首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Animal taxa show remarkable variability in species richness across phylogenetic groups. Most explanations for this disparity postulate that taxa with more species have phenotypes or ecologies that cause higher diversification rates (i.e., higher speciation rates or lower extinction rates). Here we show that clade longevity, and not diversification rate, has primarily shaped patterns of species richness across major animal clades: more diverse taxa are older and thus have had more time to accumulate species. Diversification rates calculated from 163 species-level molecular phylogenies were highly consistent within and among three major animal phyla (Arthropoda, Chordata, Mollusca) and did not correlate with species richness. Clades with higher estimated diversification rates were younger, but species numbers increased with increasing clade age. A fossil-based data set also revealed a strong, positive relationship between total extant species richness and crown group age across the orders of insects and vertebrates. These findings do not negate the importance of ecology or phenotype in influencing diversification rates, but they do show that clade longevity is the dominant signal in major animal biodiversity patterns. Thus, some key innovations may have acted through fostering clade longevity and not by heightening diversification rate.  相似文献   

2.
Aim We examine diversification in Caribbean alsophiine snakes and hypothesize that, given the ecological opportunity presented by colonization of the West Indies, alsophiines should show the signature of an early burst of diversification and associated low within‐clade ecological and morphological disparification. We also test whether changes in morphology and ecology are associated with changes in diversification rate, as trait‐dependent diversification is hypothesized to affect historical inferences of diversification and disparification. Finally, as replicated radiations are found across the West Indies in the anoles, we test for significant differences in ecological and morphological assemblages and rates among the major island groups. Location The West Indies. Methods A time‐calibrated phylogeny produced from six genes using relaxed clock methods in beast was constructed to estimate ancestral areas using Lagrange . Maximum body size and ecological niche were scored for all species in the phylogeny, and comparative phylogenetic methods in R using geiger , laser , ape and our own code were used to examine diversification through time, disparification and trait‐dependent diversification from this dated phylogeny. Results The pattern of species diversification did not differ significantly from the Yule model of diversification. Morphology and ecology fitted a Brownian and white noise model of diversification, respectively. Although not significantly different, morphological disparification was lower than the Brownian null model, whereas ecological disparification was significantly greater than the null. Trait‐dependent diversification analyses suggested that the constant null models provided the best fit to these data. There was no significant signal of rate variation among the major island groups for size, but moderate evidence for niche. Main conclusions Although ecological opportunity was similarly present for alsophiines as it was for anoles, the snakes fail to show an early burst of speciation. Potential reasons for this include the young age of the group, and staggered diversification due to waiting times between island colonization. In turn, ecological and morphological disparities do not necessarily follow predictable patterns related to species diversification. Thus, the presence of ecological opportunity alone is not necessarily sufficient to trigger replicated adaptive radiations in areas.  相似文献   

3.
Explaining the dramatic variation in species richness across the tree of life remains a key challenge in evolutionary biology. At the largest phylogenetic scales, the extreme heterogeneity in species richness observed among different groups of organisms is almost certainly a function of many complex and interdependent factors. However, the most fundamental expectation in macroevolutionary studies is simply that species richness in extant clades should be correlated with clade age: all things being equal, older clades will have had more time for diversity to accumulate than younger clades. Here, we test the relationship between stem clade age and species richness across 1,397 major clades of multicellular eukaryotes that collectively account for more than 1.2 million described species. We find no evidence that clade age predicts species richness at this scale. We demonstrate that this decoupling of age and richness is unlikely to result from variation in net diversification rates among clades. At the largest phylogenetic scales, contemporary patterns of species richness are inconsistent with unbounded diversity increase through time. These results imply that a fundamentally different interpretative paradigm may be needed in the study of phylogenetic diversity patterns in many groups of organisms.  相似文献   

