首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the impacts of climate on migratory species is complicated by the fact that these species travel through several climates that may be changing in diverse ways throughout their complete migratory cycle. Most studies are not designed to tease out the direct and indirect effects of climate at various stages along the migration route. We assess the impacts of spring and summer climate conditions on breeding monarch butterflies, a species that completes its annual migration cycle over several generations. No single, broad‐scale climate metric can explain summer breeding phenology or the substantial year‐to‐year fluctuations observed in population abundances. As such, we built a Poisson regression model to help explain annual arrival times and abundances in the Midwestern United States. We incorporated the climate conditions experienced both during a spring migration/breeding phase in Texas as well as during subsequent arrival and breeding during the main recruitment period in Ohio. Using data from a state‐wide butterfly monitoring network in Ohio, our results suggest that climate acts in conflicting ways during the spring and summer seasons. High spring precipitation in Texas is associated with the largest annual population growth in Ohio and the earliest arrival to the summer breeding ground, as are intermediate spring temperatures in Texas. On the other hand, the timing of monarch arrivals to the summer breeding grounds is not affected by climate conditions within Ohio. Once in Ohio for summer breeding, precipitation has minimal impacts on overall abundances, whereas warmer summer temperatures are generally associated with the highest expected abundances, yet this effect is mitigated by the average seasonal temperature of each location in that the warmest sites receive no benefit of above average summer temperatures. Our results highlight the complex relationship between climate and performance for a migrating species and suggest that attempts to understand how monarchs will be affected by future climate conditions will be challenging.  相似文献   

2.
Eastern North American monarch butterflies (Danaus plexippus L.) show a series of range shifts during their breeding season. Using ecological niche modeling, we studied the environmental context of these shifts by identifying the ecological conditions that monarchs use in successive summer months. Monarchs use a consistent ecological regimen through the summer, but these conditions contrast strikingly with those used during the winter. Hence, monarchs exhibit niche-following among sequential breeding generations but niche-switching between the breeding and overwintering stages of their annual cycle. We projected their breeding ecological niche onto monthly future climate scenarios, which indicated northward shifts, particularly at the northern extreme of their summer movements, over the next 50 yrs; if both monarchs and their milkweed host plants cannot track these changing climates, monarchs could lose distributional area during critical breeding months.  相似文献   

3.
Threats to several of the world's great animal migrations necessitate a research agenda focused on identifying drivers of their population dynamics. The monarch butterfly is an iconic species whose continental migratory population in eastern North America has been declining precipitously. Recent analyses have linked the monarch decline to reduced abundance of milkweed host plants in the USA caused by increased use of genetically modified herbicide‐resistant crops. To identify the most sensitive stages in the monarch's annual multi‐generational migration, and to test the milkweed limitation hypothesis, we analyzed 22 years of citizen science records from four monitoring programs across North America. We analyzed the relationships between butterfly population indices at successive stages of the annual migratory cycle to assess demographic connections and to address the roles of migrant population size versus temporal trends that reflect changes in habitat or resource quality. We find a sharp annual population decline in the first breeding generation in the southern USA, driven by the progressively smaller numbers of spring migrants from the overwintering grounds in Mexico. Monarch populations then build regionally during the summer generations. Contrary to the milkweed limitation hypothesis, we did not find statistically significant temporal trends in stage‐to‐stage population relationships in the mid‐western or northeastern USA. In contrast, there are statistically significant negative temporal trends at the overwintering grounds in Mexico, suggesting that monarch success during the fall migration and re‐establishment strongly contributes to the butterfly decline. Lack of milkweed, the only host plant for monarch butterfly caterpillars, is unlikely to be driving the monarch's population decline. Conservation efforts therefore require additional focus on the later phases in the monarch's annual migratory cycle. We hypothesize that lack of nectar sources, habitat fragmentation, continued degradation at the overwintering sites, or other threats to successful fall migration are critical limiting factors for declining monarchs.  相似文献   

