins, such as carcinoembryonic antigen, fetuin, and bovine alpha(1)-acid glycoprotein, were better acceptors than asialo fetuin. On the contrary, fetuin triantennary glycopeptide containing predominantly NeuAcalpha2,3Galbeta1,4GlcNAcbeta- was only 55% active as compared to the asialo glycopeptide (K(m): 1.43 and 0.63 mM, respectively). Thus, the human lung tumor alpha1,3/4-L-FT has the potential to generate clustered sialyl Lewis a and Lewis b determinants in N-glycans and sialyl Lewis x determinant in mucin core 2 structures.  相似文献   

9.
Here we demonstrate that glycan microarrays can be used for high-throughput acceptor specificity screening of various recombinant sialyltransferases. Cytidine-5'-monophospho-N-acetylneuraminic acid (CMP-Neu5Ac) was biotinylated at position 9 of N-acetylneuraminic acid (Neu5Ac) by chemoenzymatic synthesis generating CMP-9Biot-Neu5Ac. The activated sugar nucleotide was used as donor substrate for various mammalian sialyltranferases which transferred biotinylated sialic acids simultaneously onto glycan acceptors immobilized onto a microarray glass slide. Biotinylated glycans detected with fluorescein-streptavidin conjugate to generate a specificity profile for each enzyme both confirming previously known specificities and reveal additional specificity information. Human alpha2,6sialyltransferase-I (hST6Gal-I) also sialylates chitobiose structures (GlcNAcbeta1-4GlcNAc)(n) including N-glycans, rat alpha2,3sialyltransferase (rST3Gal-III) tolerates fucosylated acceptors such as Lewis(a), human alpha2,3sialyltransferase-IV (hST3Gal-IV) broadly sialylates oligosaccharides of types 1-4 and porcine alpha2,3sialyltransferase-I (pST3Gal-I) sialylates ganglio-oligosaccharides and core 2 O-glycans in our array system. Several of these sialyltransferases perform a substitution reaction and exchange a sialylated acceptor with a biotinylated sialic acid but are restricted to the most specific acceptor substrates. Thus, this method allows for a rapid generation of enzyme specificity information and can be used towards synthesis of new carbohydrate compounds and expand the glycan array compound library.  相似文献   

10.
Chinese hamster ovary (CHO) cells typically produce glycoproteins with N-glycans terminating in α-2,3 sialylation. Human cells produce glycoproteins that include α-2,3 and α-2,6 sialic acids. To examine the impact of altering protein sialylation on pharmacokinetic properties, recombinant human butyrylcholinesterase (BChE) was produced in CHO cells by knocking out the α-2,3 sialyltransferase genes followed by overexpression of the α-2,6 sialyltransferase (26BChE) enzyme. The N-glycan composition of 26BChE was compared to BChE with α-2,3 sialylation (23BChE) derived from wild-type CHO cells. Both 23BChE and 26BChE exhibited comparable antennarity distributions with bi-antennary di-sialylated glycans representing the most abundant glycoform. CD-1 mice were intravenously injected with the 23BChE or 26BChE, and residual BChE activities from blood collected at various time points for pharmacokinetic analyses. Although 23BChE contained a slightly lower initial sialylation level compared to 26BChE, the molecule exhibited higher residual activity between 5 and 24 hr postinjection. Pharmacokinetic analyses indicated that 23BChE exhibited an increase in area under the curve and a lower volume of distribution at steady state than that of 26BChE. These findings suggest that the type of sialylation linkage may play a significant role in the pharmacokinetic behavior of a biotherapeutic when tested in in vivo animal models.  相似文献   

11.
Prostate carcinoma LNCaP cells were unique among several human cancer cell lines which include two other prostate cancer cell lines, PC-3 and DU-145, in expressing alpha1,2-L-fucosyltransferase (FT) as an exclusive FT activity. Affinity gel-GDP and Sephacryl S100 HR columns were used for a partial purification of this enzyme from 3.9 x 10(9) LNCaP cells (approximately 200-fold; 40% yield). The K(m) value (2.7 mM) for the LacNAc type 2 acceptor was quite similar to the one reported for the cloned blood group H gene-specified alpha1,2-FT [Chandrasekaran et al. (1996) Biochemistry 35, 8914-8924]. N-Ethylmaleimide was a potent inhibitor (K(i ) 12.5 microM). The enzyme showed four-fold acceptor preference for the LacNAc type 2 unit in comparison to the T-hapten in mucin core 2 structure. Its main features were similar to those of the cloned enzyme: (1) C-6 sulfation of terminal Gal in the LacNAc unit increased the acceptor efficiency, whereas C-6 sialylation abolished acceptor ability; (2) C-6 sulfation of GlcNAc in LacNAc type 2 decreased by 80% the acceptor ability, whereas LacNAc type 1 was unaffected; (3) Lewis x did not serve as an acceptor; (4) the C-4 hydroxyl rather than the C-6 hydroxyl group of the GlcNAc moiety in LacNAc type1 was essential for activity; and (5) the acrylamide copolymer of Galbeta1,3GlcNAcbeta-O-Al was the best acceptor among the acrylamide copolymers. Additionally, highly significant biological features of alpha1,2FT were identified in the present study. The synthesis of Globo H and Lewis b determinants became evident from the fact that Galbeta1,3GalNAcbeta1,3Galalpha-O-Me and Galbeta1,3(Fucalpha1,4)Glc-NAcbeta1,3Galbeta-O-Me served as high-affinity acceptors for this enzyme. Further, D-Fucbeta1,3Gal-NAcbeta1,3Galalpha-O-Me was a very efficient acceptor, indicating that the C-6 hydroxyl group of the terminal Gal moiety in Globo H is not essential for the enzyme activity. Thus, the present study was able to demonstrate three different catalytic roles of LNCaP alpha1,2-FT, namely, the expressions of blood group H, Lewis b from Lewis a, and Globo H.  相似文献   

