共查询到20条相似文献,搜索用时 15 毫秒
1.
Ravi Prakash Mishra U.K. Tripathi M. Singh 《Archives Of Phytopathology And Plant Protection》2013,46(7):873-880
Random amplified polymorphism DNA (RAPD) analysis was done to assess the diversity among 10 species of Pleurotus. Understanding of the pattern not only addresses questions concerning evolutionary process and the development of conservation strategies, but also a pre-requisite of the efficient use of genetic resources in breeding programme. The RAPD dendogram obtained by using the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) programme were grouped into the investigated strains into five clusters. RAPD bands were scored as present (1) or absent (0) for all the Pleurotus isolate. Each band was assumed to represent a unique genetic locus. The pattern and extent of RAPD variation were analysed with respect to primer, polymorphic locus and isolate. Total number of amplified fragment and polymorphic fragment produced by 40 decamer primer was 229 and 226, respectively. Polymorphism percentage was 98.69. Ten primers; SBSA11, SBSA13, SBSA15, SBSA16, SBSA18, SBSA19, SBSA20, SBSB14, SBSB15 and SBSB17 were not amplified to the DNA from any of the isolate. 相似文献
2.
Manuela Bog Henryk Baumbach Ulrike Schween Frank Hellwig Elias Landolt Klaus-J. Appenroth 《Planta》2010,232(3):609-619
Duckweeds (Lemnaceae) are extremely reduced in morphology, which made their taxonomy a challenge for a long time. The amplified
fragment length polymorphism (AFLP) marker technique was applied to solve this problem. 84 clones of the genus Lemna were investigated representing all 13 accepted Lemna species. By neighbour-joining (NJ) analysis, 10 out of these 13 species were clearly recognized: L. minor, L. obscura, L. turionifera, L. japonica, L. disperma, L. aequinoctialis, L. perpusilla, L. trisulca, L. tenera, and L. minuta. However, L. valdiviana and L. yungensis could be distinguished neither by NJ cluster analysis nor by structure analysis. Moreover, the 16 analysed clones of L. gibba were assembled into four genetically differentiated groups. Only one of these groups, which includes the standard clones
7107 (G1) and 7741 (G3), represents obviously the “true” L. gibba. At least four of the clones investigated, so far considered as L. gibba (clones 8655a, 9481, 9436b, and Tra05-L), represent evidently close relatives to L. turionifera but do not form turions under any of the conditions tested. Another group of clones (6745, 6751, and 7922) corresponds to
putative hybrids and may be identical with L. parodiana, a species not accepted until now because of the difficulties of delineation on morphology alone. In conclusion, AFLP analysis
offers a solid base for the identification of Lemna clones, which is particularly important in view of Lemnaceae application in biomonitoring. 相似文献
3.
Genetic diversity in European pigs utilizing amplified fragment length polymorphism markers 总被引:4,自引:0,他引:4
SanCristobal M Chevalet C Peleman J Heuven H Brugmans B van Schriek M Joosten R Rattink AP Harlizius B Groenen MA Amigues Y Boscher MY Russell G Law A Davoli R Russo V Dèsautés C Alderson L Fimland E Bagga M Delgado JV Vega-Pla JL Martinez AM Ramos M Glodek P Meyer JN Gandini G Matassino D Siggens K Laval G Archibald A Milan D Hammond K Cardellino R Haley C Plastow G 《Animal genetics》2006,37(3):232-238
The use of DNA markers to evaluate genetic diversity is an important component of the management of animal genetic resources. The Food and Agriculture Organisation of the United Nations (FAO) has published a list of recommended microsatellite markers for such studies; however, other markers are potential alternatives. This paper describes results obtained with a set of amplified fragment length polymorphism (AFLP) markers as part of a genetic diversity study of European pig breeds that also utilized microsatellite markers. Data from 148 AFLP markers genotyped across samples from 58 European and one Chinese breed were analysed. The results were compared with previous analyses of data from 50 microsatellite markers genotyped on the same animals. The AFLP markers had an average within-breed heterozygosity of 0.124 but there was wide variation, with individual markers being monomorphic in 3-98% of the populations. The biallelic and dominant nature of AFLP markers creates a challenge for their use in genetic diversity studies as each individual marker contains limited information and AFLPs only provide indirect estimates of the allelic frequencies that are needed to estimate genetic distances. Nonetheless, AFLP marker-based characterization of genetic distances was consistent with expectations based on breed and regional distributions and produced a similar pattern to that obtained with microsatellites. Thus, data from AFLP markers can be combined with microsatellite data for measuring genetic diversity. 相似文献
4.
