首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Co-culture of Lactobacillus brevis subsp. lindneri or L. plantarum with Saccharomyces cerevisiae or S. exiguus from sourdough did not modify the yield of the yeasts but gave higher growth rates and final yields of both lactic acid bacteria (LAB) than in their respective mono-cultures. Co-cultures of L. brevis subsp. lindneri with S. cerevisiae or S. exiguus in a medium without valine or leucine, which are essential for growth of the LAB, led to growth of the LAB due to excretion of these amino acids by the yeasts.The authors are with the Institute of Dairy Microbiology, Faculty of Agriculture, University of Perugia, Via S. Costanzo, 06100 Perugia, Italy  相似文献   

2.
Interactions betweenLactobacillus brevis subsp.lindneri CB1,L. plantarum DC400,Saccharomyces cerevisiae 141 andS.exiguus M14 from sourdoughs were studied in a co-culture model system using a synthetic medium. The lack of competition for maltose whenS.exiguus M14 was present in co-culture with each of the lactic acid bacteria (LAB) enhanced the bacterial cell yield and lactic and acetic acid production.L.brevis subsp.lindneri CB1 resting cells hydrolysed maltose and accumulated glucose in the medium, allowing the growth of maltose negative yeast.S.cerevisiae 141 competed greatly with each of the LAB for glucose and only withL.plantarum DC400 for fructose, causing a decrease in the bacterial cell number and in acid production. As a result of the glucose and fructose availability after the invertase activity of both yeasts,L.plantarum DC400 grew optimally in the presence of sucrose as a carbon source. All of the interactions indicated were confirmed by studying the behaviour of the co-cultures in wheat flour hydrolysate.  相似文献   

3.
The Lactobacillus brevis subsp. lindneri CB1 fructose-negative strain utilized fructose in co-fermentation with maltose or glucose. Compared to the maltose (17 g/l) fermentation, the simultaneous fermentation of maltose (10 g/l) and fructose (7 g/l) increased cell yield (A 620from 2.6 to 3.3) and the concentrations of lactic acid and especially of acetic acid (from 2.45 g/l to 3.90 g/l), produced mannitol (1.95 g/l) and caused a decrease in the amount of ethanol (from 0.46 g/l to 0.08 g/l). The utilization of fructose depended on the continuous presence of maltose in the growth medium and the two carbohydrates were consumed in a molar ratio of about 2:1. The presence of tagatose (a fructose stereoisomer) partially inhibited fructose consumption and consequently caused a decrease of the end products of the co-metabolism. Since maltose was naturally present during sourdough fermentation, the addition of only 6 g fructose/kg wheat dough enabled the co-fermentation of maltose and fructose by L. brevis subsp. lindneri CB1. A higher titratable acidity and acetic acid concentration, and a reduced quotient of fermentation (2.7) were obtained by co-fermentation compared with normal sourdough fermentation. Some interpretations of the maltose-fructose co-fermentation are given.  相似文献   

4.
5.
ABSTRACT

The enhancing effects of yeasts on the viability of lactic acid bacteria (LAB) under acidic conditions were investigated. Meyerozyma guilliermondii, coaggregative with both LAB strains under acidic conditions, significantly enhanced the viability of Lactobacillus pentosus and L. paracasei in pH 3.0 lactic acid (LA) buffer at 10°C (p < 0.05). Non-coaggregative yeasts (Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Cyberlindnera saturnus) also significantly enhanced the LAB viability (p < 0.05), and physical contact between LAB and yeasts was not essential for the viability-enhancing effect, indicating that the coaggregation had no relation to the enhancing mechanism. Although yeast metabolites and LA assimilation had no enhancing effect, hydrogen peroxide (H2O2) decreased after yeast coincubation, and H2O2 elimination improved L. pentosus viability. H2O2 elimination alone did not sufficiently improve L. paracasei viability, but the addition of antioxidants was effective. These results suggest that the antioxidant activity of yeast increased the LAB viability under acidic conditions.  相似文献   