12.
13.
Receptor recognition and binding is the first step in the viral cycle. It has been established that Newcastle Disease Virus (NDV) interacts with sialylated molecules such as gangliosides and glycoproteins at the cell surface. Nevertheless, the specific receptor(s) that mediate virus entry are not well known. We have analysed the role of the sialic acid linkage in the early steps of the viral infection cycle. Pretreatment of ELL-0 cells with both α2,3 and α2,6 specific sialidases led to the inhibition of NDV binding, fusion and infectivity, which were restored after α2,3(N)- and α2,6(N)-sialyltransferase incubation. Moreover, α2,6(N)-sialyltransferases also restored NDV activities in α2-6-linked sialic acid deficient cells. Competition with α2-6 sialic acid-binding lectins led to a reduction in the three NDV activities (binding, fusion and infectivity) suggesting a role for α2-6- linked sialic acid in NDV entry. We conclude that both α2-3- and α2-6- linked sialic acid containing glycoconjugates may be used for NDV infection. NDV was able to efficiently bind, fuse and infect the ganglioside-deficient cell line GM95 to a similar extent to that of its parental MEB4, suggesting that gangliosides are not essential for NDV binding, fusion and infectivity. Nevertheless, the fact that the interaction of NDV with cells deficient in N-glycoprotein expression such as Lec1 was less efficient prompted us to conclude that NDV requires N-linked glycoproteins for efficient attachment and entry into the host cell.  相似文献   

14.
The 1-bromides of p-nitrobenzoylated 2-O-benzyl- (1) and 2,3- (8) and 2,6-di-O-benzyl-D-galactose (14) and 2-O-benzyl-D-glucose (20) were treated under Koenigs-Knorr conditions with 6-(trifluoroacetamido)-1-hexanol. Examination of the products by p.m.r. spectroscopy, g.l.c., and mass spectrometry revealed that, whereas the major product derived from 14 was the pyranoside (19), the glycosides derived from both 1 and 8 were mainly furanosides. The corresponding glycoside from 20 was entirely the pyranoside (23).  相似文献   

15.
Sialic acids are negatively charged acidic sugars, and sialylglycoconjugates often play important roles in various biological phenomena. Sialyltransferases are involved in the synthesis of sialylglycoconjugates, and 20 members of the mammalian sialyltransferase family have been identified to date. These sialyltransferases are grouped into four families according to the carbohydrate linkages they synthesize: beta-galactoside alpha2,3-sialyltransferases (ST3Gal I-VI), beta-galactoside alpha2,6-sialyltransferases (ST6Gal I and II), GalNAc alpha2,6-sialyltransferases (ST6GalNAc I-VI), and alpha2,8-sialyltransferases (ST8Sia I-VI). Analysis of the amino acid sequence similarities, substrate specificities, and gene structures of mouse sialyltransferases has revealed that they can be further divided into seven subfamilies. The genomic structural resemblance of members of the same subfamily suggests that they arose from a common ancestral gene through gene duplication events. These multiple sialyltransferase genes are needed for fine control of the expression of sialylglycoconjugates, resulting in a variety of developmental stage- and tissue-specific glycosylation patterns.  相似文献   