Höglund J Engström A Morrison DA Mattsson JG 《International journal for parasitology》2004,34(4):475-484
We have examined the population genetic structure in a collection of nine isolates of the parasitic lungworm Dictyocaulus viviparus. Eight of the isolates were sampled from cattle in geographically separated farms throughout south-central Sweden, and one isolate was a laboratory strain that has been maintained in experimentally infected calves for almost four decades. A total of 72 worms were examined, with eight individual worms from the same individual host representing each isolate. The genetic variation as revealed by amplified fragment length polymorphism analysis using four selective primer combinations was high. Depending on the primer combination a total of 66-79 restriction fragments were amplified, with 26-44 peaks of similar complexity from each of the isolates. The heterozygosity within populations was relatively small, as were the population mutation and immigration rates, which seemed to be in neutral equilibrium. The genetic diversity was therefore reasonably well structured in the field; and the laboratory isolate was quite distinct from the field samples. There was no relationship between the patterns of genetic diversity and the geographical proximity of the farms. The estimates of heterozygosity were much larger and more consistent than those previously estimated for this nematode species using mitochondrial sequencing, and the genetic structuring was thus much less pronounced and the gene flow greater. We attribute these differences in estimation to the broader sampling of loci available using amplified fragment length polymorphism markers, which may therefore constitute a superior technique for the study of patterns of lungworm diversity. Furthermore, the data estimating gene flow for D. viviparus was less than previously reported for closely related species in North America. This might be related to different rates of movements of infected hosts. It seems likely that lungworm infections are rather persistent on different farms, and the sudden outbreaks of disease that can be observed with host movements are most likely to be related to the introduction of susceptible stock. 相似文献
5.
Restriction fragment length polymorphism diversity in soybean 总被引:7,自引:0,他引:7
P. Keim R. C. Shoemaker R. G. Palmer 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1989,77(6):786-792
Summary Fifty-eight soybean accessions from the genus Glycine, subgenus Soja, were surveyed with 17 restriction fragment length polymorphism (RFLP) genetic markers to assess the level of molecular diversity and to evaluate the usefulness of previously identified RFLP markers. In general, only low levels of molecular diversity were observed: 2 of the 17 markers exhibited three alleles per locus, whereas all others had only two alleles. Thirty-five percent of the markers had rare alleles present in only 1 or 2 of the 58 accessions. Molecular diversity was least among cultivated soybeans and greatest between accessions of different soybean species such as Glycine max (L.) Merr. and G. soja Sieb. and Zucc. Principal component analysis was useful in reducing the multidimensional genotype data set and identifying genetic relationships. 相似文献
6.
Burke SA Wright JD Robinson MK Bronk BV Warren RL 《Applied and environmental microbiology》2004,70(5):2786-2790
Phenotypically, Bacillus atrophaeus is indistinguishable from the type strain of Bacillus subtilis except by virtue of pigment production on certain media. Several pigmented variants of B. subtilis have been reclassified as B. atrophaeus, but several remain ambiguous in regard to their taxonomic placement. In this study, we examined strains within the American Type Culture Collection originally deposited as Bacillus globigii, B. subtilis var. niger, or Bacillus niger using 16S rRNA gene sequencing and amplified fragment length polymorphism (AFLP) analysis to determine the level of molecular diversity among these strains and their relationship with closely related taxa. The 16S rRNA gene sequences revealed little variation with one base substitution between the B. atrophaeus type strain ATCC 49337 and the other pigmented bacilli. AFLP analysis produced high-quality DNA fingerprints with sufficient polymorphism to reveal strain-level variation. Cluster analysis of Dice similarity coefficients revealed that three strains, ATCC 31028, ATCC 49760, and ATCC 49822, are much more closely related to B. atrophaeus than to B. subtilis and should be reclassified as B. atrophaeus. A very closely related cluster of B. atrophaeus strains was also observed; this cluster was genetically distinct from the type strain. The level of variation between the two groups was approximately the same as the level of variation observed between members of the two B. subtilis subspecies, subtilis and spizizenii. It is proposed that the cluster of strains typified by ATCC 9372 be designated a new subspecies, B. atrophaeus subsp. globigii. 相似文献
7.
