首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The apparent bimolecular rate constant for the oxidation of dicyano-bis(1,10 phenanthroline) iron(II) by compound II of cytochrome c peroxidase (ferrocytochrome c; hydrogen-peroxide oxidoreductase EC 1.11.1.5) has been measured over the pH range 2.5-11.0 at 0.1 M ionic strength, 25 degrees C, by the stopped-flow technique. An ionizable group in the enzyme, with a pKa of 4.5, strongly influences the electron transfer rate between the ferrous complex and the oxidized site in the enzyme. The electron transfer is fastest when the group is protonated, with a rate constant of 2.9 - 10-5 M--1 - s-1. The rate constantdecreases over three orders of magnitude when the proton dissociates. The apparent bimolecular rate constant for the oxidation of the ferrous complex by compound I of cytochrome c peroxidase was determined between pH 3.5 and 6. Under all conditions where this rate constant could be measured it was about three times larger than that for the oxidation by compound II.  相似文献   

2.
To investigate the molecular basis for the 100-fold slower rate of CO dissociation in ferrous peroxidases relative to myoglobin, CO dissociation rates were measured as a function of pH in the cloned cytochrome c peroxidase from yeast [CCP(MI)] and in several mutants in the heme binding pocket prepared by site-directed mutagenesis. The mutants included Asp 235----Asn; Arg 48----Lys, Leu; and His 181----Gly. Changes in the absorption spectrum with pH are consistent with conversion of the CO-ferrous CCP(MI) complex from acidic to alkaline forms by a two-proton cooperative ionization, with an apparent pKa = 7.6, analogous to that described for CCP from bakers' yeast [Iizuka, T., Makino, R., Ishimura, Y., & Yonetani, T. (1985) J. Biol. Chem. 260, 1407-1412]. The rate of CO dissociation (koff) was increased 11-fold (from 0.7 x 10(-4) to 8.0 x 10(-4) s-1) by conversion of the acidic to the alkaline form. Analogous acidic and alkaline forms of the CO complex were also observed in the mutants of CCP(MI) examined here. In the acidic form, koff was increased 5- and 20-fold when Arg 48 was replaced with Lys and Leu, respectively, while in the acidic form of mutants that possess Arg 48, koff was similar to that observed in CCP(MI). Conversion of the CO complex from the acidic to alkaline form increased koff in all the mutants, and the pH-dependent increase in koff correlated with a two-proton cooperative ionization, except in the case of His 181----Gly. In this mutant, pH-dependent increase in koff correlated with a single-proton ionization, implicating His 181 as one of the two residues that is deprotonated in the conversion of CO-ferrous CCP(MI) from acidic to alkaline forms. Only a 2.5-fold variation was observed for koff between the alkaline form of CCP(MI) and the Arg 48----Leu mutant, suggesting that the influence of Arg 48 on the rate of CO dissociation is decreased in the alkaline form by a conformational change.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
CO recombination to the cloned cytochrome c peroxidase [CCP(MI)] and mutants of CCP(MI) prepared by site-directed mutagenesis was examined as a function of pH by flash photolysis. The mutants examined included distal Arg 48----Leu, Lys; proximal Asp 235----Asn; and His 181----Gly. At alkaline pH, ferrous CCP(MI) was converted to a hexacoordinate form by a cooperative two-proton ionization, apparent pK(a) = 8.0. This change was observed in all of the mutants, although in the His 181----Gly mutant, the conversion to the hexacoordinate form was the result of a single-proton ionization, implicating His 181 as one of the two residues deprotonated in this isomerization. The pH-dependent conversion of CO ferrous CCP(MI) from acidic to alkaline forms was also observed and was similar to that reported for cytochrome c peroxidase from bakers' yeast [Iizuka, T., Makino, R., Ishimura, Y., & Yonetani, T. (1985) J. Biol. Chem. 260, 1407-1412]. Photolysis of the acidic form of the CO complex of CCP(MI) produces a kinetic form of the ferrous enzyme (form A) which exhibits the slow rate of CO recombination (l1' approximately 10(3) M-1 s-1) characteristic of peroxidases, while photolysis of the alkaline form of the CO complex produces a second kinetic form (form B), which exhibits a much faster rate of recombination (l2' approximately 10(5) M-1 s-1). Kinetic forms analogous to forms A and B were observed in all of the mutants examined. A third kinetic form (form B*) with a bimolecular rate constant l3' approximately 10(6) M-1 s-1 was also observed in the mutants at alkaline pH. Although the pH dependence for the conversion of form A to form B with increasing pH was altered by changes in the local heme environment, the rate of CO recombination by the respective forms was not dramatically altered in the mutants. Transient spectra of the reaction of CO with ferrous CCP(MI) after photolysis show that equilibrium between penta- and hexacoordinate ferrous enzyme is rapid relative to CO recombination. The presence of the internal sixth ligand has no discernible effect on the observed rate of recombination, however. The results presented indicate that in CCP(MI) the rate of ligand binding is determined primarily by isomerization of the protein from a closed conformation at acidic pH to an open conformation at alkaline pH and that polar effects of proximal Asp 235 and distal Arg 48 are of minor significance in the rate of CO recombination in both conformations.  相似文献   

