首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dispersal is a fundamental component of the life history of most species. Dispersal influences fitness, population dynamics, gene flow, genetic drift and population genetic structure. Even small differences in dispersal can alter ecological interactions and trigger an evolutionary cascade. Linking such ecological processes with evolutionary patterns is difficult, but can be carried out in the proper comparative context. Here, we investigate how differences in phoretic dispersal influence the population genetic structure of two different parasites of the same host species. We focus on two species of host‐specific feather lice (Phthiraptera: Ischnocera) that co‐occur on feral rock pigeons (Columba livia). Although these lice are ecologically very similar, “wing lice” (Columbicola columbae) disperse phoretically by “hitchhiking” on pigeon flies (Diptera: Hippoboscidae), while “body lice” (Campanulotes compar) do not. Differences in the phoretic dispersal of these species are thought to underlie observed differences in host specificity, as well as the degree of host–parasite cospeciation. These ecological and macroevolutionary patterns suggest that body lice should exhibit more genetic differentiation than wing lice. We tested this prediction among lice on individual birds and among lice on birds from three pigeon flocks. We found higher levels of genetic differentiation in body lice compared to wing lice at two spatial scales. Our results indicate that differences in phoretic dispersal can explain microevolutionary differences in population genetic structure and are consistent with macroevolutionary differences in the degree of host–parasite cospeciation.  相似文献   

2.
The community of host species that a parasite infects is often explained by functional traits and phylogeny, predicting that closely related hosts or those with particular traits share more parasites with other hosts. Previous research has examined parasite community similarity by regressing pairwise parasite community dissimilarity between two host species against host phylogenetic distance. However, pairwise approaches cannot target specific host species responsible for disproportionate levels of parasite sharing. To better identify why some host species contribute differentially to parasite diversity patterns, we represent parasite sharing using ecological networks consisting of host species connected by instances of shared parasitism. These networks can help identify host species and traits associated with high levels of parasite sharing that may subsequently identify important hosts for parasite maintenance and transmission within communities. We used global‐scale parasite sharing networks of ungulates, carnivores, and primates to determine if host importance – encapsulated by the network measures degree, closeness, betweenness, and eigenvector centrality – was predictable based on host traits. Our findings suggest that host centrality in parasite sharing networks is a function of host population density and range size, with range size reflecting both species geographic range and the home range of those species. In the full network, host taxonomic family became an important predictor of centrality, suggesting a role for evolutionary relationships between host and parasite species. More broadly, these findings show that trait data predict key properties of ecological networks, thus highlighting a role for species traits in understanding network assembly, stability, and structure.  相似文献   

3.
Organisms that can resist parasitic infection often have lower fitness in the absence of parasites. These costs of resistance can mediate host evolution during parasite epidemics. For example, large epidemics will select for increased host resistance. In contrast, small epidemics (or no disease) can select for increased host susceptibility when costly resistance allows more susceptible hosts to outcompete their resistant counterparts. Despite their importance for evolution in host populations, costs of resistance (which are also known as resistance trade‐offs) have mainly been examined in laboratory‐based host–parasite systems. Very few examples come from field‐collected hosts. Furthermore, little is known about how resistance trade‐offs vary across natural populations. We addressed these gaps using the freshwater crustacean Daphnia dentifera and its natural yeast parasite, Metschnikowia bicuspidata. We found a cost of resistance in two of the five populations we studied – those with the most genetic variation in resistance and the smallest epidemics in the previous year. However, yeast epidemics in the current year did not alter slopes of these trade‐offs before and after epidemics. In contrast, the no‐cost populations showed little variation in resistance, possibly because large yeast epidemics eroded that variation in the previous year. Consequently, our results demonstrate variation in costs of resistance in wild host populations. This variation has important implications for host evolution during epidemics in nature.  相似文献   