Jiang SC Louis V Choopun N Sharma A Huq A Colwell RR 《Applied and environmental microbiology》2000,66(1):140-147
Vibrio cholerae is indigenous to the aquatic environment, and serotype non-O1 strains are readily isolated from coastal waters. However, in comparison with intensive studies of the O1 group, relatively little effort has been made to analyze the population structure and molecular evolution of non-O1 V. cholerae. In this study, high-resolution genomic DNA fingerprinting, amplified fragment length polymorphism (AFLP), was used to characterize the temporal and spatial genetic diversity of 67 V. cholerae strains isolated from Chesapeake Bay during April through July 1998, at four different sampling sites. Isolation of V. cholerae during the winter months (January through March) was unsuccessful, as observed in earlier studies (J. H. L. Kaper, R. R. Colwell, and S. W. Joseph, Appl. Environ. Microbiol. 37:91-103, 1979). AFLP fingerprints subjected to similarity analysis yielded a grouping of isolates into three large clusters, reflecting time of the year when the strains were isolated. April and May isolates were closely related, while July isolates were genetically diverse and did not cluster with the isolates obtained earlier in the year. The results suggest that the population structure of V. cholerae undergoes a shift in genotype that is linked to changes in environmental conditions. From January to July, the water temperature increased from 3 degrees C to 27.5 degrees C, bacterial direct counts increased nearly an order of magnitude, and the chlorophyll a concentration tripled (or even quadrupled at some sites). No correlation was observed between genetic similarity among isolates and geographical source of isolation, since isolates found at a single sampling site were genetically diverse and genetically identical isolates were found at several of the sampling sites. Thus, V. cholerae populations may be transported by surface currents throughout the entire Bay, or, more likely, similar environmental conditions may be selected for a specific genotype. The dynamic nature of the population structure of this bacterial species in Chesapeake Bay provides new insight into the ecology and molecular evolution of V. cholerae in the natural environment. 相似文献
8.
The taxonomy of Echinacea is based on morphological characters and has varied depending on the monographer. The genus consists of either nine species and four varieties or four species and eight varieties. We have used amplified fragment length polymorphisms (AFLP) to assess genetic diversity and phenetic relationships among nine species and three varieties of Echinacea (sensu McGregor). A total of 1086 fragments, of which approximately 90% were polymorphic among Echinacea taxa, were generated from six primer combinations. Nei and Li's genetic distance coefficient and the neighbor-joining algorithm were employed to construct a phenetic tree. Genetic distance results indicate that all Echinacea species are closely related, and the average pairwise distance between populations was approximately three times the intrapopulation distances. The topology of the neighbor-joining tree strongly supports two major clades, one containing Echinacea purpurea, Echinacea sanguinea, and Echinacea simulata and the other containing the remainder of the Echinacea taxa (sensu McGregor). The species composition within the clades differs between our AFLP data and the morphometric treatment offered by Binns and colleagues. We also discuss the suitability of AFLP in determining phylogenetic relationships. 相似文献
9.