4.
On the basis of X-ray structural information, it was previously proposed that tryptophan-191 of yeast cytochrome c peroxidase (CCP) may be important in determining the spectroscopic and catalytic properties of the enzyme [Edwards, S. L., Xuong, Ng. H., Hamlin, R. C., & Kraut, J. (1987) Biochemistry 26, 1503-1511]. By use of site-directed mutagenesis and an Escherichia coli expression system, a mutant phenylalanine-191 (F191) CCP was prepared in order to examine the effects of altering the H-bonding and pi-pi interactions that occur between Trp-191 and the iron-coordinated proximal His-175 in the parent enzyme. The F191 mutant enzyme exhibits a dramatic decrease (approximately 3000-fold at pH 7) in V0/e for catalysis of peroxide-dependent ferrocytochrome c oxidation, while V0/e for oxidation of ferrocyanide is decreased only 4.6-fold compared to that of the parent. The Fe3+/Fe2+ Em,7 and the stability of the oxyferryl center in the H2O2-oxidized mutant enzyme are relatively unaffected by the mutation, but the species responsible for a radical-like signal centered at g = 2.00 has been destabilized approximately 100-fold with respect to spontaneous decay. Steady-state kinetic assays as well as transient-state laser flash photolysis experiments utilizing flavin semiquinones as reductants indicate that the mutant CCP forms a complex with cytochrome c but the oxyferryl center in the oxidized enzyme is no longer able to be rapidly reduced by ferrocytochrome c. The most likely reasons for this kinetic behavior are either that new steric constraints exist in the mutant which impede relaxation of the iron center to the resting ferric state or that the indole ring of Trp-191 is important in a specific interprotein electron-transfer pathway that exists between the heme centers of CCP and cytochrome c.  相似文献   

5.
The reaction of dioxygen with the ferrous forms of the cloned cytochrome c peroxidase [CCP(MI)] and mutants of CCP(MI) prepared by site-directed mutagenesis was studied by photolysis of the respective ferrous-CO complexes in the presence of dioxygen. Reaction of ferrous CCP(MI) with dioxygen transiently formed a FeII-O2 complex (bimolecular rate constant = (3.8 +/- 0.3) x 10(4) M-1 s-1 at pH 6.0; 23 degrees C) that reacted further (first-order rate constant = 4 +/- 1 s-1) to form a product with an absorption spectrum and an EPR radical signal at g = 2.00 that were identical to those of compound I formed by the reaction of CCP(MI)III with peroxide. Thus, the product of the reaction of CCP(MI)II with dioxygen retained three of the four oxidizing equivalents of dioxygen. Gel electrophoresis of the CCP(MI)II + dioxygen reaction products showed that covalent dimeric and trimeric forms of CCP(MI) were produced by the reaction of CCP(MI)II with dioxygen. Photolysis of the CCP(MI)II-CO complex in the presence of ferrous cytochrome c prevented the appearance of the cross-linked forms and resulted in the oxidation of 3 mol of cytochrome c/mol of CCP(MI)II-CO added. The results provide evidence that reaction of CCP(MI)II with dioxygen causes transient oxidation of the enzyme by 1 equiv above the normal compound I oxidation state. Mutations that eliminate the broad EPR signal at g = 2.00 characteristic of the compound I radical also prevented the rapid oxidation of the ferrous enzyme by dioxygen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Kinetics measurements of the electron transfer between ferricytochrome c and liposomal ferrocytochrome c1 (with and without the hinge protein) were performed. The observed rate constants(kobs) of electron transfer between liposomal ferrocytochrome c1 and ferricytochrome c at different ionic strengths were measured in cacodylate buffer, pH 7.4, at 2 C. The effect of ionic strength on the rate constant(kobs) of electron transfer between liposomal cytochrome c1 and cytochrome c is far greater than that in the solution kinetics (Kim, C.H., Balny, C. and King, T.E. (1987) J. Biol. Chem. 262, 8103-8108). The result demonstrates that the membrane bound cytochrome c1 creates a polyelectrolytic microenvironment which appears to be involved in the control of electron transfer and can be modulated by the ionic strength. The involvement of electrostatic potentials in the electron transfer between the membrane bound cytochrome c1 and cytochrome c is discussed in accord with the experimental results and a polyelectrolyte theory.  相似文献   