4.
Several theories predict that rapidly diversifying clades will also rapidly diverge phenotypically; yet, there are also reasons for suspecting that diversification and divergence might not be correlated. In the widely distributed squirrel clade (Sciuridae), we test for correlations between per lineage speciation rates, species richness, disparity, and a time‐invariant measure of disparity that allows for comparing rates when evolutionary modes differ, as they do in squirrels. We find that species richness and speciation rates are not correlated with clade age or with each other. Disparity appears to be positively correlated with clade age because young, rapidly diversifying Nearctic grassland clades are strongly pulled to a single stable optimum but older, slowly diversifying Paleotropical forest clades contain lineages that diverge along multiple ecological and morphological lines. That contrast is likely due to both the environments they inhabit and their phylogenetic community structure. Our results argue against a shared explanation for diversity and disparity in favor of geographically mediated modes of speciation and ecologically mediated modes of phenotypic evolution.  相似文献   

5.
Ecological opportunity has been associated with increases in diversification rates across the tree of life. Under an ecological diversification model, the emergence of novel environments is hypothesized to promote morpho- and ecospace evolution. Whether this model holds at the clade level within the most species-rich angiosperm genus found in North America (Carex, Cyperaceae) is yet to be tested. Recent works demonstrate a temporal coupling of climate cooling and widespread colonization of Carex in North America, implicating ecological diversification. In addition, research has consistently found asymmetric patterns of lineage-level diversification in the genus. Why does variation in clade sizes exist in the genus? Is ecological diversification involved? In this study, we tested whether rates of morphological and ecological trait evolution are correlated with clade-level species richness in Carex of North America north of Mexico. We constructed a phylogeny of 477 species—an almost complete regional sample. We estimated rates of evolution of morphological traits, habitat, and climatic niche and assessed whether differences in rates of evolution correlate with species richness differences in replicate non-nested sister clades. Our work demonstrates significant positive correlations between climatic niche rates, habitat and reproductive morphological evolution, and species richness. This coupling of trait and niche evolution and species richness in a diverse, continental clade sample strongly suggests that the ability of clades to explore niche and functional space has shaped disparities in richness and functional diversity across the North American flora region. Our findings highlight the importance of the evolutionary history of trait and niche evolution in shaping continental and regional floras.  相似文献   

6.
Species within clades are commonly assumed to share similar life history traits, but within a given region some clades show much greater variability in traits than others. Are variable clades older, allowing more time for trait diversification? Or do they occupy particular environments, providing a wider range of abiotic or biotic opportunities for the establishment and maintenance of diverse trait attributes? Does environmental opportunity increase trait variability across all species, or is it specific to species belonging to the same clade, increasing only within-clade trait variability? We studied the variability of six life-history traits (initiation of flowering, duration of flowering, plant life span, seed mass, stress tolerance, type of reproduction) within 383 angiosperm genera from Central Europe distributed along six abiotic gradients. We compared patterns of within-genus variability to those present in the entire dataset, independent of genus membership. We found that trait variability differed strongly between genera, but did not depend on their age. Trait variability was higher within genera occupying intermediate positions along regional abiotic environmental gradients, compared with patterns across the entire dataset (and unbiased by geographical sampling, family membership or species richness). Increasing trait variability within genera reflected increasing independence of traits from the abiotic environment. We conclude that intermediate abiotic environments play an important role in maintaining and possibly generating the striking diversity of life history traits present within certain clades. They may do so by relaxing the abiotic constraints on the evolution and maintenance of species traits within clades.  相似文献   