4.
Inequality in male and female numbers may affect population dynamics and extinction probabilities and so has significant conservation implications. We previously demonstrated that Brown‐headed Cowbird Molothrus ater brood parasitism of Song Sparrows Melospiza melodia results in a 50% reduction in the proportion of female host offspring by day 6 post‐hatch and at fledging, which modelling demonstrated is as significant as nest predation in affecting demography. Many avian brood parasites possess special adaptations to parasitize specific hosts so this sex‐ratio effect could be specific to the interaction between these two species. Alternatively, perturbations associated with brood parasitism per se (e.g. the addition of an extra, larger, unrelated nestling), rather than a Cowbird nestling specifically, may be responsible. We experimentally eliminated the effects of Cowbird‐specific traits by parasitizing nests with a conspecific nestling rather than a Cowbird, while otherwise emulating the circumstances of Cowbird parasitism by adding an extra, larger (2‐day‐older), unrelated Song Sparrow nestling to Song Sparrow nests. Our parasitism treatment led to few host offspring deaths and no evidence of male‐biased sex ratios by day 6 post‐hatch. However, after day 6, female nestling mortality rates increased significantly in experimentally parasitized nests, resulting in a 60% reduction in the proportion of females fledging. Cowbird‐specific traits are thus not necessary to cause female‐biased host nestling mortality and far more general features associated with Cowbird parasitism instead appear responsible. Our results suggest, however, that Cowbird‐specific traits may help accelerate the pace of female host deaths. The conservation implications of our results could be wide reaching. Cowbirds are unrelated to all their hosts, are larger than the great majority, and a Cowbird nestling's presence can mean there is an extra mouth to feed. Thus, sex‐biased mortality in parasitized nests could be occurring across a range of host species.  相似文献   

5.
Host specificity has a major influence on a parasite's ability to shift between human and animal host species. Yet there is a dearth of quantitative approaches to explore variation in host specificity across biogeographical scales, particularly in response to the varying community compositions of potential hosts. We built a global dataset of intermediate host associations for nine of the world's most widespread helminth parasites (all of which infect humans). Using hierarchical models, we asked if realised parasite host specificity varied in response to regional variation in the phylogenetic and functional diversities of potential host species. Parasites were recorded in 4–10 zoogeographical regions, with some showing considerable geographical variation in observed versus expected host specificity. Parasites generally exhibited the lowest phylogenetic host specificity in regions with the greatest variation in prospective host phylogenetic diversity, namely the Neotropical, Saharo‐Arabian and Australian regions. Globally, we uncovered notable variation in parasite host shifting potential. Observed host assemblages for Hydatigera taeniaeformis and Hymenolepis diminuta were less phylogenetically diverse than expected, suggesting limited potential to spillover into unrelated hosts. Host assemblages for Echinococcus granulosus, Mesocestoides lineatus and Trichinella spiralis were less functionally diverse than expected, suggesting limited potential to shift across host ecological niches. By contrast, Hyd. taeniaeformis infected a higher functional diversity of hosts than expected, indicating strong potential to shift across hosts with different ecological niches. We show that the realised phylogenetic and functional diversities of infected hosts are determined by biogeographical gradients in prospective host species pools. These findings emphasise the need to account for underlying species diversity when assessing parasite host specificity. Our framework to identify variation in realised host specificity is broadly applicable to other host–parasite systems and will provide key insights into parasite invasion potential at regional and global scales.  相似文献   

6.
7.
Parasites often affect the abundance and life‐history traits of their hosts. We studied the impact of a social parasite – a slavemaking ant – on host ant communities using two complementary field manipulations. In the first experiment, we analysed the effect of social parasite presence on host populations in one habitat. In a second experiment, conducted in two habitats, we used a cross‐fostering design, analysing the effect of sympatric and allopatric social parasites. In the first experiment, host colonies benefited to some extent from residing in parasite‐free areas, showing increased total production. Yet, in the second experiment, host colonies in plots containing social parasites were more productive, and this effect was most evident in response to allopatric social parasites. We propose several explanations for these inconsistent results, which are related to environmental variability. The discrepancies between the two habitats can be explained well by ecological variation as a result of differences in altitudes and climate. For example, ant colonies in the colder habitat were larger and, for one host species, colonies were more often polygynous. In addition, our long‐term documentation – a total of four measurements of community structure in 6 years – showed temporal variation in abundance and life‐history traits of ant colonies, unrelated to the manipulations. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 559–570.  相似文献   

8.
Host density is an important factor when it comes to parasite transmission and host resistance. Increased host density can increase contact rate between individuals and thus parasite transmission. Host density can also cause physiological changes in the host, which can affect host resistance. Yet, the direction in which host density affects host resistance remains unresolved. It is also unclear whether food limitation plays a role in this effect. We investigated the effect of larval density in monarch butterflies, Danaus plexippus, on the resistance to their natural protozoan parasite Ophryocystis elektroscirrha under both unlimited and limited food conditions. We exposed monarchs to various density treatments as larvae to mimic high densities observed in sedentary populations. Data on infection and parasite spore load were collected as well as development time, survival, wing size, and melanization. Disease susceptibility under either food condition or across density treatments was similar. However, we found high larval density impacted development time, adult survival, and wing morphology when food was limited. This study aids our understanding of the dynamics of environmental parasite transmission in monarch populations, which can help explain the increased prevalence of parasites in sedentary monarch populations compared to migratory populations.  相似文献   