7.
The oxidation of yeast cytochrome c peroxidase by hydrogen peroxide produces a unique enzyme intermediate, cytochrome c peroxidase Compound I, in which the ferric heme iron has been oxidized to an oxyferryl state, Fe(IV), and an amino acid residue has been oxidized to a radical state. The reduction of cytochrome c peroxidase Compound I by horse heart ferrocytochrome c is biphasic in the presence of excess ferrocytochrome c as cytochrome c peroxidase Compound I is reduced to the native enzyme via a second enzyme intermediate, cytochrome c peroxidase Compound II. In the first phase of the reaction, the oxyferryl heme iron in Compound I is reduced to the ferric state producing Compound II which retains the amino acid free radical. The pseudo-first order rate constant for reduction of Compound I to Compound II increases with increasing cytochrome c concentration in a hyperbolic fashion. The limiting value at infinite cytochrome c concentration, which is attributed to the intracomplex electron transfer rate from ferrocytochrome c to the heme site in Compound I, is 450 +/- 20 s-1 at pH 7.5 and 25 degrees C. Ferricytochrome c inhibits the reaction in a competitive manner. The reduction of the free radical in Compound II is complex. At low cytochrome c peroxidase concentrations, the reduction rate is 5 +/- 3 s-1, independent of the ferrocytochrome c concentration. At higher peroxidase concentrations, a term proportional to the square of the Compound II concentration is involved in the reduction of the free radical. Reduction of Compound II is not inhibited by ferricytochrome c. The rates and equilibrium constant for the interconversion of the free radical and oxyferryl forms of Compound II have also been determined.  相似文献   

8.
The reaction of bovine heart ferrocytochrome c with nitrite was studied under various conditions. The reaction product was ferricytochrome c at around pH 5, whereas at around pH 3 it was Compound I, characterized by twin peaks at 529 and 563 nm of equal intensity. However, ferrocytochrome c decreased obeying first-order kinetics over the pH range examined, irrespective of the presence or absence of molecular oxygen. The apparent first-order rate constant was proportional to the square of the nitrite concentration at pH 4.4 and it increased as the pH was lowered. At pH 3 the reaction was so rapid that it had to be followed by stopped-flow and rapid-scanning techniques. The apparent rate constant at this pH was found to increase linearly with the nitrite concentration. Based on these results the active species of nitrite was concluded to be dinitrogen trioxide at pH 4.4 and nitrosonium ion, no+, at pH 3. Compound II was formed by reaction of ferrocytochrome c and NO gas at acidic and alkaline pH values. The absorption peaks were at 533 and 563 nm at pH 3, and at 538 and 567 nm at pH 12.9. This compound was also formed by reducing Compound I with reductants. Compound I prepared from ferricytochrome c and NO was stable below pH 6. However, appreciable absorption peaks for ferrocytochrome c appeared between pH 8 and 10, because Compound I was dissociated into ferrocytochrome c and NO+, and because ferrocytochrome c thus formed reacted with NO very slowly in this pH region. Saccharomyces ferricytochrome c under NO gas behaved differently from mammalian cytochrome, indicating the significance of the nature of the heme environment in determing the reactivity. Only at extreme pH values was Compound II formed exclusively and persisted. A model system for dissimilatory nitrite reductase was constructed by using bovine heart cytochrome c, nitrite and NADH plus PMS at pH 3.3, and a scheme involving cyclic turnover of ferrocytochrome c, Compound I and Compound II is presented, with kinetic parameters.  相似文献   

