共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogenetic diversity is a measure for describing how much of an evolutionary tree is spanned by a subset of species. If one applies this to the unknown subset of current species that will still be present at some future time, then this ‘future phylogenetic diversity’ provides a measure of the impact of various extinction scenarios in biodiversity conservation. In this paper, we study the distribution of future phylogenetic diversity under a simple model of extinction (a generalized ‘field of bullets’ model). We show that the distribution of future phylogenetic diversity converges to a normal distribution as the number of species grows, under mild conditions, which are necessary. We also describe an algorithm to compute the distribution efficiently, provided the edge lengths are integral, and briefly outline the significance of our findings for biodiversity conservation. 相似文献
2.
3.
Cardillo M Gittleman JL Purvis A 《Proceedings. Biological sciences / The Royal Society》2008,275(1642):1549-1556
Assemblage-level phylogenies carry the signature of ecological and evolutionary processes, which may provide useful information on modes of assemblage formation. We present a global-scale analysis of the emergent phylogenetic properties of mammal assemblages on islands, in which we compared the structure of 595 island assemblages with null models constructed under four alternative definitions of regional source pools. Although most assemblages had a structure indistinguishable from random samples, for some mammal taxa, up to 40% of island assemblages were phylogenetically overdispersed. This suggests that in at least some cases, the processes that shape island faunas are not independent of phylogeny. Furthermore, measures of phylogenetic structure were associated in some cases with island geographical features (size, maximum elevation and habitat diversity). Our results suggest that part of the signal of assemblage formation processes is detectable in the phylogenies of contemporary island mammal faunas, though much is obscured by the complexity of these processes. 相似文献
4.
Disentangling phylogenetic from non‐phylogenetic functional structure of bird assemblages in a tropical dry forest 下载免费PDF全文
Erivelton Rosário do Nascimento Isadora Correia Juan Manuel Ruiz‐Esparza Sidney F. Gouveia 《Oikos》2018,127(8):1177-1185
Understanding the factors driving assembling structure of ecological communities remains a fundamental problem in ecology, especially when focusing on ecological and evolutionary relatedness among species rather than on their taxonomic identity. It remains critical though to separate the patterns and drivers of phylogenetic and functional structures, because traits are phylogenetically constrained, but phylogeny alone does not fully reflect trait variability among species. Using birds from the Brazilian dry forest as a study case, we employed two different approaches to decompose functional structure into its components that are shared and non‐shared with the phylogenetic structure. We investigated the spatial pattern and environmental hypotheses for these phylogenetically constrained and unconstrained aspects of functional structure, including climate‐induced physiological constraints, historical climatic stability, resource availability and habitat partitioning. We found only partial congruence between the two methods of structure decomposition. Still, we found a differential effect of factors on specific components of functional structure of bird assemblages. While climate affects phylogenetically constrained traits through endurance, habitat partitioning (especially forest cover) affects the functional structure that is independent of phylogeny. With this strategy, we were able to decompose the patterns and drivers of the functional structure of birds along a semiarid gradient and showed that the decomposition of the functional structure into its phylogenetic and non‐phylogenetic counterparts can offer a more complete portrait of the assembling rules in ecological communities. We claim for a further development and use of this sort of strategy to investigate assembling rules in ecological communities. 相似文献
5.
6.
The phylogenetic and functional diversity of regional breeding bird assemblages is reduced and constricted through urbanization 下载免费PDF全文
Frank A. La Sorte Christopher A. Lepczyk Myla F. J. Aronson Mark A. Goddard Marcus Hedblom Madhusudan Katti Ian MacGregor‐Fors Ulla Mörtberg Charles H. Nilon Paige S. Warren Nicholas S. G. Williams Jun Yang 《Diversity & distributions》2018,24(7):928-938
Aim
Urbanization broadly affects the phylogenetic and functional diversity of natural communities through a variety of processes including habitat loss and the introduction of non‐native species. Due to the challenge of acquiring direct measurements, these effects have been studied primarily using “space‐for‐time” substitution where spatial urbanization gradients are used to infer the consequences of urbanization occurring across time. The ability of alternative sampling designs to replicate the findings derived using space‐for‐time substitution has not been tested.Location
Global.Methods
We contrasted the phylogenetic and functional diversity of breeding bird assemblages in 58 cities worldwide with the corresponding regional breeding bird assemblages estimated using geographic range maps.Results
Compared to regional assemblages, urban assemblages contained lower phylogenetic diversity, lower phylogenetic beta diversity, a reduction in the least evolutionary distinct species and the loss of the most evolutionarily distinct species. We found no evidence that these effects were related to the presence of non‐native species. Urban assemblages contained fewer aquatic species and fewer aquatic foraging species. The distribution of body size and range size narrowed for urban assemblages with the loss of species at both tails of the distribution, especially large bodied and broadly distributed species. Urban assemblages contained a greater proportion of species classified as passerines, doves or pigeons; species identified as granivores; species that forage within vegetation or in the air; and species with more generalized associations with foraging strata.Main conclusions
Urbanization is associated with the overall reduction and constriction of phylogenetic and functional diversity, results that largely replicate those generated using space‐for‐time substitution, increasing our confidence in the quality of the combined inferences. When direct measurements are unavailable, our findings emphasize the value of developing independent sampling methods that broaden and reinforce our understanding of the ecological implications of urbanization.7.