4.
Monarch butterflies are best known for their spectacular annual migration from eastern North America to Mexico. Monarchs also occur in the North American states west of the Rocky Mountains, from where they fly shorter distances to the California Coast. Whether eastern and western North American monarchs form one genetic population or are genetically differentiated remains hotly debated, and resolution of this debate is essential to understand monarch migration patterns and to protect this iconic insect species. We studied the genetic structure of North American migratory monarch populations, as well as nonmigratory populations in Hawaii and New Zealand. Our results show that eastern and western migratory monarchs form one admixed population and that monarchs from Hawaii and New Zealand have genetically diverged from North American butterflies. These findings suggest that eastern and western monarch butterflies maintain their divergent migrations despite genetic mixing. The finding that eastern and western monarchs form one genetic population also suggests that the conservation of overwintering sites in Mexico is crucial for the protection of monarchs in both eastern and western North America.  相似文献   

5.
We review the postulated threatening processes that may have affected the decline in the eastern population of the monarch butterfly, Danaus plexippus L. (Lepidoptera: Nymphalidae), in North America. Although there are likely multiple contributing factors, such as climate and resource‐related effects on breeding, migrating, and overwintering populations, the key landscape‐level change appears to be associated with the widespread use of genetically modified herbicide resistant crops that have rapidly come to dominate the extensive core summer breeding range. We dismiss misinterpretations of the apparent lack of population change in summer adult count data as logically flawed. Glyphosate‐tolerant soybean and maize have enabled the extensive use of this herbicide, generating widespread losses of milkweed (Asclepias spp.), the only host plants for monarch larvae. Modeling studies that simulate lifetime realized fecundity at a landscape scale, direct counts of milkweeds, and extensive citizen science data across the breeding range suggest that a herbicide‐induced, landscape‐level reduction in milkweed has precipitated the decline in monarchs. A recovery will likely require a monumental effort for the re‐establishment of milkweed resources at a commensurate landscape scale.  相似文献   

6.
Monarch butterflies (Danaus plexippus) depend on the presence of host plants (Asclepias spp.) within their breeding range for reproduction. In the southern Great Plains, Asclepias viridis is a perennial that flowers in May and June, and starts to senesce by August. It is locally abundant and readily used by monarchs as a host plant. We evaluated the effects of summer prescribed fire on A. viridis and the use of A. viridis by monarch butterflies. Summer prescribed fire generated a newly emergent population of A. viridis that was absent in other areas. Pre-migrant monarch butterflies laid eggs on A. viridis in summer burned plots in late August and September, allowing adequate time for a new generation of adult monarchs to emerge and migrate south to their overwintering grounds. Thus, summer prescribed fire may provide host plant patches and/or corridors for pre-migrant monarchs during a time when host plant availability may be limited in other areas.  相似文献   

7.
The breeding grounds of migrant generation monarch butterflies in eastern North America are well known. In stark contrast the location of natal grounds of western migrants has not been delineated. We show that 55% of the area within seven western states was potential breeding range based on: (1) the occurrence of milkweed host plant species with phenology making them available during late-summer and (2) regional thermal conditions supportive of adult reproductive activity and development of immature stages. We next used a series of spatially explicit “bottom-up” regression models to test this first-approximation natal origins distribution. We tested for associations between variation in moisture availability at putative natal habitat and inter-annual variation in monarch abundance at western wintering sites for a 10 year period (1998–2007). Variation in moisture availability, as measured by Palmer’s drought severity index (PDSI), across the western region predicted monarch abundance patterns. In contrast and as expected, PDSI across known eastern breeding grounds did not predict variation in western monarch migrant abundance. The pattern of moisture availability was not uniform between states or within states and permitted similar tests of association at a finer geographical level. PDSI for California, Idaho, Nevada, and Oregon (but not Arizona, Utah, or Washington) were each significantly associated with monarch wintering abundance patterns with California exhibiting the strongest relationship. At a more focused spatial scale we tested the local recruitment hypothesis. This is the notion that western coastal wintering monarch populations derive only from nearby coastal breeding habitat and that monarchs do not migrate from more distant natal grounds. Variation in moisture availability within a block of three contiguous central California climate divisions (Sacramento Drainage, San Joaquin Drainage, and Southeast Desert Basin) significantly predicted inter-annual abundance of migrant generation monarchs. In contrast PDSI patterns of three coastal California climate divisions, i.e., ones local to wintering sites, as well as that of climate divisions in western Nevada and Arizona did not predict variation in monarch abundance at this more focused spatial resolution. Our findings suggest that moisture regimes act as a strong bottom-up driver of monarch abundance pattern via resource availability in western USA.  相似文献   