6.
Protective effect of the extracellular peptide fraction (reactivating factors, RF) produced by yeasts of various taxonomic groups (Saccharomyces cerevisiae, Kluyveromyces lactis, Candida utilis, and Yarrowia lipolytica) on probiotic lactic acid bacteria (LAB) Lactobacillus casei, L. acidophilus, and L. reuteri under bile salt (BS)-induced stress was shown. RF of all yeasts were shown to be of peptide nature; the active component of the S. cerevisiae RF was identified as a combination of low-molecular polypeptides with molecular masses of 0.6 to 1.5 kDa. The protective and reactivating effects of the yeast factors were not species-specific and were similar to those of the Luteococcus japonicus subsp. casei RF. In BS-treated cells of the tester bacteria, a protective effect was observed after 10-min preincubation of the LAB cell suspension with yeast RF: the number of surviving cells (CFU) was 2 to 4.5 times higher than in the control. The reactivating effect was observed when RF was added to LAB cell suspensions not later than 15 min after stress treatment. It was less pronounced than the protector effect, with the CFU number 1 to 3 times that of the control. Both the protector and the reactivating effects were most pronounced in the S. cerevisiae and decreased in the row C. utilis > K. lactis > Y. lipolytica. The efficiency of protective action of yeast RF was found to depend on the properties of recipient LAB cells, with the L. casei strain being most sensitive to BS treatment. In both variants, the highest protective effect of RF (increase in the CFU number) was observed for L. acidophilus, while the least pronounced one was observed for L. casei. The reasons for application of the LAB strains combining high stress resistance and high response to stress-protecting metabolites, including RF factors, as probiotics, is discussed.  相似文献   

7.
A total of 140 lactic acid bacteria (LAB) strains were isolated from corn, alfalfa, clover, sainfoin, and Indian goosegrass in the Tibetan Plateau. According to phenotypic and chemotaxonomic characteristics, 16S rDNA sequence, and recA gene PCR amplification, these LAB isolates were identified as belonging to five genera and nine species. Corn contained more LAB species than other forage crops. Leuconostoc pseudomesenteroides, Lactococcus lactis subsp. lactis, Lactobacillus brevis, and Weissella paramesenteroides were dominant members of the LAB population on alfalfa, clover, sainfoin, and Indian goosegrass, respectively. The comprehensive 16S rDNA and recA-based approach effectively described the LAB community structure of the relatively abundant LAB species distributed on different forage crops. This is the first report describing the diversity and natural populations of LAB associated with Tibetan forage crops, and most isolates grow well at or below 10°C. The results will be valuable for the future design of appropriate inoculants for silage fermentation in this very cold area.  相似文献   

8.
Starter cultures consisting ofStreptococcus diacetilactis, Strept. cremoris, Lactobacillus brevis andSaccharomyces cerevisiae were tested singly and in mixtures for ability to ferment milk to producenono with organoleptically acceptable qualities. Only mixed cultures containing eitherStrept. diacetilactis orStrept. cremoris andL. brevis were suitable. Presence of yeast adversely affected either acid formation or diacetyl production.Nono containingStrept. diacetilactis was acceptable, even in the presence ofSacch. cerevisiae, because of the high diacetyl production. A mixed starter containing two of these organisms,Strept. diacetilactis orStrept. cremoris andL. brevis, is recommended fornono production.Sacch. cerevisiae is not essential.R. N. Okagbue and M. O. Bankole were formerly with the Department of Microbiology, Ahmadu Bello University, Zaria, Nigeria.  相似文献   

9.
Biological decontamination of mycotoxins using microorganisms is one of the well known strategies for the management of mycotoxins in foods and feeds. Among the different potential decontaminating microorganisms,Saccharomyces cerevisiae and lactic acid bacteria represent unique groups, which are widely used in food fermentation and preservation. The aim of this study was to determine the influence of spontaneous fermentation with the use of probiotic bacteria and yeast (Lactobacillus paracasei/casei ŁOCK 0920,L. brevis ŁOCK 0944,L. plantarum ŁOCK 0945,Saccharomyces cerevisiae ŁOCK 0142), on reduction of sum of aflatoxines (B1, B2, G1, G2) and ochratoxin A concentration during fermentation and the microflora pattern during fermentaton. The probiotic bacteria and yeast applied creates a starter culture for flour fermentation that has a stable feature of detoxication of aflatoxines and especially ochratoxin A. Presented at the 28th Mykotoxin-Workshop, Bydgoszcz, Poland, May 29–31, 2006  相似文献   