8.
9.
Questions: How can a resemblance (similarity or dissimilarity) measure be formulated to include information on both the evolutionary relationships and abundances of organisms, and how does it compare to measures lacking such information? Methods: We extend the family of Phylogenetic Diversity (PD) measures to include a generalized method for calculating pair‐wise resemblance of ecological assemblages. Building on previous work, we calculate the matching/mismatching components of the 2 × 2 contingency table so as to incorporate information on both phylogeny and abundance. We refer to the class of measures so defined as “PD resemblance” and use the term “SD resemblance” for the traditional class of measures based on species diversity alone. As an illustration, we employ data on the diversity and stem density of shrubs of Toohey Forest, Australia, to compare PD resemblance to its SD resemblance equivalent for both incidence and abundance data. Results: While highly correlated, PD resemblance consistently measures assemblages as more similar than does SD resemblance, and tends to “smooth out” the otherwise skewed and truncated distribution of pair‐wise resemblance indices of our high‐turnover data set, resulting in nMDS ordinations with lower stress. Randomization of species distributions across assemblages indicates that phylogeny has made a significant contribution to the ordination pattern. Conclusions: PD resemblance measures, in addition to providing an evolutionary perspective, have great potential to improve distance‐based analyses of community patterns, particularly if species responses to ecological gradients are unimodal and phylogenetically conserved. 相似文献
10.
Micro‐evolutionary diversification among Indian Ocean parrots: temporal and spatial changes in phylogenetic diversity as a consequence of extinction and invasion 下载免费PDF全文
Hazel Jackson Carl G. Jones Paul‐Michael Agapow Vikash Tatayah Jim J. Groombridge 《Ibis》2015,157(3):496-510
Almost 90% of global bird extinctions have occurred on islands. The loss of endemic species from island systems can dramatically alter evolutionary trajectories of insular species biodiversity, resulting in a loss of evolutionary diversity important for species adaptation to changing environments. The Western Indian Ocean islands have been the scene of evolution for a large number of endemic parrots. Since their discovery in the 16th century, many of these parrots have become extinct or have declined in numbers. Alongside the extinction of species, a number of the Indian Ocean islands have experienced colonization by highly invasive parrots, such as the Ring‐necked Parakeet Psittacula krameri. Such extinctions and invasions can, on an evolutionary timescale, drive changes in species composition, genetic diversity and turnover in phylogenetic diversity, all of which can have important impacts on species potential for adaptation to changing environmental and climatic conditions. Using mtDNA cytochrome b data, we resolve the taxonomic placement of three extinct Indian Ocean parrots: the Rodrigues Psittacula exsul, Seychelles Psittacula wardi and Reunion Parakeets Psittacula eques. This case study quantifies how the extinction of these species has resulted in lost historical endemic phylogenetic diversity and reduced levels of species richness, and illustrates how it is being replaced by non‐endemic invasive forms such as the Ring‐necked Parakeet. Finally, we use our phylogenetic framework to identify and recommend a number of phylogenetically appropriate ecological replacements for the extinct parrots. Such replacements may be introduced once invasive forms have been cleared, to rejuvenate ecosystem function and restore lost phylogenetic diversity. 相似文献
11.