8.
Climate change can profoundly alter species’ distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in summer months while encountering reduced habitat suitability throughout the northern migration.  相似文献   

9.
Addressing population declines of migratory insects requires linking populations across different portions of the annual cycle and understanding the effects of variation in weather and climate on productivity, recruitment, and patterns of long‐distance movement. We used stable H and C isotopes and geospatial modeling to estimate the natal origin of monarch butterflies (Danaus plexippus) in eastern North America using over 1000 monarchs collected over almost four decades at Mexican overwintering colonies. Multinomial regression was used to ascertain which climate‐related factors best‐predicted temporal variation in natal origin across six breeding regions. The region producing the largest proportion of overwintering monarchs was the US Midwest (mean annual proportion = 0.38; 95% CI: 0.36–0.41) followed by the north‐central (0.17; 0.14–0.18), northeast (0.15; 0.11–0.16), northwest (0.12; 0.12–0.16), southwest (0.11; 0.08–0.12), and southeast (0.08; 0.07–0.11) regions. There was no evidence of directional shifts in the relative contributions of different natal regions over time, which suggests these regions are comprising the same relative proportion of the overwintering population in recent years as in the mid‐1970s. Instead, interannual variation in the proportion of monarchs from each region covaried with climate, as measured by the Southern Oscillation Index and regional‐specific daily maximum temperature and precipitation, which together likely dictate larval development rates and food plant condition. Our results provide the first robust long‐term analysis of predictors of the natal origins of monarchs overwintering in Mexico. Conservation efforts on the breeding grounds focused on the Midwest region will likely have the greatest benefit to eastern North American migratory monarchs, but the population will likely remain sensitive to regional and stochastic weather patterns.  相似文献   

10.
The Eastern North American monarch butterfly population has severely declined over the past decade. The decreasing availability of larval host plants (milkweeds) due to the use of herbicide-tolerant crops has been implicated in this decline. Roadsides could provide additional habitat for monarchs. In this study we document the occurrence of milkweed and monarchs on roadsides, and discuss whether roadsides are appropriate targets for monarch habitat restoration. We sampled roadside rights-of-way in the Upper Midwestern U.S. during the summer of 2015 to estimate the abundance, distribution, and diversity of milkweeds and the extent to which monarchs use these milkweeds. We then compared monarch densities in roadsides to other habitat types and modelled immature monarch densities based on several site characteristics. Our findings suggest that roadsides have conservation potential for monarchs, especially when other habitat is scarce and if wildlife-friendly management practices are enacted. Milkweeds were found on ~60% of roadside transects. Asclepias syriaca was the most common of the seven species encountered, occurring on 97% of transects with milkweed. Immature monarchs were observed in roadsides, but in lower densities than other habitats during the same time period. At lower milkweed densities, immature monarch density per unit area is positively correlated with milkweed density. However, milkweed density weakens as a predictor of immature monarch density over ~0.6 plants per m2, possibly indicating a saturation effect.  相似文献   

11.
Monarch butterflies (Danaus plexippus) undergo an iconic multi-generational migration, traveling thousands of kilometers from the summer breeding grounds in southern Canada to overwintering sites in central Mexico. This migration phenomena can be affected by climate change, which may have important implications on fitness and ultimately populations status. We investigated the long-term trends in fall migration phenology of monarchs using a 25-year dataset collected along the coast of Lake Erie in Ontario, Canada. We also investigated local long-term trends in weather covariates that have the potential to influence migration phenology at this site. Patterns in standardized daily counts of monarchs were compared with local weather covariates using two methods (i.e., monthly averages and moving windows) to assess difference in outputs between analytical approaches. Our results suggest that monarch migration timing (migration midpoint, average peak, first peak, and late passage) and weather covariates have been consistent over time, in direct contrast to a similar study in Cape May, New Jersey, which showed a significant increase in both fall temperature and a 16- to 19-day shift in monarch migration timing. Furthermore, our results differed between analytical approaches. With respect to annual variability in air temperature, our monthly average analysis suggested that for each degree increase in September air temperature, late season passage would advance 4.71 days (±1.59 SE, p = .01). However, the moving window analysis suggested that this result is likely spurious and found no significant correlations between migration timing and any weather covariates. Importantly, our results caution against extrapolating the effects of climate change on the migration phenology of the monarch across study regions and the need for more long-term monitoring efforts to better understand regional drivers of variability in migration timing.  相似文献   