Genetic diversity of clinical and environmental isolates of Vibrio cholerae determined by amplified fragment length polymorphism fingerprinting 总被引:4,自引:0,他引:4
Jiang SC Matte M Matte G Huq A Colwell RR 《Applied and environmental microbiology》2000,66(1):148-153
Vibrio cholerae, the causative agent of major epidemics of diarrheal disease in Bangladesh, South America, Southeastern Asia, and Africa, was isolated from clinical samples and from aquatic environments during and between epidemics over the past 20 years. To determine the evolutionary relationships and molecular diversity of these strains, in order to understand sources, origin, and epidemiology, a novel DNA fingerprinting technique, amplified fragment length polymorphism (AFLP), was employed. Two sets of restriction enzyme-primer combinations were tested for fingerprinting of V. cholerae serogroup O1, O139, and non-O1, O139 isolates. Amplification of HindIII- and TaqI-digested genomic DNA produced 30 to 50 bands for each strain. However, this combination, although capable of separating environmental isolates of O1 and non-O1 strains, was unable to distinguish between O1 and O139 clinical strains. This result confirmed that clinical O1 and O139 strains are genetically closely related. On the other hand, AFLP analyses of restriction enzyme ApaI- and TaqI-digested genomic DNA yielded 20 to 30 bands for each strain, but were able to separate O1 from O139 strains. Of the 74 strains examined with the latter combination, 26 serogroup O1 strains showed identical banding patterns and were represented by the O1 El Tor strain of the seventh pandemic. A second group, represented by O139 Bengal, included 12 strains of O139 clinical isolates, with 7 from Thailand, 3 from Bangladesh, and 2 from India. Interestingly, an O1 clinical isolate from Africa also grouped with the O139 clinical isolates. Eight clinical O1 isolates from Mexico grouped separately from the O1 El Tor of the seventh pandemic, suggesting an independent origin of these isolates. Identical fingerprints were observed between an O1 environmental isolate from a river in Chile and an O1 clinical strain from Kenya, both isolated more than 10 years apart. Both strains were distinct from the O1 seventh pandemic strain. Two O139 clinical isolates from Africa clustered with environmental non-O1 isolates, independent of other O139 strains included in the study. These results suggest that although a single clone of pathogenic V. cholerae appears responsible for many cases of cholera in Asia, Africa, and Latin America during the seventh pandemic, other cases of clinical cholera were caused by toxigenic V. cholerae strains that appear to have been derived locally from environmental O1 or non-O1 strains. 相似文献
10.
Shiguo Li Kun Qiao Tifeng Shan Shaojun Pang Hesheng Hou 《Journal of applied phycology》2013,25(4):1255-1263
In this study, the amplified fragment length polymorphism (AFLP) method was employed to estimate the genetic diversity of young sporophytes belonging to six Undaria pinnatifida populations collected from five seaweed cultivation farms along the Dalian Coast of China in 2008. A total of 397 loci were detected using ten combinations of selective primer pairs. Of these, 302 of which (76.07 %) were polymorphic, which was mainly caused by the 40 accessions of two populations collected from the LWT (44.08 %) and the JST (44.58 %) farms. According to the UPGMA dendrogram and biplot of principal component analysis, the 40 accessions represented high intra-population genetic diversity and far relationship from all of other populations. In contrast, the accessions from the other populations (HK, MS, LS, and QD) represented high intra-population similarity. The four populations may have originated from the same introduced U. pinnatifida strain. Analysis of molecular variance showed that a higher proportion of genetic variation resided among the populations (63.56 %) than that within populations (36.64 %). It is hypothesized that the differences in genetic traits, as well as the mixed mating system and reduced gene flow were the primary reasons that caused the high genetic variation among populations and the high similarity between accessions within the population. However, the genetic diversity of the partial U. pinnatifida cultivar populations in Dalian farms has been decreasing in the past years, which poses a potential risk of germplasm degradation in cultivation. In addition, the breeding techniques of cultivated U. pinnatifida in China and the application of AFLP in Undaria are discussed in this article. Based on the results, the identified polymorphic markers could be used for genetic improvement of the species through marker-assisted breeding and the results also provide excellent information for selecting indigenous gametophyte resources from Dalian farms using different breeding methods. 相似文献
11.
Restriction fragment length polymorphism analysis of CCDD genome species of the genus Oryza L. 总被引:5,自引:0,他引:5
Restriction fragment length polymorphisms (RFLPs) were studied in fourteen accessions of CCDD genome allotetraploid wild rice species (Oryza latifolia, O. alta and O. grandiglumis). Fourteen nuclear RFLP markers previously mapped in AA genome-cultivated rice were used as probes. A phylogenetic tree, constructed by parsimony analysis based on RFLPs, grouped the accessions according to their geographic origin from Central or South America. Oryza alta, O. grandiglumis and one accession of O. latifolia grouped together as a subgroup, and our results suggested that the three taxa should be considered as populations of a single complex species. Duplicate loci, representing the two constituent genomes of the allotetraploid, were observed for most RFLP markers. By comparing RFLPs from the allotetraploids with those from a CC genome diploid wild species (O. officinalis), it was possible to detect RFLPs specific for both the CC and DD genomes of the allotetraploid. In inter-accession F2 populations, independent segregation of RFLP markers for CC and DD genomes was observed. 相似文献
12.