9.
Using site-directed mutagenesis, a double mutant in yeast cytochrome c peroxidase (CCP) has been constructed where the proximal ligand, His175, has been converted to glutamine and the neighboring Trp191 has been converted to phenylalanine. The refined 2.4-A crystal structure of the double mutant shows that the Gln175 side chain is within coordination distance of the heme iron atom and that Phe191 occupies the same position as Trp191 in the native enzyme with very little rearrangement outside the immediate vicinity of the mutations. Consistent with earlier work, we find that the single mutant, His175-->Gln, is fully active under steady state assay conditions and that as reported earlier (Mauro et al., 1988), the Trp191-->Phe mutant exhibits only < 0.05% activity. However, the double mutant, His175-->Gln/Phe191-->Phe, exhibits 20% wild type activity. Since it is known that the Trp191-->Phe mutant is inactive because it can no longer transfer electrons from ferrocytochrome c, changing the nature of the proximal ligand is able to restore this activity. These results raise interesting questions regarding the mechanism of interprotein electron transfer reactions.  相似文献   

10.
The reaction between cytochrome c1 and cytochrome c   总被引:3,自引:0,他引:3  
The kinetics of electron transfer between the isolated enzymes of cytochrome c1 and cytochrome c have been investigated using the stopped-flow technique. The reaction between ferrocytochrome c1 and ferricytochrome c is fast; the second-order rate constant (k1) is 3.0 . 10(7) M-1 . s-1 at low ionic strength (I = 223 mM, 10 degrees C). The value of this rate constant decreases to 1.8 . 10(5) M-1 . s-1 upon increasing the ionic strength to 1.13 M. The ionic strength dependence of the electron transfer between cytochrome c1 and cytochrome c implies the involvement of electrostatic interactions in the reaction between both cytochromes. In addition to a general influence of ionic strength, specific anion effects are found for phosphate, chloride and morpholinosulphonate. These anions appear to inhibit the reaction between cytochrome c1 and cytochrome c by binding of these anions to the cytochrome c molecule. Such a phenomenon is not observed for cacodylate. At an ionic strength of 1.02 M, the second-order rate constants for the reaction between ferrocytochrome c1 and ferricytochrome c and the reverse reaction are k1 = 2.4 . 10(5) M-1 . s-1 and k-1 = 3.3 . 10(5) M-1 . s-1, respectively (450 mM potassium phosphate, pH 7.0, 1% Tween 20, 10 degrees C). The 'equilibrium' constant calculated from the rate constants (0.73) is equal to the constant determined from equilibrium studies. Moreover, it is shown that at this ionic strength, the concentrations of intermediary complexes are very low and that the value of the equilibrium constant is independent of ionic strength. These data can be fitted into the following simple reaction scheme: cytochrome c2+1 + cytochrome c3+ in equilibrium or formed from cytochrome c3+1 + cytochrome c2+.  相似文献   

11.
The histidine-selective reagent diethyl pyrocarbonate and dye-sensitized photooxidation have been used to study the functional role of histidines in cytochrome c peroxidase. Of the 6 histidines in cytochrome c peroxidase, 5 are modified by diethyl pyrocarbonate at alkaline pH and 4 by photooxidation. The sixth histidine serves as the proximal heme ligand and is unavailable for reaction. Both modification reactions result in the loss of enzymic activity. However, photooxidized peroxidase retains its ability to react with H2O2 and to form a 1:1 cytochrome c peroxidase-cytochrome c complex. It is, therefore, concluded that the extra histidine modified by diethyl pyrocarbonate is the catalytic site distal histidine, His 52. In the presence of cytochrome c, no enzymic activity is lost by photooxidation and a single histidine, His 181, is protected from oxidative destruction. This finding provides strong support for the hypothetical model of the cytochrome c peroxidase-cytochrome c complex in which His 181 lies near the center of the intermolecular interface where it seems to provide an important link in the electron transfer process.  相似文献   