9.
Human impacts on ecosystems can decouple the fundamental ecological relationships that create patterns of diversity in free‐living species. Despite the abundance, ubiquity, and ecological importance of parasites, it is unknown whether the same decoupling effects occur for parasitic species. We investigated the influence of fishing on the relationship between host diversity and parasite diversity for parasites of coral reef fishes on three fished and three unfished islands in the central equatorial Pacific. Fishing was associated with a shallowing of the positive host‐diversity–parasite‐diversity relationship. This occurred primarily through negative impacts of fishing on the presence of complex life‐cycle parasites, which created a biologically impoverished parasite fauna of directly transmitted parasites resilient to changes in host biodiversity. Parasite diversity appears to be decoupled from host diversity by fishing impacts in this coral reef ecosystem, which suggests that such decoupling might also occur for parasites in other ecosystems affected by environmental change.  相似文献   

10.
Parasites with heteroxen cycles are important sources of information on the trophic relations of hosts. This is particularly instructive for species whose age‐based or sex‐based differences are hardly detected by behavioural observations. Here, we describe the helminth community of the omnivorous southern lapwing (Vanellus chilensis) and evaluate whether it is affected by the host's sex, age and body size. The species is sexually monomorphic in body length, but males are slightly heavier than females. We analysed 112 individuals collected in Curitiba, Brazil, in March 2010. All hosts were parasitized. The helminth community was composed of 10 species (the digeneans Leucochloridium parcum and Athesmia sp., the cestode Infula macrophallus, the acantocephalans Plagiorhynchus sp., Centrorhynchus sp., Mediorhynchus sp., and an unidentified Gigantorhynchida, and the nematodes Heterakis psophiae, Dispharynx nasuta and an unidentified Capillariidae), seven of which were novel reports for this host species. Prevalence ranged from <1% to 99%. Whereas I. macrophallus was the most prevalent species, D. nasuta showed the highest mean intensity and abundance of infection. The former was found in most hosts as single male–female pairs, suggesting the occurrence of intrasexual competition. The infracommunities of juvenile birds showed a higher parasite species richness than those of adult males and females, suggesting the exploitation of a wider array of prey. However, the three classes harboured seven parasite species. Differences in parasite diversity (lower in juveniles, intermediate in adult males and higher in adult females) reflect the evenness in the distribution of parasite specimens among taxa in each age–sex class and are compatible with differences in their foraging strategy. Finally, we conclude based on the cycles of the heteroxen species that southern lapwings preyed upon molluscs, coleopterans, woodlice and earthworms.  相似文献   

11.
Parasites exert a major impact on the eco‐evolutionary dynamics of their hosts and the associated biotic environment. Migration constitutes an effective means for long‐distance invasions of vector‐borne parasites and promotes their rapid spread. Yet, ecological and spatial information on population‐specific host–parasite connectivity is essentially lacking. Here, we address this question in a system consisting of a transcontinental migrant species, the European barn swallow (Hirundo rustica) which serves as a vector for avian endoparasites in the genera Plasmodium, Haemoproteus and Leucocytozoon. Using feather stable isotope ratios as geographically informative markers, we first assessed migratory connectivity in the host: Northern European breeding populations predominantly overwintered in dry, savannah‐like habitats in Southern Africa, whereas Southern European populations were associated with wetland habitats in Western Central Africa. Wintering areas of swallows breeding in Central Europe indicated a migratory divide with both migratory programmes occurring within the same breeding population. Subsequent genetic screens of parasites in the breeding populations revealed a link between the host's migratory programme and its parasitic repertoire: controlling for effects of local breeding location, prevalence of Africa‐transmitted Plasmodium lineages was significantly higher in individuals overwintering in the moist habitats of Western Central Africa, even among sympatrically breeding individuals with different overwintering locations. For the rarer Haemoproteus parasites, prevalence was best explained by breeding location alone, whereas no clear pattern emerged for the least abundant parasite Leucocytozoon. These results have implications for our understanding of spatio‐temporal host–parasite dynamics in migratory species and the spread of avian borne diseases.  相似文献   