12.
Like most migratory species, monarch butterflies (Danaus plexippus) must stop frequently during their long southward migration to rest and refuel, and the places where they stop are important for the success of the migration. The behavior of monarch butterflies at migratory stopover sites has never been examined in detail. Here we present results of a long-term study of monarchs at one stopover site in coastal South Carolina where over 12,000 monarchs have been captured, measured and tagged (with numbered stickers to track recovery rates) over 13 years. Only 3 monarchs (0.023%) were recovered at the monarchs’ overwintering sites in Mexico, which is consistent with other tagging studies on the eastern coast. The migration season was longer at this site than at inland locations and monarchs continued to be captured in November and December, when most monarchs had already arrived at the overwintering areas in Mexico. In addition, there were 94 monarchs captured between Jan 1 and Mar 15, indicating that some monarchs overwinter at this site. Of all monarchs captured during the migration season, 80% were captured while nectaring and 10% while roosting. Others were basking, resting, flying and even mating. The sex ratio was male biased by three to one in all behavior categories except those captured mating. Roosting and nectaring monarchs had fresher wings than those in other behavior categories, suggesting that these are younger individuals. There were 13 observations of females ovipositing on non-native Asclepias curassavica during the fall months, which speaks to the potential for this plant to pull monarchs out of the migratory pool. Aside from these insights, this study also serves as an example of the potential that monarch tagging studies have to advance scientific understanding of monarch migration.  相似文献   

13.
Long-distance migration can lower parasite prevalence if strenuous journeys remove infected animals from wild populations. We examined wild monarch butterflies (Danaus plexippus) to investigate the potential costs of the protozoan Ophryocystis elektroscirrha on migratory success. We collected monarchs from two wintering sites in central Mexico to compare infection status with hydrogen isotope (δ 2H) measurements as an indicator of latitude of origin at the start of fall migration. On average, uninfected monarchs had lower δ 2H values than parasitized butterflies, indicating that uninfected butterflies originated from more northerly latitudes and travelled farther distances to reach Mexico. Within the infected class, monarchs with higher quantitative spore loads originated from more southerly latitudes, indicating that heavily infected monarchs originating from farther north are less likely to reach Mexico. We ruled out the alternative explanation that lower latitudes give rise to more infected monarchs prior to the onset of migration using citizen science data to examine regional differences in parasite prevalence during the summer breeding season. We also found a positive association between monarch wing area and estimated distance flown. Collectively, these results emphasize that seasonal migrations can help lower infection levels in wild animal populations. Our findings, combined with recent declines in the numbers of migratory monarchs wintering in Mexico and observations of sedentary (winter breeding) monarch populations in the southern U.S., suggest that shifts from migratory to sedentary behavior will likely lead to greater infection prevalence for North American monarchs.  相似文献   

14.
Abstract. 1. In the Sydney area of New South Wales, dry weights of reproductive monarch butterflies averaged 156 mg and were higher during winter than in other seasons. Dry weights of non-reproductive monarchs ranged from 216 to 324 mg and declined by 15–25% during over wintering.
2. Fat in reproductive butterflies ranged from 0.009 to 0.017g/0.1g dry weight and was lower during winter than in other seasons. Fat content of non-reproductive monarchs was higher (0.019–0.037 g/0.1g) and declined by 24–51% during over wintering.
3. Lean dry weights of reproductive monarchs were lower than those of non-reproductive individuals. Lean dry weights of non-reproductive butterflies increased rapidly at the beginning of over wintering and remained high throughout the winter. Analysis of protein content indicated the higher lean weight of non-reproductive monarchs was due to greater protein levels.
4. Moisture content of monarchs did not vary with season or reproductive status and appeared to be correlated with ambient humidity.
5. Non-reproductive monarch butterflies in New South Wales adjust bio chemically during over wintering. Energy reserve dynamics of these butterflies are comparable to those that occur in non-reproductive monarchs in North America.  相似文献   