7.
Understanding the history that underlies patterns of species richness across the Tree of Life requires an investigation of the mechanisms that not only generate young species‐rich clades, but also those that maintain species‐poor lineages over long stretches of evolutionary time. However, diversification dynamics that underlie ancient species‐poor lineages are often hidden due to a lack of fossil evidence. Using information from the fossil record and time calibrated molecular phylogenies, we investigate the history of lineage diversification in Polypteridae, which is the sister lineage of all other ray‐finned fishes (Actinopterygii). Despite originating at least 390 million years (Myr) ago, molecular timetrees support a Neogene origin for the living polypterid species. Our analyses demonstrate polypterids are exceptionally species depauperate with a stem lineage duration that exceeds 380 million years (Ma) and is significantly longer than the stem lineage durations observed in other ray‐finned fish lineages. Analyses of the fossil record show an early Late Cretaceous (100.5–83.6 Ma) peak in polypterid genus richness, followed by 60 Ma of low richness. The Neogene species radiation and evidence for high‐diversity intervals in the geological past suggest a “boom and bust” pattern of diversification that contrasts with common perceptions of relative evolutionary stasis in so‐called “living fossils.”  相似文献   

8.
Most extant species are in clades with poor fossil records, and recent studies of comparative methods show they have low power to infer even highly simplified models of trait evolution without fossil data. Birds are a well‐studied radiation, yet their early evolutionary patterns are still contentious. The fossil record suggests that birds underwent a rapid ecological radiation after the end‐Cretaceous mass extinction, and several smaller, subsequent radiations. This hypothesized series of repeated radiations from fossil data is difficult to test using extant data alone. By uniting morphological and phylogenetic data on 604 extant genera of birds with morphological data on 58 species of extinct birds from 50 million years ago, the “halfway point” of avian evolution, I have been able to test how well extant‐only methods predict the diversity of fossil forms. All extant‐only methods underestimate the disparity, although the ratio of within‐ to between‐clade disparity does suggest high early rates. The failure of standard models to predict high early disparity suggests that recent radiations are obscuring deep time patterns in the evolution of birds. Metrics from different models can be used in conjunction to provide more valuable insights than simply finding the model with the highest relative fit.  相似文献   

9.
Functional diversity is intimately linked with community assembly processes, but its large‐scale patterns of variation are often not well understood. Here, we investigated the spatiotemporal changes in multiple trait dimensions (“trait space”) along vertical intertidal environmental stress gradients and across a landscape scale. We predicted that the range of the trait space covered by local assemblages (i.e., functional richness) and the dispersion in trait abundances (i.e., functional dispersion) should increase from high‐ to low‐intertidal elevations, due to the decreasing influence of environmental filtering. The abundance of macrobenthic algae and invertebrates was estimated at four rocky shores spanning ca. 200 km of the coast over a 36‐month period. Functional richness and dispersion were contrasted against matrix‐swap models to remove any confounding effect of species richness on functional diversity. Random‐slope models showed that functional richness and dispersion significantly increased from high‐ to low‐intertidal heights, demonstrating that under harsh environmental conditions, the assemblages comprised similar abundances of functionally similar species (i.e., trait convergence), while that under milder conditions, the assemblages encompassed differing abundances of functionally dissimilar species (i.e., trait divergence). According to the Akaike information criteria, the relationship between local environmental stress and functional richness was persistent across sites and sampling times, while functional dispersion varied significantly. Environmental filtering therefore has persistent effects on the range of trait space covered by these assemblages, but context‐dependent effects on the abundances of trait combinations within such range. Our results further suggest that natural and/or anthropogenic factors might have significant effects on the relative abundance of functional traits, despite that no trait addition or extinction is detected.  相似文献   

10.
What explains the striking variation in local species richness across the globe and the remarkable diversity of rainforest sites in Amazonia? Here, we apply a novel phylogenetic approach to these questions, using treefrogs (Hylidae) as a model system. Hylids show dramatic variation in local richness globally and incredible local diversity in Amazonia. We find that variation in local richness is not explained primarily by climatic factors, rates of diversification (speciation and extinction) nor morphological variation. Instead, local richness patterns are explained predominantly by the timing of colonization of each region, and Amazonian megadiversity is linked to the long-term sympatry of multiple clades in that region. Our results also suggest intriguing interactions between clade diversification, trait evolution and the accumulation of local richness. Specifically, sympatry between clades seems to slow diversification and trait evolution, but prevents neither the accumulation of local richness over time nor the co-occurrence of similar species.  相似文献   