Twenty-six Trichinella isolates have been examined by the isoenzyme typing of ten enzyme systems (LDH, ME, 6PGDH, G6PDH, GOT, AK, PGM, ACON, MPI, GPI). Four different zymodemes were obtained. All the examined isolates have shown an electrophoretic behaviour like one or other of four reference strains. The isolates from Italy and Yugoslavia have an electrophoretic mobility like T. nelsoni reference strain. The isolates from France, Holland, Great Britain, Poland and USA have an electrophoretic mobility like T. spiralis reference strain. For T. nativa and T. pseudospiralis we have tested only the reference strains. These results support the validity of the taxonomy of Trichinella genus in four good species. 相似文献
13.
AIMS: Erwinia amylovora is one of the most important pathogens of pear and apple and is subject to strict quarantine regulations worldwide, although its patterns of dispersal are largely unknown. Previous attempts to fingerprint E. amylovora strains by molecular techniques have detected very little polymorphism because of the high genetic homogeneity of this bacterium. Our aim was to establish and test a typing method to quantify genetic diversity among strains of this plant pathogen. METHODS AND RESULTS: Twenty-two strains from different hosts and geographical locations were examined by PCR fingerprinting with four primers and by amplified fragment length polymorphism (AFLP) with four selected combinations of primers with a single base extension. PCR fingerprinting revealed little polymorphism producing the same amplification patterns for 17 strains, while the combined AFLP patterns yielded 78 polymorphic bands (34% of total bands) and allowed the differentiation of all but two strains. Clustering of strains in the resulting dendrogram was not correlated with host, year or country of isolation, and questions previous genealogies based on PFGE patterns. CONCLUSIONS: The AFLP technique allowed the detection of an unprecedented number of genetic markers in E. amylovora and proved to be the most useful tool so far for discriminating among strains of this pathogen. The results obtained in this study strongly suggest the occurrence of multiple introductions of the pathogen in Spain and other European countries. SIGNIFICANCE AND IMPACT OF THE STUDY: A major limitation in understanding the ecology of fire blight is the lack of typing techniques with a high power of discrimination. This study demonstrates the high resolution and the usefulness of the AFLP technique to differentiate among E. amylovora strains. 相似文献
14.
15.
Crickets of the genus Laupala represent one of the many morphologically cryptic groups of insects, with the most closely related species distinguished only by the male calling song. Cryptic groups provide a challenge in determining the genetic boundaries between closely related populations and species. We have addressed the question of species boundaries in the Hawaiian cricket, Laupala, using nuclear DNA patterns sampled by the amplified fragment length polymorphism (AFLP) technique. This method has been used widely by plant researchers to facilitate the rapid assessment of genetic diversity in very closely related species and varieties. The AFLP technique is simple and robust, can be applied to any organism, and overcomes problems associated with cost, development time, information content and reproducibility that can plague other marker systems. Our results support previously hypothesized taxonomic relationships among sympatric populations and suggest close genetic relationships among allopatric, conspecific populations. 相似文献
16.
Molecular evolution and diversity in Bacillus anthracis as detected by amplified fragment length polymorphism markers. 总被引:10,自引:0,他引:10 下载免费PDF全文
P Keim A Kalif J Schupp K Hill S E Travis K Richmond D M Adair M Hugh-Jones C R Kuske P Jackson 《Journal of bacteriology》1997,179(3):818-824
Bacillus anthracis causes anthrax and represents one of the most molecularly monomorphic bacteria known. We have used AFLP (amplified fragment length polymorphism) DNA markers to analyze 78 B. anthracis isolates and six related Bacillus species for molecular variation. AFLP markers are extremely sensitive to even small sequence variation, using PCR and high-resolution electrophoresis to examine restriction fragments. Using this approach, we examined ca. 6.3% of the Bacillus genome for length mutations and ca. 0.36% for point mutations. Extensive variation was observed among taxa, and both cladistic and phenetic analyses were used to construct a phylogeny of B. anthracis and its closest relatives. This genome-wide analysis of 357 AFLP characters (polymorphic fragments) indicates that B. cereus and B. thuringiensis are the closest taxa to B. anthracis, with B. mycoides slightly more distant. B. subtilis, B. polymyxa, and B. stearothermophilus shared few AFLP markers with B. anthracis and were used as outgroups to root the analysis. In contrast to the variation among taxa, only rare AFLP marker variation was observed within B. anthracis, which may be the most genetically uniform bacterial species known. However, AFLP markers did establish the presence or absence of the pXO1 and pXO2 plasmids and detected 31 polymorphic chromosomal regions among the 79 B. anthracis isolates. Cluster analysis identified two very distinct genetic lineages among the B. anthracis isolates. The level of variation and its geographic distribution are consistent with a historically recent African origin for this pathogenic organism. Based on AFLP marker similarity, the ongoing anthrax epidemic in Canada and the northern United States is due to a single strain introduction that has remained stable over at least 30 years and a 1,000-mile distribution. 相似文献
17.