16.
Glycan structures on glycoproteins and glycolipids play critical roles in biological recognition, targeting, and modulation of functions in animal systems. Many classes of glycan structures are capped with terminal sialic acid residues, which contribute to biological functions by either forming or masking glycan recognition sites on the cell surface or secreted glycoconjugates. Sialylated glycans are synthesized in mammals by a single conserved family of sialyltransferases that have diverse linkage and acceptor specificities. We examined the enzymatic basis for glycan sialylation in animal systems by determining the crystal structures of rat ST6GAL1, an enzyme that creates terminal α2,6-sialic acid linkages on complex-type N-glycans, at 2.4 Å resolution. Crystals were obtained from enzyme preparations generated in mammalian cells. The resulting structure revealed an overall protein fold broadly resembling the previously determined structure of pig ST3GAL1, including a CMP-sialic acid-binding site assembled from conserved sialylmotif sequence elements. Significant differences in structure and disulfide bonding patterns were found outside the sialylmotif sequences, including differences in residues predicted to interact with the glycan acceptor. Computational substrate docking and molecular dynamics simulations were performed to predict and evaluate the CMP-sialic acid donor and glycan acceptor interactions, and the results were compared with kinetic analysis of active site mutants. Comparisons of the structure with pig ST3GAL1 and a bacterial sialyltransferase revealed a similar positioning of donor, acceptor, and catalytic residues that provide a common structural framework for catalysis by the mammalian and bacterial sialyltransferases.  相似文献   

17.
Dendritic cells (DCs) play an essential role in the induction and maintenance of an effective immune response and express multiple siglecs. In the present study, we investigated whether or not the ligation of tumor-produced mucins with Siglec-9 expressed on immature DCs is related to escape from immunosurveillance in the tumor-bearing state.Expression of Siglec-9 was up-regulated on the development of monocytes into immature DCs and was decreased in mature DCs. Binding of various mucins and artificial glycopolymers carrying poly (NeuAc α2,6 LacNAc) or poly (NeuAc α2,3 LacNAc) to Siglec-9 was demonstrated by means of a plate assay. These mucins also bound to the surface of immature DCs. When immature DCs were treated with LPS in the presence of these mucins or artificial glycopolymers, the production of IL-12 was significantly reduced, but that of IL-10 was not. Furthermore, IL-12 production was decreased to a similar level on treatment with anti-Siglec-9 mAb. Mucins prepared from serum of cancer patients actually could bind to Siglec-9. These results suggest that Siglec-9 expressed on DCs is involved in immunoregulation through ligation with mucins in an epithelial cancer patient.  相似文献   

18.
19.
The sialomucin endolyn is implicated in adhesion, migration, and differentiation of various cell types. Along rat kidney tubules, endolyn is variously localized to the apical surface and endosomal/lysosomal compartments. Apical delivery of newly synthesized rat endolyn predominates over direct lysosomal delivery in polarized Madin-Darby canine kidney cells. Apical sorting depends on terminal processing of a subset of lumenal N-glycans. Here we dissect the requirements of N-glycan processing for apical targeting and investigate the underlying mechanism. Modulation of glycan branching and subsequent polylactosamine elongation by knockdown of N-acetylglucosaminyltransferase III or V had no effect on apical delivery of endolyn. In contrast, combined but not individual knockdown of sialyltransferases ST3Gal-III, ST3Gal-IV, and ST6Gal-I, which together are responsible for addition of α2,3- and α2,6-linked sialic acids on N-glycans, dramatically decreased endolyn surface polarity. Endolyn synthesized in the presence of kifunensine, which blocks terminal N-glycan processing, reduced its interaction with several recombinant canine galectins, and knockdown of galectin-9 (but not galectin-3, -4, or -8) selectively disrupted endolyn polarity. Our data suggest that sialylation enables recognition of endolyn by galectin-9 to mediate efficient apical sorting. They raise the intriguing possibility that changes in glycosyltransferase expression patterns and/or galectin-9 distribution may acutely modulate endolyn trafficking in the kidney.  相似文献   

20.
Here, we propose a novel method for the discrimination of α2,3- and α2,6-sialylation on glycopeptides. To stabilize the sialic acids, the carboxyl moiety on the sialic acid as well as the C-terminus and side chain of the peptide backbone were derivatized using 1-pyrenyldiazomethane (PDAM). The derivatization can be performed on the target plate for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), thereby avoiding complicated and time-consuming purification steps. After the on-plate PDAM derivatization, samples were subjected to negative-ion MALDI-MS using 3AQ-CHCA as a matrix. Deprotonated ions of the PDAM-derivatized form were detected as the predominant species without loss of sialic acid. The negative-ion collision-induced dissociation (CID) of PDAM-derivatized isomeric sialylglycopeptides, derived from hen egg yolk, showed characteristic spectral patterns. These data made it possible to discriminate α2,3- and α2,6-sialylation. In addition, sialyl isomers of a glycan with an asparagine could be discriminated based on their CID spectra. In brief, the negative-ion CID of PDAM-derivatized glycopeptides with α2,6-sialylation gave an abundant (0,2)A-type product ion, while that with α2,3-sialylation furnished a series of (2,4)A/Y-type product ions with loss of sialic acids. The unique fragmentation behavior appears to be derived from the difference of pyrene binding positions after ionization, depending on the type of sialylation. Thus, we show that on-plate PDAM derivatization followed by negative-ion MALDI-MS(2) is a simple and robust method for the discrimination of α2,3- and α2,6-sialylation on glycopeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号