11.
Parallel evolutionary radiations in adjacent locations have been documented in many systems, but typically at limited geographical scales. Here, we compare patterns of evolutionary radiation at the global scale in iguanian lizards, the dominant clade of lizards. We generated a new time‐calibrated phylogeny including 153 iguanian species (based on mitochondrial and nuclear data) and obtained data on morphology and microhabitats. We then compared patterns of species diversification, morphological disparity, and ecomorphological relationships in the predominantly Old World and New World clades (Acrodonta and Pleurodonta, respectively), focusing on the early portions of these radiations. Acrodonts show relatively constant rates of species diversification and disparity over time. In contrast, pleurodonts show an early burst of species diversification and less‐than‐expected morphological disparity early in their history, and slowing diversification and increasing disparity more recently. Analyses including all species (with MEDUSA) suggest accelerated diversification rates in certain clades within both Acrodonta and Pleurodonta, which strongly influences present‐day diversity patterns. We also find substantial differences in ecomorphological relationships between these clades. Our results demonstrate that sister clades in different global regions can undergo very different patterns of evolutionary radiation over similar time frames. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ●● , ●●–●●.  相似文献   

12.
Biologists have long sought to understand the processes underlying disparities in clade size across the tree of life and the extent to which such clade size differences can be attributed to the evolution of particular traits. The association of certain character states with species‐rich clades suggests that trait evolution can lead to increased diversification, but such a pattern could also arise due other processes, such as directional trait evolution. Recent advances in phylogenetic comparative methods have provided new statistical approaches for distinguishing between these intertwined and potentially confounded macroevolutionary processes. Here, we review the historical development of methods for detecting state‐dependent diversification and explore what new methods have revealed about classic examples of traits that affect diversification, including evolutionary dead ends, key innovations and geographic traits. Applications of these methods thus far collectively suggest that trait diversity commonly arises through the complex interplay between transition, speciation and extinction rates and that long hypothesized evolutionary dead ends and key innovations are instead often cases of directional trends in trait evolution.  相似文献   

13.
Salamanders (Urodela) have among the largest vertebrate genomes, ranging in size from 10 to 120 pg. Although changes in genome size often occur randomly and in the absence of selection pressure, nonrandom patterns of genome size variation are evident among specific vertebrate lineages. Several reports suggest a relationship between species richness and genome size, but the exact nature of that relationship remains unclear both within and across different taxonomic groups. Here, we report (a) a negative relationship between haploid genome size (C‐value) and species richness at the family taxonomic level in salamander clades; (b) a correlation of C‐value and species richness with clade crown age but not with diversification rates; (c) strong associations between C‐value and both geographic area and climatic‐niche rate. Finally, we report a relationship between C‐value diversity and species diversity at both the family‐ and genus‐level clades in urodeles.  相似文献   

14.
The most dramatic gradient in global biodiversity is between marine and terrestrial environments. Terrestrial environments contain approximately 75-85% of all estimated species, but occupy only 30 per cent of the Earth's surface (and only approx. 1-10% by volume), whereas marine environments occupy a larger area and volume, but have a smaller fraction of Earth's estimated diversity. Many hypotheses have been proposed to explain this disparity, but there have been few large-scale quantitative tests. Here, we analyse patterns of diversity in actinopterygian (ray-finned) fishes, the most species-rich clade of marine vertebrates, containing 96 per cent of fish species. Despite the much greater area and productivity of marine environments, actinopterygian richness is similar in freshwater and marine habitats (15 150 versus 14 740 species). Net diversification rates (speciation-extinction) are similar in predominantly freshwater and saltwater clades. Both habitats are dominated by two hyperdiverse but relatively recent clades (Ostariophysi and Percomorpha). Remarkably, trait reconstructions (for both living and fossil taxa) suggest that all extant marine actinopterygians were derived from a freshwater ancestor, indicating a role for ancient extinction in explaining low marine richness. Finally, by analysing an entirely aquatic group, we are able to better sort among potential hypotheses for explaining the paradoxically low diversity of marine environments.  相似文献   