10.
Cellulase, Tween 80, and β-glucosidase loading were studied and optimized by response surface methodology to improve saccharification. Microwave alkali-pretreated rice straw used as substrate for onsite enzyme production by Aspergillus heteromorphus and Trichoderma reesei. The highest enzymatic hydrolysis (84%) was obtained from rice straw at crude enzyme loading of 10 FPU/gds of cellulase, 0.15% Tween 80, and 100 international unit/g dry solids of β-glucosidase activities. Enzymatic hydrolyzate of pretreated rice straw was used for ethanol production by Saccharomyces cerevisiae, Scheffersomyces stipitis, and by co-culture of both. The yield of ethanol was 0.50, 0.47, and 0.48 gp/gs by S. cerevisiae, S. stipitis, and by co-culture, respectively, using pretreated rice straw hydrolyzate. The co-culture of S. cerevisiae and S. stipitis produced 25% more ethanol than S. cerevisiae alone and 31% more ethanol than S. stipitis alone. During anaerobic fermentation 65.08, 36.45, and 50.31 μmol/ml CO2 released by S. cerevisiae, S. stipitis, and by co-culture, respectively. The data indicated that saccharification efficiency using optimized crude enzyme cocktail was good, and enzymatic hydrolyzate could be fermented to produce ethanol.  相似文献   

11.
Lactobacillus strains able to degrade arginine were isolated and characterized from a typical red wine. All the strains were gram-positive, catalase-negative and produced both D- and L-lactate from glucose. Strains L2, L3, L4, and L6 were able to produce CO2 from glucose; however, production of CO2 from glucose was not observed in strains L1 and L5, suggesting that they belong to the homofermentative wine lactic acid bacteria (LAB) group. All of the lactobacilli were tested for their ability to ferment 49 carbohydrates. The sugar fermentation profile of strain L1 was unique, suggesting that this strain belonged to Lactococcus lactis ssp. cremoris, a non-typical wine LAB. Furthermore, a preliminary typing was performed by using a random amplified polymorphic DNA analysis (RAPD-PCR analysis).  相似文献   

12.
Aims: To select appropriate micro‐organisms to be used as starter culture for reliable and reproducible fermentation of Lafun. Methods and Results: A total of 22 cultures consisting of yeast, lactic acid bacteria (LAB) and Bacillus cereus strains predominant in traditionally fermented cassava during Lafun processing were tested as potential starter cultures. In an initial screening, Saccharomyces cerevisiae 2Y48P22, Lactobacillus fermentum 2L48P21, Lactobacillus plantarum 1L48P35 and B. cereus 2B24P31 were found to be the most promising of the cultures and were subsequently tested in different combinations as mixed starter cultures to ferment submerged cassava roots. Saccharomyces cerevisiae, inoculated singly or combined with B. cereus, gave the softest cassava root after 48 h of fermentation according to determination of compression profile and stress at fracture. Overall, sensory quality testing showed that Lafun obtained from S. cerevisiae‐fermented cassava gave the most preferred stiff porridge. Saccharomyces cerevisiae 2Y48P22 showed pectinase production in a model system. Conclusions: The results suggest that S. cerevisiae 2Y48P22 is the most efficient organism for cassava softening during the fermentation. Therefore, it could be combined with LAB and used as starter for Lafun processing. Significance and Impact of the Study: Starter cultures are made available for controlled fermentation of Lafun.  相似文献   

13.
Humans are exposed much more often to exogenous Saccharomyces cerevisiae (a baker’s yeast) than exogenous Candida albicans (a highly infectious yeast) but suffer no apparent complications from S. cerevisiae. We hypothesize that variations in characteristics between these two species may be due, in part, to differences in glycine metabolism. In this study, we examined differences in glycine oxidation between C. albicans and S. cerevisiae. Both C. albicans and S. cerevisiae were cultured in glycine enriched media, followed by determination of glycine oxidation and amino acid concentrations in cells. Glycine was degraded to a much greater extent in C. albicans than in S. cerevisiae. Threonine concentrations and glycine oxidation were also elevated in C. albicans. Almost all of the disappearance of glycine from incubation media was accounted for by the formation of serine, threonine, and CO2 in S. cerevisiae, whereas these products represented only 50% of the metabolized glycine in C. albicans. The unidentified metabolites of glycine in C. albicans, presumably purines, could contribute to its infectious capacity and this warrants further study.  相似文献   