12.
Ascorbate peroxidase from L. Major (LmAPX) is a functional hybrid between cytochrome c peroxidase (CCP) and ascorbate peroxidase (APX). We utilized point mutagenesis to investigate if a conserved proximal tryptophan residue (Trp208) among Class I peroxidase helps in controlling catalysis. The mutant W208F enzyme had no effect on both apparent dissociation constant of the enzyme-cytochrome c complex and K(m) value for cytochrome c indicating that cytochrome c binding affinity to the enzyme did not alter after mutation. Surprisingly, the mutant was 1000 times less active than the wild type in cytochrome c oxidation without affecting the second order rate constant of compound I formation. Our diode array stopped-flow spectral studies showed that the substrate unbound wild type enzyme reacts with H(2)O(2) to form compound I (compound II type spectrum), which was quite different from that of compound I in W208F mutant as well as horseradish peroxidase (HRP). The spectrum of the compound I in wild type LmAPX showed a red shift from 409 nm to 420 nm with equal intensity, which was broadly similar to those of known Trp radical. In case of compound I for W208F mutant, the peak in the Soret region was decreased in heme intensity at 409 nm and was not shifted to 420 nm suggesting this type of spectrum was similar to that of the known porphyrin pi-cation radical. In case of an enzyme-H(2)O(2)-ascorbate system, the kinetic for formation and decay of compound I and II of a mutant enzyme was almost identical to that of a wild type enzyme. Thus, the results of cytochrome c binding, compound I formation rate and activity assay suggested that Trp208 in LmAPX was essential for electron transfer from cytochrome c to heme ferryl but was not indispensable for ascorbate or guaiacol oxidation.  相似文献   

13.
Electron transfer from yeast ferrous cytochrome c to H2O2-oxidized yeast cytochrome c peroxidase has been studied using flash photoreduction methods. At low ionic strength (mu less than 10 mM), where a strong complex is formed between cytochrome c and peroxidase, electron transfer occurs rather slowly (k approximately 200s-1). However, at high ionic strength where the electrostatic complex is largely dissociated, the observed first-order rate constant for peroxidase reduction increases significantly reaching a concentration independent limit of k approximately 1500 s-1. Thus, at least in some cases, formation of an electrostatically-stabilized complex can actually impede electron transfer between proteins.  相似文献   

14.
J Wang  H Zhu  M R Ondrias 《Biochemistry》1992,31(51):12847-12854
Ferric cytochrome c peroxidase (CCP) undergoes a ligation-state transition from a pentacoordinate, high-spin (5c/hs) heme to a hexacoordinate, low-spin (6c/1s) heme when titrated over a pH range of 7.30-9.70. This behavior is similar to that exhibited by the ferrous form of the enzyme. However, the photodissociation of the low-spin, axial ligand, exhibited by ferrous CCP at alkaline pH, is not observed for ferric CCP. Instead, a photoinduced reduction of the ferric heme is apparent in the pH range 7.90-9.70. In the absence of O2 and redox mediators such as methyl viologen (MV2+), the reoxidation of the photoreduced enzyme is very slow (tau 1/2 approximately 3 min). F(-)-bound CCP(III) (6c/hs) displays similar pH-dependent photoreduction. Horseradish peroxidase, however, does not. The formation of 6c/1s heme coincides with the onset of appreciable photoreduction (between laser pulses, > 60 ms) of CCP (III) at alkaline pH, suggesting a global protein conformational rearrangement within or around its heme pocket. Photoreduction of alkaline CCP(III) most likely involves intramolecular electron transfer (ET) from the aromatic residue in the proximal heme pocket to the photoexcited heme. We speculate that the kinetics of electron transfer are affected by changes in the orientation of Trp-191.  相似文献   