Walter Jetz 《Journal of Biogeography》2012,39(1):193-203
Aim Increased specialization has been hypothesized to facilitate local coexistence and thus high species richness, but empirical evaluations of the richness–specialization relationships have been relatively scant. Here, we provide a first assessment of this relationship for terrestrial bird assemblages at global extent and from fine to coarse grains. Location World‐wide. Methods We use two indices of specialization that describe species‐level resource use: diet and habitat specialization. The relationship between richness and mean assemblage‐level specialization was independently assessed at realm, biome‐realm, 12,100 km2 equal‐area grid cells and fine‐grained scales. To identify assemblages that are diverse relative to environmental conditions we: (1) applied quantile regressions, (2) statistically accounted for other environmental variables which may constrain richness, and (3) parsed the data according to the residuals of a model relating species richness to the environmental variables. Results Assemblage species richness increases with both measures of specialization at all scales. Statistically, richness appears constrained by levels of specialization, with the highest richness values only found in specialized assemblages. Richness is positively associated with specialization even after accounting for gradients in resource availability. Net primary productivity and assemblage specialization have complementary statistical effects on assemblage species richness. Contrary to expectations based on niche partitioning of local resources, the relationship between specialization and richness is steep even at coarse scales. Main conclusions The results demonstrate that for an entire clade, totalling > 9000 species, specialization and species richness are related, at least for diverse assemblages. The strong patterns observed across scales suggest that this relationship does not solely originate from (1) limits on coexistence in present‐day assemblages, or (2) increased specialization in richer assemblages imposed by species’ abilities to partition ecological space. Instead, regional‐scale influences on the species pool may determine much of the observed relationship between richness and specialization. Although causal attribution is not straightforward, these findings support the idea that, for the scale of our analysis, specialization may be related to the past origination of high‐diversity assemblages, rather than their contemporary assembly. 相似文献
12.
Nikos Katsimanis Michalis Dretakis Triantaphyllos Akriotis Moysis Mylonas 《Journal of Ornithology》2006,147(3):419-427
The patterns of α-diversity and the structure and organisation of breeding bird assemblages were studied in four vegetation stages (characteristic of Mediterranean shrublands) on an eastern Mediterranean island (Crete, Greece): low phrygana, tall phrygana, low maquis and tall maquis. Phrygana differed significantly from maquis, in regard to the community metrics, composition and the homogeneity of bird assemblages. Moreover, detrended correspondence analysis ordered the census plots along a continuum of increasing vegetation height. On the other hand, within-maquis differences were few, while no significant differences were found within phrygana stages. Based upon the observed patterns, we recognise three vegetation groups: (1) phrygana, with low α-diversity and abundance and homogenous bird assemblages; (2) low maquis with relatively high α-diversity and heterogenous bird assemblages; and (3) tall maquis with relatively high α-diversity and heterogenous assemblages in which “woodland” bird species contribution is prominent. 相似文献
13.
14.
15.
The tropical niche conservatism hypothesis suggests that most groups should be most phylogenetically clustered in cold, dry environments. This idea has been well-tested in plants and some animal groups, but not for fishes. We assess the geographic patterns of freshwater fish phylogenetic structure and investigate the relationships between these patterns and environmental variables across North America and within two biogeographic realms. Phylogenetic relatedness and diversity of 360 freshwater fish assemblages across North America were quantified with three metrics based on a well-dated phylogeny, and were related to 15 environmental variables using correlation and regression analyses. Geographically, the data were analyzed for North America as well as for separate biogeographic realms. We found that cold temperatures are the strongest determinant of phylogenetic clustering overall. However, in the arid west, clustering is most pronounced in the driest regions. In eastern North America, phylogenetic clustering increases at higher latitudes, while the reverse is true in western North America. The strongest phylogenetic clustering for freshwater fish assemblages on the continent is found in the most arid, rather than the coldest, climate in North America. Our results highlight that patterns of phylogenetic structure of freshwater fishes in North America are driven by both ecological and evolutionary processes that differ regionally. 相似文献
16.
A full understanding of the origin and maintenance of β-diversity patterns in a region requires exploring the relationships of both taxonomic and phylogenetic β-diversity (TBD and PBD, respectively), and their respective turnover and nestedness components, with geographic and environmental distances. Here, we simultaneously investigated all these aspects of β-diversity for angiosperms in China. Specifically, we evaluated the relative importance of environmental filtering vs dispersal limitation processes in shaping β-diversity patterns. We found that TBD and PBD as quantified using a moving window approach decreased towards higher latitudes across the whole of China, and their turnover components were correlated with latitude more strongly than their nestedness components. When quantifying β-diversity as pairwise distances, geographic and climatic distances across China together explained 60 and 53% of the variation in TBD and PBD, respectively. After the variation in β-diversity explained by climatic distance was accounted for, geographic distance independently explained about 23 and 12% of the variation in TBD and PBD, respectively, across China. Overall, our results suggest that environmental filtering based on climatic tolerance conserved across lineages is the main force shaping β-diversity patterns for angiosperms in China. 相似文献
17.