14.
A total of 96 lactic acid bacteria (LAB) were isolated from African indigenous fermented products and cow’s intestines to study their inhibitory capability against multi-drug-resistant uropathogens. Escherichia coli accounted for approximately 45% of isolated uropathogens, followed by Staphylococcus spp. (20%). The Gram negative uropathogens were highly resistant to quinolones, co-trimoxazole, teicoplanin and some β-lactams, while the Staphylococcus spp. showed high resistance to aminoglycosides, β-lactams and macrolides. Twenty-four LAB isolates were selected based on their antimicrobial activity against two uropathogenic Staphylococcus aureus strains and bacteriocin production. LAB strains showing antimicrobial activity were grouped into smaller groups through amplified ribosomal DNA restriction analysis (ARDRA). Representative strains were identified as Weissella spp., Enterococcus faecium, Lactococcus lactis and Lactobacillus brevis through sequencing of 16S rDNA. The Weissella spp. and L. brevis strains demonstrated remarkable inhibitory activity against seven strains of Gram negative uropathogens. Two strains of L. lactis produced a bacteriocin-like inhibitory substance active against Lactobacillus sakei. In this study, an unusual high rate of co-trimoxazole, quinolones and macrolides resistance among uropathogens from south west Nigeria was discovered. Based on their sensitivity to Weissella spp., there is a potential for using these LAB as a natural approach for the protection against the uropathogens assayed.  相似文献   

15.
【背景】商业酵母的使用造成葡萄酒同质化问题严重,发掘优良本土酿酒酵母具有十分重要的意义。【目的】从168株宁夏本土酿酒酵母菌株中筛选出性能优良、具有出色葡萄酒发酵能力的菌株。【方法】基于杜氏管发酵试验和乙醇、高糖等耐受性试验分析产H2S能力及生长曲线测定的方法,筛选出发酵力好、耐受性强、低产H2S的本土酿酒酵母进行赤霞珠葡萄酒发酵试验,测定葡萄酒样基础理化指标、酚类物质和挥发性成分,探究筛选出的酿酒酵母发酵特性。【结果】初步筛选出发酵快速,能适应13%乙醇、350 g/L葡萄糖、250 mg/L SO2、pH 1.0的生存环境且低产H2S的4株本土酿酒酵母YC-E8、QTX-D17、QTX-D7、YQY-E18。菌株YC-E8产甘油能力强,所发酵酒样香气与商业酵母XR、F33最为接近,适用于赤霞珠葡萄酒的发酵。菌株QTX-D17发酵酒样中酒精、单宁、总酚和花色苷含量最高,表现出本土酿酒酵母优良的发酵特性。菌株QTX-D7所发酵酒样香气中乙酸乙酯、辛酸乙酯、1-壬醇等物质含量较高,赋予了葡萄酒香蕉味、苹果味、菠萝味、椰子味等愉悦花果香。【结论】最终筛选出3株优良本土酿酒酵母QTX-D17...  相似文献   

16.
Aims: To determine the survival rate of silage lactic acid bacteria (LAB) in the ruminant gastrointestinal tract. Methods and Results: Wilted Italian ryegrass (Lolium multiflorum Lam.) silage (containing 1·9 × 106 CFU LAB g?1) was fed ad libitum to three goats equipped with rumen cannulae. Silage was given alone or with concentrates at a 1 : 1 ratio on a dry matter basis. Rumen fluid was then obtained 2, 4 and 8 h after the morning feeding. Denaturing gradient gel electrophoresis was performed to compare LAB communities in silage, rumen fluid and faeces. The LAB detected in the wilted silage included Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus murinus and Lactobacillus sakei. Bands indicative of Lact. murinus were detected in either the rumen fluid or faeces, whereas the bands indicative of Lact. plantarum, Lact. brevis and Lact. sakei were not. Although the rumen fluid LAB counts and volatile fatty acid concentrations were higher in goats fed silage plus concentrates compared with those fed silage alone, the LAB communities themselves remained unaffected. Sampling times and goat‐to‐goat variations did not affect the LAB communities found in the rumen fluid. Conclusion: LAB communities found in the gut are not remarkably affected by the consumption of silage LAB, even when the silage is accompanied by concentrates that facilitate gut fermentation. Significance and Impact of the Study: Although silage can improve probiotic function, it may be difficult for silage LAB to survive the digestive process in the ruminant gastrointestinal tract.  相似文献   