Haisheng Li Guowen Xie Michael J. Blum Yisheng Zhen Meizhen Lin Peiguo Guo 《Biochemical Systematics and Ecology》2011,39(4-6):384-391
Monimopetalum chinense Rehd. is an endangered woody vine endemic to eastern China. Using amplified fragment length polymorphism (AFLP) markers, we examined levels of genetic variation within and among eleven populations located across the species’ distribution. Although modest levels of heterozygosity were detected, other measures of genetic diversity registered relatively high levels of variability, both at the species level (P = 91.0%, HE = 0.232, IS = 0.365) and at the population level (P = 53.0%, HE = 0.155, IS = 0.239). Populations also exhibited high levels of genetic differentiation (Nei’s genetic diversity analysis, GST = 0.330), corresponding to isolation-by-distance and hierarchical population structure. These results indicate that, despite low levels of gene flow, populations of M. chinense still harbor substantial amounts of genetic diversity. Management plans for the species should include measures that ensure genetic diversity remains high within and among extant populations. 相似文献
18.
Genotyping and genetic diversity of Arcobacter butzleri by amplified fragment length polymorphism (AFLP) analysis 总被引:1,自引:0,他引:1
AIMS: To investigate the potential of amplified fragment length polymorphism (AFLP) profiling for genotyping Arcobacter butzleri and to obtain further data on the genetic diversity of this organism. METHODS AND RESULTS: Seventy-three isolates of Danish, British, Turkish, Swedish, Nigerian and North American origin from human infections, chickens, turkeys, ducks, sheep and poultry abbatoir effluent were studied by use of a protocol that involved stringent PCR amplification of fragments derived from digestion of genomic DNA with restriction enzymes BglII and Csp6I. The mean similarity value of duplicate profiles of 10 isolates was 91.15%, indicating the method to be reproducible. Numerical analysis of all 73 isolates distinguished 51 subtypes at the 91% similarity level, of which 39 comprised single strains. The remaining 34 isolates were distributed among 12 subtypes, each of which contained strains homogeneous with respect to their respective source of isolation. However, contemporaneous strains from the same source could also be distinguished. CONCLUSIONS: AFLP profiling is an effective method for typing the genetically diverse organism A. butzleri. SIGNIFICANCE AND IMPACT OF THE STUDY: The study represents a comprehensive analysis of the genetic diversity of A. butzleri by use of isolates from six countries spanning three continents and also shows that several distinct A. butzleri genotypes may be found in a given environment. AFLP profiling appears to have considerable potential for molecular epidemiological studies of this ubiquitous emerging pathogen that is implicated as a causative agent of both human and animal disease. 相似文献
19.
L. Braglia V. Casabianca L. De Benedetti N. Pecchioni A. Mercuri C. Cervelli 《Plant biosystems》2013,147(2):274-277
Abstract The interspecific relationships among 51 worldwide collected accessions of Salvia have been investigated using the amplified fragment length polymorphism (AFLP) technique. The assessed genetic similarities allowed us to group the genotypes into two main clusters according to their geographical origin. Our results are encouraging for further characterization of the genus with the aim to clarify Salvia taxonomy. 相似文献
20.
Grant A Ogilvie LA 《Applied and environmental microbiology》2003,69(10):6342; author reply 6342-6342; author reply 6343