Spatial patterns of phylogenetic diversity 总被引:1,自引:0,他引:1
Morlon H Schwilk DW Bryant JA Marquet PA Rebelo AG Tauss C Bohannan BJ Green JL 《Ecology letters》2011,14(2):141-149
Ecologists and conservation biologists have historically used species-area and distance-decay relationships as tools to predict the spatial distribution of biodiversity and the impact of habitat loss on biodiversity. These tools treat each species as evolutionarily equivalent, yet the importance of species' evolutionary history in their ecology and conservation is becoming increasingly evident. Here, we provide theoretical predictions for phylogenetic analogues of the species-area and distance-decay relationships. We use a random model of community assembly and a spatially explicit flora dataset collected in four Mediterranean-type regions to provide theoretical predictions for the increase in phylogenetic diversity - the total phylogenetic branch-length separating a set of species - with increasing area and the decay in phylogenetic similarity with geographic separation. These developments may ultimately provide insights into the evolution and assembly of biological communities, and guide the selection of protected areas. 相似文献
18.
19.
Wendy L. Neilan Philip S. Barton Clive A. McAlpine Jeffrey T. Wood David B. Lindenmayer 《Ecography》2019,42(1):173-186
Habitat loss and fragmentation are key processes causing biodiversity loss in human‐modified landscapes. Knowledge of these processes has largely been derived from measuring biodiversity at the scale of ‘within‐habitat’ fragments with the surrounding landscape considered as matrix. Yet, the loss of variation in species assemblages ‘among’ habitat fragments (landscape‐scale) may be as important a driver of biodiversity loss as the loss of diversity ‘within’ habitat fragments (local‐scale). We tested the hypothesis that heterogeneity in vegetation cover is important for maintaining alpha and beta diversity in human‐modified landscapes. We surveyed bird assemblages in eighty 300‐m‐long transects nested within twenty 1‐km2 vegetation ‘mosaics’, with mosaics assigned to four categories defined by the cover extent and configuration of native eucalypt forest and exotic pine plantation. We examined bird assemblages at two spatial scales: 1) within and among transects, and 2) within and among mosaics. Alpha diversity was the mean species diversity within‐transects or within‐mosaics and beta diversity quantified the effective number of compositionally distinct transects or mosaics. We found that within‐transect alpha diversity was highest in vegetation mosaics defined by continuous eucalypt forest, lowest in mosaics of continuous pine plantation, and at intermediate levels in mosaics containing eucalypt patches in a pine matrix. We found that eucalypt mosaics had lower beta diversity than other mosaic types when ignoring relative abundances, but had similar or higher beta diversity when weighting with species abundances. Mosaics containing both pine and eucalypt forest differed in their bird compositional variation among transects, despite sharing a similar suite of species. This configuration effect at the mosaic scale reflected differences in vegetation composition among transects. Maintaining heterogeneity in vegetation cover could help to maintain variation among bird assemblages across landscapes, thus partially offsetting local‐scale diversity losses due to fragmentation. Critical to this is the retention of remnant native vegetation. 相似文献
20.
Contrasting changes in the abundance and diversity of North American bird assemblages from 1971 to 2010 下载免费PDF全文
Aafke M. Schipper Jonathan Belmaker Murilo Dantas de Miranda Laetitia M. Navarro Katrin Böhning‐Gaese Mark J. Costello Maria Dornelas Ruud Foppen Joaquín Hortal Mark A. J. Huijbregts Berta Martín‐López Nathalie Pettorelli Cibele Queiroz Axel G. Rossberg Luca Santini Katja Schiffers Zoran J. N. Steinmann Piero Visconti Carlo Rondinini Henrique M. Pereira 《Global Change Biology》2016,22(12):3948-3959
Although it is generally recognized that global biodiversity is declining, few studies have examined long‐term changes in multiple biodiversity dimensions simultaneously. In this study, we quantified and compared temporal changes in the abundance, taxonomic diversity, functional diversity, and phylogenetic diversity of bird assemblages, using roadside monitoring data of the North American Breeding Bird Survey from 1971 to 2010. We calculated 12 abundance and diversity metrics based on 5‐year average abundances of 519 species for each of 768 monitoring routes. We did this for all bird species together as well as for four subgroups based on breeding habitat affinity (grassland, woodland, wetland, and shrubland breeders). The majority of the biodiversity metrics increased or remained constant over the study period, whereas the overall abundance of birds showed a pronounced decrease, primarily driven by declines of the most abundant species. These results highlight how stable or even increasing metrics of taxonomic, functional, or phylogenetic diversity may occur in parallel with substantial losses of individuals. We further found that patterns of change differed among the species subgroups, with both abundance and diversity increasing for woodland birds and decreasing for grassland breeders. The contrasting changes between abundance and diversity and among the breeding habitat groups underscore the relevance of a multifaceted approach to measuring biodiversity change. Our findings further stress the importance of monitoring the overall abundance of individuals in addition to metrics of taxonomic, functional, or phylogenetic diversity, thus confirming the importance of population abundance as an essential biodiversity variable. 相似文献