17.
The formation of “bloaters” (hollow stock) in cucumbers brined for salt-stock purposes at 5 to 10% salt has been associated with gaseous fermentation caused chiefly by yeasts. Recently, serious early bloater damage, not attributable to yeasts, has been observed in commercial-scale experiments on control of bloaters in overnight dill pickles brined in 50-gal barrels at 3.0 to 4.5% salt. Growth of fermentative species of yeasts was effectively controlled by the addition of 0.025, 0.05, and 0.1% sorbic acid or its sodium salt. In contrast to this, the fermenting brines showed extremely high populations of acid-forming bacteria, identified as Lactobacillus plantarum, L. brevis, and Pediococcus cerevisiae. The gas-forming species (i.e., L. brevis) constituted a high proportion of the total populations. Representative isolates from 36 barrels of overnight dill pickles were tested for their ability to produce bloaters in 1-quart jars of pasteurized cucumbers equilibrated at 4 to 5% salt, 0.25% lactic acid, and pH 4.0. Bloaters, identical with those made by yeast cultures, were produced in all jars inoculated with L. brevis. No bloaters were produced by L. plantarum and P. cerevisiae. These results suggest that the control of bloater damage in cucumber fermentations, particularly at low salt concentrations, may necessitate inhibition of gas-forming lactic acid bacteria.  相似文献   