12.
Natural populations often show genetic variation in parasite resistance, forming the basis for evolutionary response to selection imposed by parasitism. We investigated whether previous epidemics selected for higher resistance to novel parasite isolates in a Daphnia galeatamicroparasite system by comparing susceptibility of host clones from populations with varying epidemic history. We manipulated resource availability to evaluate whether diet influences Daphnia susceptibility as epidemics are common in nutrient‐rich lakes. Exposing clones from 10 lakes under two food treatments to an allopatric protozoan parasite, we found that Daphnia originating from lakes (mainly nutrient rich) with previous epidemics better resist infection. Despite this result, there was a tendency of higher susceptibility in the low food treatment, suggesting that higher resistance of clones from populations with epidemic background is not directly caused by lake nutrient level. Rather, our results imply that host populations respond to parasite‐mediated selection by evolving higher parasite resistance.  相似文献   

13.
Parasitism has been proposed as a factor in host speciation, as an agent affecting coexistence of host species in species‐rich communities and as a driver of post‐speciation diversification. Young adaptive radiations of closely related host species of varying ecological and genomic differentiation provide interesting opportunities to explore interactions between patterns of parasitism, divergence and coexistence of sympatric host species. Here, we explored patterns in ectoparasitism in a community of 16 fully sympatric cichlid species at Makobe Island in Lake Victoria, a model system of vertebrate adaptive radiation. We asked whether host niche, host abundance or host genetic differentiation explains variation in infection patterns. We found significant differences in infections, the magnitude of which was weakly correlated with the extent of genomic divergence between the host species, but more strongly with the main ecological gradient, water depth. These effects were most evident with infections of Cichlidogyrus monogeneans, whereas the only host species with a strictly crevice‐dwelling niche, Pundamilia pundamilia, deviated from the general negative relationship between depth and parasitism. In accordance with the Janzen–Connell hypothesis, we also found that host abundance tended to be positively associated with infections in some parasite taxa. Data on the Pundamilia sister species pairs from three other islands with variable degrees of habitat (crevice) specialization suggested that the lower parasite abundance of P. pundamilia at Makobe could result from both habitat specialization and the evolution of specific resistance. Our results support influences of host genetic differentiation and host ecology in determining infections in this diverse community of sympatric cichlid species.  相似文献   

14.
15.
Yellow warblers (Setophaga petechia) use referential ‘seet’ calls to warn mates of brood parasitic brown-headed cowbirds (Molothrus ater). In response to seet calls during the day, female warblers swiftly move to sit tightly on their nests, which may prevent parasitism by physically blocking female cowbirds from inspecting and laying in the nest. However, cowbirds lay their eggs just prior to sunrise, not during daytime. We experimentally tested whether female warblers, warned by seet calls on one day, extend their anti-parasitic responses into the future by engaging in vigilance at sunrise on the next day, when parasitism may occur. As predicted, daytime seet call playbacks caused female warblers to leave their nests less often on the following morning, relative to playbacks of both their generic anti-predator calls and silent controls. Thus, referential calls do not only convey the identity or the type of threat at present but also elicit vigilance in the future to provide protection from threats during periods of heightened vulnerability.  相似文献   

16.
Due to the close association between parasites and their hosts, many ‘generalist’ parasites have a high potential to become specialized on different host species. We investigated this hypothesis for a common ectoparasite of seabirds, the tick Ixodes uriae that is often found in mixed host sites. We examined patterns of neutral genetic variation between ticks collected from Black‐legged kittiwakes (Rissa tridactyla) and Atlantic puffins (Fratercula arctica) in sympatry. To control for a potential distance effect, values were compared to differences among ticks from the same host in nearby monospecific sites. As predicted, there was higher genetic differentiation between ticks from different sympatric host species than between ticks from nearby allopatric populations of the same host species. Patterns suggesting isolation by distance were found among tick populations of each host group, but no such patterns existed between tick populations of different hosts. Overall, results suggest that host‐related selection pressures have led to the specialization of I. uriae and that host race formation may be an important diversifying mechanism in parasites.  相似文献   