15.
The contrasting distribution of species diversity across the major lineages of cichlids makes them an ideal group for investigating macroevolutionary processes. In this study, we investigate whether different rates of diversification may explain the disparity in species richness across cichlid lineages globally. We present the most taxonomically robust time-calibrated hypothesis of cichlid evolutionary relationships to date. We then utilize this temporal framework to investigate whether both species-rich and depauperate lineages are associated with rapid shifts in diversification rates and if exceptional species richness can be explained by clade age alone. A single significant rapid rate shift increase is detected within the evolutionary history of the African subfamily Pseudocrenilabrinae, which includes the haplochromins of the East African Great Lakes. Several lineages from the subfamilies Pseudocrenilabrinae (Australotilapiini, Oreochromini) and Cichlinae (Heroini) exhibit exceptional species richness given their clade age, a net rate of diversification, and relative rates of extinction, indicating that clade age alone is not a sufficient explanation for their increased diversity. Our results indicate that the Neotropical Cichlinae includes lineages that have not experienced a significant rapid burst in diversification when compared to certain African lineages (rift lake). Neotropical cichlids have remained comparatively understudied with regard to macroevolutionary patterns relative to African lineages, and our results indicate that of Neotropical lineages, the tribe Heroini may have an elevated rate of diversification in contrast to other Neotropical cichlids. These findings provide insight into our understanding of the diversification patterns across taxonomically disparate lineages in this diverse clade of freshwater fishes and one of the most species-rich families of vertebrates.  相似文献   

16.
The tempo and mode of species diversification and phenotypic evolution vary widely across the tree of life, yet the relationship between these processes is poorly known. Previous tests of the relationship between rates of phenotypic evolution and rates of species diversification have assumed that species richness increases continuously through time. If this assumption is violated, simple phylogenetic estimates of net diversification rate may bear no relationship to processes that influence the distribution of species richness among clades. Here, we demonstrate that the variation in species richness among plethodontid salamander clades is unlikely to have resulted from simple time-dependent processes, leading to fundamentally different conclusions about the relationship between rates of phenotypic evolution and species diversification. Morphological evolutionary rates of both size and shape evolution are correlated with clade species richness, but are uncorrelated with simple estimators of net diversification that assume constancy of rates through time. This coupling between species diversification and phenotypic evolution is consistent with the hypothesis that clades with high rates of morphological trait evolution may diversify more than clades with low rates. Our results indicate that assumptions about underlying processes of diversity regulation have important consequences for interpreting macroevolutionary patterns.  相似文献   

17.
Brood parasitic birds, their foster species and their ectoparasites form a complex coevolving system composed of three hierarchical levels. However, effects of hosts’ brood parasitic life‐style on the evolution of their louse (Phthiraptera: Amblycera, Ischnocera) lineages have never been tested. We present two phylogenetic analyses of ectoparasite richness of brood parasitic clades. Our hypothesis was that brood parasitic life‐style affects louse richness negatively across all avian clades due to the lack of vertical transmission routes. Then, narrowing our scope to brood parasitic cuckoos, we explored macroevolutionary factors responsible for the variability of their louse richness. Our results show that taxonomic richness of lice is lower on brood parasitic clades than on their nonparasitic sister clades. However, we found a positive covariation between the richness of cuckoos’ Ischnoceran lice and the number of their foster species, possibly due to the complex and dynamic subpopulation structure of cuckoo species that utilize several host species. We documented diversity interactions across a three‐level host parasite system and we found evidence that brood parasitism has opposing effects on louse richness at two slightly differing macroevolutionary scales, namely the species richness and the genera richness.  相似文献   