18.
The response of Saccharomyces cerevisiae and freeze-tolerant Torulaspora delbrueckii strains to osmotic stress and their CO2 production capacity in sweet and frozen-sweet dough has been examined. T. delbrueckii strains, IGC5321 and IGC5323 showed higher leavening ability than Saccharomyces, specially after exposure to hyperosmotic stress of bread dough containing 20% sucrose and 2% salt added. In addition, Torulaspora and especially T. delbrueckii IGC5321 exhibited no loss of CO2 production capacity during freeze-thaw stress. Overall, these results appeared to indicate that Torulaspora cells are more tolerant than Saccharomyces to osmotic stress of bread dough. This trait correlated with a low invertase activity, a slow rate of trehalose mobilisation and the ability to respond rapidly to osmotic stress. Growth behaviour on high osmotic synthetic media was also examined. Cells of the IGC5321 strain showed intrinsic osmotolerance and ion toxicity resistance. However,T. delbrueckii IGC5323 exhibited a clear phenotype of osmosensitivity. Hence, this characteristic may not be essential or the only determinant for leavening ability in salted high-sugar dough. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Zusammenfassung Von 78 verschiedenen Stämmen der Gattungen Pediococcus, Leuconostoc und Lactobacillus vermochten vier Stämme der Species L. plantarum und ein Stamm von L. brevis Weinsäure umzusetzen. Bei beiden Organismen ist das Weinsäure abbauende Enzymsystem induzierbar. Die Induktion wird bei L. plantarum durch Glucose, nicht aber durch das ebenfalls vergärbare Mannit gehemmt. Mit ruhenden Zellen und zellfreien Extrakten wurden die Endprodukte des anaeroben Weinsäureabbaus bestimmt. Infolge der Instabilität der Enzyme konnte nur mit Rohextrakten gearbeitet werden. Je Mol Weinsäure werden von L. plantarum 1,5 Mol CO2, 0,5 Mol Essigsäure und 0,5 Mol d,l-Milchsäure, von L. brevis 1,33 Mol CO2, 0,67 Mol Essigsäure und ca. 0,3 Mol Bernsteinsäure gebildet. Oxalessigsäure wurde bei beiden Organismen als Zwischenprodukt nachgewiesen. Die Umsetzung von Weinsäure durch zellfreie Rohextrakte wird durch NAD oder NADH2 gefördert; ein Überschuß von NADH2 verhindert oder verringert die CO2-Entwicklung und führt zur vermehrten Bildung von Milchsäure oder Bernsteinsäure. Zum Nachweis des Abbauweges wurde eine Reihe von möglichen Zwischenprodukten untersucht. Danach ergibt sich für den Abbau der Weinsäure durch das homofermentative Milchsäurebakterium L. plantarum folgender Reaktionsverlauf: Nach Dehydratisierung von Weinsäure zu Oxalessigsäure (Weinsäure-Dehydratase) wird diese quantitativ zu Brenztraubensäure decarboxyliert (Oxalessigsäure-Decarboxylase). Die Hälfte der Brenztraubensäure wird — wahrscheinlich durch das Pyruvat-Dehydrogenase-System — zu CO2 und Essigsäure oxydiert, die andere Hälfte der Brenztraubensäure wird zu Milchsäure (Lactat-Dehydrogenase) reduziert. Der Weinsäureabbau durch den heterofermentativen L. brevis zeigt folgenden Reaktionsverlauf: Die durch Dehydratisierung entstandene Oxalessigsäure wird zu zwei Drittel zu Pyruvat decarboxyliert (spontan oder Oxalessigsäure-Decarboxylase). Pyruvat wird quantitativ zu Essigsäure und CO2 oxydiert. Das restliche Drittel Oxalessigsäure wird über Äpfelsäure, Fumarsäure zu Bernsteinsäure reduziert. Das Weinsäure abbauende System des homofermentativen Stammes (L. plantarum) unterscheidet sich im Reaktionsablauf, in der Sauerstoffempfindlichkeit, der Einwirkung von 2-Mercapto-äthanol, dem Einfluß von Glucose, der Stereospezifität und dem pH-Optimum der zellfreien Extrakte von demjenigen des heterofermentativen L. brevis.
Decomposition of tartrate by lactobacilli
Summary The decomposition of tartrate was only observed in four strains of Lactobacillus plantarum and one strain of L. brevis among 78 different strains of lactic acid bacteria of the genera Pediococcus, Leuconostoc and Lactobacillus. The enzyme decomposing tartrate is inducible in both organisms. In L. plantarum the induction is prevented by glucose but not by mannitol. The endproducts of the anaerobic metabolism of one mol of tartrate were 1.5 mol CO2, 0.5 mol acetic and 0.5 mol lactic acid with L. plantarum and 1.33 mol CO2, 0.67 mol acetic acid and 0.3 mol succinic acid with L. brevis when resting cells or cell free extracts were used. As the enzymes were very unstable, no substantial purification could be achieved; dialysis, gel chromatography or precipitation with ammonium sulphate led to rapid inactivation. Therefore crude extracts had to be used for the investigation of the enzymatic mechanism. NAD or NADH2 are essential for the decomposition of tartrate. However, a large surplus of NADH2 reduces or prevents the production of CO2 by cell free extracts and results in an increased formation of lactic or succinic acid, depending on the organism. Oxalacetic acid could be proven to be an intermediate metabolite. Using possible intermediates of the pathway of tartrate decomposition, the following sequences of reactions were demonstrated. In the homofermentative lactic acid bacterium L. plantarum tartrate is converted to oxalacetic acid (by tartrate dehydrase) which is decarboxylated to pyruvic acid (by oxalacetic decarboxylase). Half of the pyruvate is oxidised to CO2 and acetic acid (probably by the pyruvic-dehydrogenase-system), the other half of pyruvic acid is reduced to lactic acid (by lactate dehydrogenase). In the heterofermentative L. brevis tartrate is also converted to oxalacetic acid, but only two thirds of the oxalacetic acid are decarboxylated to pyruvic acid (spontaneously or by oxalacetic decarboxylase), the remaining third of oxalacetic acid is reduced to succinic acid via malic and fumaric acids. Pyruvic acid is completely oxidised to acetic acid and CO2. — The tartrate decomposing systems of the homofermentative strain (L. plantarum) and the heterofermentative strain (L. brevis) differ in the metabolic pathway, the inactivation by oxygen, the effect of 2-mercaptoethanol, the influence of glucose, the stereospecifity, and the pH-optimum.
  相似文献   

20.
Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号