15.
Monarch butterflies are known for their spectacular annual migration in eastern North America, with millions of monarchs flying up to 4,500 km to overwintering sites in central Mexico. Monarchs also live west of the Rocky Mountains, where they travel shorter distances to overwinter along the Pacific Coast. It is often assumed that eastern and western monarchs form distinct evolutionary units, but genomic studies to support this notion are lacking. We used a tethered flight mill to show that migratory eastern monarchs have greater flight performance than western monarchs, consistent with their greater migratory distances. However, analysing more than 20 million SNPs in 43 monarch genomes, we found no evidence for genomic differentiation between eastern and western monarchs. Genomic analysis also showed identical and low levels of genetic diversity, and demographic analyses indicated similar effective population sizes and ongoing gene flow between eastern and western monarchs. Gene expression analysis of a subset of candidate genes during active flight revealed differential gene expression related to nonmuscular motor activity. Our results demonstrate that eastern and western monarchs maintain migratory differences despite ongoing gene flow, and suggest that migratory differences between eastern and western monarchs are not driven by select major‐effects alleles. Instead, variation in migratory distance and destination may be driven by environmentally induced differential gene expression or by many alleles of small effect.  相似文献   

16.
Fueling the fall migration of the monarch butterfly   总被引:1,自引:0,他引:1  
Monarch butterflies in eastern North America accumulate lipidsduring their fall migration to central Mexico, and use themas their energy source during a 5 month overwintering period.When and where along their migratory journey the butterfliesaccumulate these lipids has implications for the importanceof fall nectar sources in North America. We analyzed the lipidcontent of 765 summer breeding and fall migrant monarch butterfliescollected at 1 nectaring site in central Virginia over 4 years(1998–2001), and compared them with 16 additional publishedand unpublished datasets from other sites, dating back to 1941.Virginia migrants store significantly more lipid than summerbutterflies, and show significant intraseason and between-yearvariation. None of the Virginia samples, and none of the historicalsamples, with one exception, had lipid levels comparable withthose found in migrants that had reached Texas and northernMexico. This evidence suggests that upon reaching Texas, thebutterflies undergo a behavioral shift and spend more time nectaring.The one exceptional sample led us to the discovery that monarchsthat form roosts along their migratory routes have higher lipidcontents than monarchs collected while nectaring at flowers.We propose that for much of their journey monarchs are opportunisticmigrants, and the variation within and between samples reflectsbutterflies' individual experiences. The stored lipids appearto be of less importance as fuel for the butterflies' migrationthan for their survival during their overwintering period, inpart because soaring on favorable winds reduces the energeticcost of flying. The conservation of nectar plants in Texas andnorthern Mexico is crucial to sustaining the monarch's migratoryspectacle, and nectar abundance throughout eastern North Americais also important. As generalists in their selection of nectarsources and nectaring habitats, monarchs are unlikely to beaffected by small changes in plant communities. Agriculturaltransformations of natural communities in the eastern UnitedStates and Great Plains, however, and especially the extensiveplanting of genetically modified herbicide-resistant soybeansand corn, may be changing the availability of nectar for monarchsand other pollinators. This new technology is eliminating virtuallyall forbs in and surrounding agricultural fields, includingthe monarch's larval hostplants (milkweeds) and native and nonnativenectar sources. To evaluate whether changes in nectar availabilityare altering the butterflies' ability to accumulate energy,we recommend that monarchs' lipid contents be assayed annuallyat sites throughout eastern North America.  相似文献   