15.
Horse heart cytochrome c was covalently bound to Sepharose 4B and its redox properties were measured under various experimental conditions. The equilibrium constant for the electron exchange between the oxidized and the reduced form of cytochrome c when one of the two forms was in the semi-solid state and the other one in solution was close to 1. Matrix-bound ferrocytochrome c is very stable to autoxidation and is not oxidized by O2 even in the presence of mammalian cytochrome oxidase. Oxidation occurs if catalytic amounts of soluble cytochrome c are added to the reaction mixture. The rate of oxidation of matrix-bound ferrocytochrome c in the presence of cytochrome oxidase and catalytic amounts of soluble cytochrome c may be correlated with the rate of electron transfer between soluble and matrix-bound cytochrome c. This rate is more than two orders of magnitude lower than that reported for the homonuclear (between identical species) electron transfer in solution.  相似文献   

16.
The kinetic properties of a 1:1 covalent complex between horse-heart cytochrome c and yeast cytochrome c peroxidase (ferrocytochrome-c:hydrogen-peroxide oxidoreductase, EC 1.11.1.5) have been investigated by transient-state and steady-state kinetic techniques. Evidence for heterogeneity in the complex is presented. About 50% of the complex reacts with hydrogen peroxide with a rate 20–40% faster than that of native enzyme; 20% of the complex exists in a conformation which does not react with hydrogen peroxide but converts to the reactive form at a rate of 20 ± 5 s−1; 30% of the complex does not react with hydrogen peroxide to form the oxidized enzyme intermediate, cytochrome c peroxidase Compound I. Intramolecular electron transfer between covalently bound ferrocytochrome c and an oxidized site in cytochrome c peroxidase Compound I is too fast to measure, but a lower limit of 600 s−1 can be estimated at 5°C in a 10 mM potassium phosphate buffer at pH 7.5. Free ferrocytochrome c reduces cytochrome c peroxidase Compound I covalently bound to ferricytochrome c at a rate 10−4 to 10−5-times slower than for free Compound I. The transient-state ferrocytochrome c reduction rates of Compound I covalently linked to ferricytochrome c are about 70-times too slow to account for the steady-state catalytic properties of the 1:! covalent complex. This indicates that hydrogen peroxide can interact with the 1:1 complex at sites other than the heme of cytochrome c peroxidase, generating additional species capable of oxidizing free ferrocytochrome c.  相似文献   

17.
1. The electric potential fields around tuna ferri- and ferrocytochrome c were calculated assuming that (i) all of the lysines and arginines are protonated, (ii) all of the glutamic and aspartic acids and the terminal carboxylic acid are dissociated, and (iii) the haem has a net charge of +1e in the oxidized form. 2. Near the haem crevice high values for the potential (greater than +2.5 kT/e) are found. Consequently, electron transfer via the haem edge is favored if the oxidant or reductant is negatively charged. 3. The inhomogeneous distribution of charges leads to a dipole moment of 244 and 238 debye for oxidized and reduced tuna cytochrome c, respectively. Horse cytochrome c has dipole moments of 303 (oxidized) and 286 (reduced) debye. 4. A line through the positive and negative charge centres, the dipole axis, crosses the tuna cytochrome c surface at Ala 83 (positive part) and Lys 99 (negative part). The direction of the dipole axis of horse cytochrome c is very similar. Since the centre of the domain on the cytochrome c surface, which is involved in the binding to cytochrome c oxidase, is found at the beta-carbon of the Phe 82 in horse cytochrome c (Ferguson-Miller, S., Brautigan, D.L. and Margoliash, E. (1978) J. Biol. Chem. 253, 149--159) it is suggested that the direction of the dipole is of physiological importance. 5. The activity coefficients of horse ferri- and ferrocytochrome c were calculated as a function of ionic strength using a formula derived by Kirkwood (Kirkwood, J.G. (1934) J. Chem. Phys. 2, 351--361). 6. Due to the high net charge at pH 7.5 the influence of the dipole moments of horse ferri- and ferrocytochrome c on the respective activity coefficients can be neglected at I less than or equal to 50 mM. 7. Using the Br?nsted relation the effect of ionic strength on reaction rates of horse cytochrome c was calculated. Good agreement is found between theory and experimental results reported in the literature.  相似文献   