17.
Parasite host range plays a pivotal role in the evolution and ecology of hosts and the emergence of infectious disease. Although the factors that promote host range and the epidemiological consequences of variation in host range are relatively well characterized, the effect of parasite host range on host resistance evolution is less well understood. In this study, we tested the impact of parasite host range on host resistance evolution. To do so, we used the host bacterium Pseudomonas fluorescens SBW25 and a diverse suite of coevolved viral parasites (lytic bacteriophage Φ2) with variable host ranges (defined here as the number of host genotypes that can be infected) as our experimental model organisms. Our results show that resistance evolution to coevolved phages occurred at a much lower rate than to ancestral phage (approximately 50% vs. 100%), but the host range of coevolved phages did not influence the likelihood of resistance evolution. We also show that the host range of both single parasites and populations of parasites does not affect the breadth of the resulting resistance range in a naïve host but that hosts that evolve resistance to single parasites are more likely to resist other (genetically) more closely related parasites as a correlated response. These findings have important implications for our understanding of resistance evolution in natural populations of bacteria and viruses and other host–parasite combinations with similar underlying infection genetics, as well as the development of phage therapy.  相似文献   

18.
Resistance and tolerance are considered to be different plant strategies against disease. While resistance traits prevent hosts becoming parasitized or reduce the extent of parasitism, tolerance traits reduce the fitness-impact of parasitism on infected hosts. Theoretical considerations predict that in some circumstances mutual redundancy will give hosts with either high resistance or high tolerance a fitness advantage over hosts that exhibit both of these traits together. However, empirical evidence has provided mixed results. In this paper, I describe the pattern of phenotypic selection imposed by the holoparasitic mistletoe Tristerix aphyllus upon resistance (spine length) and tolerance (branching) traits in the cactus Echinopsis chilensis. Results indicate that branching was an efficient compensatory mechanism, reducing 75.5% of the fitness-impact attributable to parasitism. Even though both traits showed a negative correlation, as expected from the presence of allocation costs between strategies, no correlational selection coefficient was significant indicating that selection did not favor alternative combinations of traits. Consequently, I did not find evidence for selection promoting mutually exclusive defense strategies against the mistletoe, which suggests that tolerance and resistance traits may coexist stably in populations of E. chilensis.  相似文献   

19.
Assembly of ecological communities is important for the conservation of ecosystems, predicting perturbation impacts, and understanding the origin and loss of biodiversity. We tested how amphibian communities are assembled by neutral and niche‐based mechanisms, such as habitat filtering. Species richness, β‐diversities, and reproductive traits of amphibians were evaluated at local scale in seven habitats at different elevation and disturbance levels in Wisui Biological Station, Morona‐Santiago, Ecuador, on the foothills of the Cordillera del Kutukú; and at regional scale using 109 localities across evergreen forests of Amazonia and its Andean slopes (0–3,900 m a.s.l.). At local scale, species composition showed strong differences among habitats, explained mainly by turnover. Reproductive modes occurred differently across habitats (e.g., prevalence of direct developers at high elevation, where breeding in ground level water disappears). At regional scale, elevation was the most important factor explaining the changes in species richness, reproductive trait occurrences, and biotic dissimilarities. Species number in all groups decreased with elevation except for those with lotic tadpoles and terrestrial reproduction stages. Seasonality, annual precipitation, and relative humidity partially explained the occurrence of some reproductive traits. Biotic dissimilarities were also mostly caused by turnover rather than nestedness and were particularly high in montane and foothill sites. Within lowlands, geographic distance explained more variability than elevation. Habitat filtering was supported by the different occurrence of reproductive traits according to elevation, water availability, and breeding microhabitats at both scales, as well as other assembly mechanisms based in biotic interactions at local scale. Human‐generated land use changes in Amazonia and its Andean slopes reduce local amphibian biodiversity by alteration of primary forests and loss of their microhabitats and the interaction network that maintains their unique amphibian assemblages with different reproductive strategies.  相似文献   

20.
It is generally assumed that resistance to parasitism entails costs. Consequently, hosts evolving in the absence of parasites are predicted to invest less in costly resistance mechanisms than hosts consistently exposed to parasites. This prediction has, however, rarely been tested in natural populations. We studied the susceptibility of three naïve, three parasitized and one recently isolated Asellus aquaticus isopod populations to an acanthocephalan parasite. We found that parasitized populations, with the exception of the isopod population sympatric with the parasite strain used, were less susceptible to the parasite than the naïve populations. Exposed but uninfected (resistant) isopods from naïve populations, but not from parasitized populations, exhibited greater mortality than controls, implying that resistance entails survival costs primarily for naïve isopods. These results suggest that parasites can drive the evolution of host resistance in the wild, and that co‐existence with parasites may increase the cost‐effectiveness of defence mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号