17.
The monarch butterfly, Danaus plexippus, is one of Australia's best-known exotic butterflies, being first recorded here in the spring/summer of 1870/1871. However, the source of the original population is unknown. Using historical records we suggest that the most likely source of the founder population was from Vanuatu and/or New Caledonia. Many almost simultaneous 'first records' for the butterfly in Australia suggest that a large, well-distributed population was present when first noticed. While such a population may have developed from a limited number of individuals flying across the Coral Sea, the well documented, very dramatic appearance of large monarch populations in Australia does not appear to fit this model. Rather, we hypothesise that large numbers of monarchs were carried to Australia on cyclonic winds: no fewer that 3 cyclones hit the Queensland coast in early 1870. If one or more of these cyclones tracked from the Vanuatu/New Caledonia chain, then they may have transported monarchs. Once established on the central/northern Queensland coast, natural migration would account for the appearance of butterflies further south. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
1. The monarch has undergone considerable population declines over the past decade, and the governments of Mexico, Canada, and the United States have agreed to work together to conserve the species. 2. Given limited resources, understanding where to focus conservation action is key for widespread species like monarchs. To support planning for continental‐scale monarch habitat restoration, we address the question of where restoration efforts are likely to have the largest impacts on monarch butterfly (Danaus plexippus Linn.) population growth rates. 3. We present a spatially explicit demographic model simulating the multi‐generational annual cycle of the eastern monarch population, and use the model to examine management scenarios, some of which focus on particular regions of North America. 4. Improving the monarch habitat in the north central or southern parts of the monarch range yields a slightly greater increase in the population growth rate than restoration in other regions. However, combining restoration efforts across multiple regions yields population growth rates above 1 with smaller simulated improvements in habitat per region than single‐region strategies. 5. S ynthesis and applications: These findings suggest that conservation investment in projects across the full monarch range will be more effective than focusing on one or a few regions, and will require international cooperation across many land use categories.  相似文献   

19.
Abstract. 1. Hosts experiencing frequent variation in density are thought to benefit from allocating more resources to parasite defence when density is high (‘density‐dependent prophylaxis’). However, high density conditions can increase intra‐specific competition and induce physiological stress, hence increasing host susceptibility to infection (‘crowding‐stress hypothesis’). 2. We studied monarch butterflies (Danaus plexippus) and quantified the effects of larval rearing density on susceptibility to the protozoan parasite Ophryocystis elektroscirrha. Larvae were inoculated with parasite spores and reared at three density treatments: low, moderate, and high. We examined the effects of larval density on parasite loads, host survival, development rates, body size, and wing melanism. 3. Results showed an increase in infection probability with greater larval density. Monarchs in the moderate and high density treatments also suffered the greatest negative effects of parasite infection on body size, development rate, and adult longevity. 4. We observed greater body sizes and shorter development times for monarchs reared at moderate densities, and this was true for both unparasitised and parasite‐treated monarchs. We hypothesise that this effect could result from greater larval feeding rates at moderate densities, combined with greater physiological stress at the highest densities. 5. Although monarch larvae are assumed to occur at very low densities in the wild, an analysis of continent‐wide monarch larval abundance data showed that larval densities can reach high levels in year‐round resident populations and during the late phase of the breeding season. Treatment levels used in our experiment captured ecologically‐relevant variation in larval density observed in the wild.  相似文献   

20.
Roadsides cover an extensive area within the United States, are actively managed, and have been considered potential areas of habitat for several taxa. For monarch butterflies (Danaus plexippus), roadsides may act as important habitat along their migration route by providing nectar and host plant resources, which is especially important considering the loss and fragmentation of monarch habitat throughout their breeding range. However, the interactions between monarchs and their parasites may be altered in these areas by management regimes. Monarchs are infected by Ophryocystis elektroscirrha (OE), an obligate, spore-forming protist of monarchs and queens, and Lespesia archippivora, a generalist tachinid fly parasitoid. Roadsides could increase parasitism by concentrating monarchs in certain areas or decrease parasitism by modifying habitat (e.g., the roadside management practice of mowing could reduce the availability of OE spores by removing the above ground portion of host plants and generating re-growth), including the distribution and abundance of host plants. In this study, we compared the proportion of infected monarchs between roadside prairies and managed prairies to evaluate the potential of roadside prairies as habitat for monarch butterflies. Our results suggest that the proportion of infected monarchs does not differ between roadside prairies and managed prairies. Thus, roadsides may provide habitat for monarchs that is similar in quality (at least in terms of parasitism rates) to managed prairies. The role of roadsides as habitat for monarchs should be considered when developing roadside management strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号