18.
The crystal structures of ascorbate peroxidase (APX) and cytochrome c peroxidase (CCP) show that the active site structures are nearly identical. Both enzymes contain a His-Asp-Trp catalytic triad in the proximal pocket. The proximal Asp residue hydrogen bonds with both the His proximal heme ligand and the indole ring nitrogen of the proximal Trp. The Trp is stacked parallel to and in contact with the proximal His ligand. This Trp is known to be the site of free radical formation in CCP compound I and also is essential for activity. However, APX forms a porphyrin radical and not a Trp-centered radical, even though the His-Asp-Trp triad structure is the same in both peroxidases. We found that conversion of the proximal Trp to Phe has no effect on APX enzyme activity and that the mutant crystal structure shows that changes in the structure are confined to the site of mutation. This indicates that the paths of electron transfer in CCP and APX are distinctly different. The Trp-to-Phe mutant does alter the stability of the APX compound I porphyrin radical, by a factor of two. Electrostatic calculations and modeling studies show that a potassium cation located about 8?Å from the proximal Trp in APX, but absent in CCP, makes a significant contribution to the stability of a cation Trp radical. This underscores the importance of long-range electrostatic effects in enzyme catalyzed reactions.  相似文献   

19.
The reactions of Rhodopseudomonas viridis cytochrome c2 and horse cytochrome c with Rps. viridis photosynthetic reaction centers were studied by using both single- and double-flash excitation. Single-flash excitation of the reaction centers resulted in rapid photooxidation of cytochrome c-556 in the cytochrome subunit of the reaction center. The photooxidized cytochrome c-556 was subsequently reduced by electron transfer from ferrocytochrome c2 present in the solution. The rate constant for this reaction had a hyperbolic dependence on the concentration of cytochrome c2, consistent with the formation of a complex between cytochrome c2 and the reaction center. The dissociation constant of the complex was estimated to be 30 microM, and the rate of electron transfer within the 1:1 complex was 270 s-1. Double-flash experiments revealed that ferricytochrome c2 dissociated from the reaction center with a rate constant of greater than 100 s-1 and allowed another molecule of ferrocytochrome c2 to react. When both cytochrome c-556 and cytochrome c-559 were photooxidized with a double flash, the rate constant for reduction of both components was the same as that observed for cytochrome c-556 alone. The observed rate constant decreased by a factor of 14 as the ionic strength was increased from 5 mM to 1 M, indicating that electrostatic interactions contributed to binding. Molecular modeling studies revealed a possible cytochrome c2 binding site on the cytochrome subunit of the reaction center involving the negatively charged residues Glu-93, Glu-85, Glu-79, and Glu-67 which surround the heme crevice of cytochrome c-554.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The influence of small amounts of low-molecular electron acceptor, potassium ferricyanide, 1 to 20% relative to the cytohrome c concentration, on the rate of electron transfer in the sperm whale oxymyoglobin--horse heart cytochrome c and deoxymyoglobin--cytochrome c systems (under aerobic and anaerobic conditions, respectively) was studied. At low ionic strength, the redox reaction rate was found to increase proportionally to the concentration of ferricyanide in both redox systems. The effect depends on pH in the pH range 5-8, increasing sharply at pH < 6. It was shown that the enhancing of electron transfer is caused by the complexing of [Fe(CN)6]3- with cytohrome c in the Lys72 region, where one of the two strong binding sites for this anion is determined by NMR. Both the high ionic strength and the chemical modification of Lys72 residue inhibit this effect at low ionic strength, markedly decreasing the rate of reaction with myoglobin. Under the same conditions, the effect of ferricyanide in the reaction of oxy-Mb with yeast cytohrome c, which is isopotential to animal cytochromes c but possesses trimethylated Lys72, was several times smaller. In turn, the chemical modification of His residues in myoglobin and the complexing of zinc ion to His119(GH1) almost completely inhibit electron transfer in the systems. Thus, electron transfer between the proteins must proceed through the formation of the Mb.[Fe(CN)6]3-.Cyt c ternary complex, the contacting sites being localized in the His119(GH1) region of myoglobin and near Lys72 of cytohrome c. The increased electron transfer rate in the presence of [Fe(CN)6]3- can be explained by that its binding near Lys72, firstly, provides better electrostatic interactions in the electron transfer complex and, besides, decreases significantly (about 2-fold) the tunneling distance between the two hemes (two lengths of 1.7 and 1.2 nm instead of one of 2.9 nm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号