18.
Discussions aimed at resolution of the Tree of Life are most often focused on the interrelationships of major organismal lineages. In this study, we focus on the resolution of some of the most apical branches in the Tree of Life through exploration of the phylogenetic relationships of darters, a species-rich clade of North American freshwater fishes. With a near-complete taxon sampling of close to 250 species, we aim to investigate strategies for efficient multilocus data sampling and the estimation of divergence times using relaxed-clock methods when a clade lacks a fossil record. Our phylogenetic data set comprises a single mitochondrial DNA (mtDNA) gene and two nuclear genes sampled from 245 of the 248 darter species. This dense sampling allows us to determine if a modest amount of nuclear DNA sequence data can resolve relationships among closely related animal species. Darters lack a fossil record to provide age calibration priors in relaxed-clock analyses. Therefore, we use a near-complete species-sampled phylogeny of the perciform clade Centrarchidae, which has a rich fossil record, to assess two distinct strategies of external calibration in relaxed-clock divergence time estimates of darters: using ages inferred from the fossil record and molecular evolutionary rate estimates. Comparison of Bayesian phylogenies inferred from mtDNA and nuclear genes reveals that heterospecific mtDNA is present in approximately 12.5% of all darter species. We identify three patterns of mtDNA introgression in darters: proximal mtDNA transfer, which involves the transfer of mtDNA among extant and sympatric darter species, indeterminate introgression, which involves the transfer of mtDNA from a lineage that cannot be confidently identified because the introgressed haplotypes are not clearly referable to mtDNA haplotypes in any recognized species, and deep introgression, which is characterized by species diversification within a recipient clade subsequent to the transfer of heterospecific mtDNA. The results of our analyses indicate that DNA sequences sampled from single-copy nuclear genes can provide appreciable phylogenetic resolution for closely related animal species. A well-resolved near-complete species-sampled phylogeny of darters was estimated with Bayesian methods using a concatenated mtDNA and nuclear gene data set with all identified heterospecific mtDNA haplotypes treated as missing data. The relaxed-clock analyses resulted in very similar posterior age estimates across the three sampled genes and methods of calibration and therefore offer a viable strategy for estimating divergence times for clades that lack a fossil record. In addition, an informative rank-free clade-based classification of darters that preserves the rich history of nomenclature in the group and provides formal taxonomic communication of darter clades was constructed using the mtDNA and nuclear gene phylogeny. On the whole, the appeal of mtDNA for phylogeny inference among closely related animal species is diminished by the observations of extensive mtDNA introgression and by finding appreciable phylogenetic signal in a modest sampling of nuclear genes in our phylogenetic analyses of darters.  相似文献   

19.
Temperature is widely regarded as a major driver of species richness, but the mechanisms are debated. Niche theory suggests temperature may affect richness by filtering traits and species in colder habitats while promoting specialization in warmer ones. However, tests of this theory are rare because niche dimensions are challenging to quantify along broad thermal gradients. Here, we use individual‐level trait data from a long‐term monitoring network spanning a large geographic extent to test niche‐based theory of community assembly in small mammals. We examined variation in body size among 23 communities of North American rodents sampled across the National Ecological Observatory Network (NEON), ranging from northern hardwood forests to subtropical deserts. We quantified body size similarity among species using a metric of overlap that accounts for individual variation, and fit a structural equation model to disentangle the relationships between temperature, productivity, body size overlap, and species richness. We document a latitudinal gradient of declining similarity in body size among species towards the tropics and overall increase in the dimensions of community‐wide trait space in warmer habitats. Neither environmental temperature nor net primary productivity directly affect rodent species richness. Instead, temperature determines the community‐wide niche space that species can occupy, which in turn alters richness. We suggest a latitudinal gradient of trait space expansion towards the tropics may be widespread and underlie gradients in species diversity.  相似文献   

20.
A major goal of research in ecology and evolution is to explain why species richness varies across habitats, regions, and clades. Recent reviews have argued that species richness patterns among regions and clades may be explained by "ecological limits" on diversity over time, which are said to offer an alternative explanation to those invoking speciation and extinction (diversification) and time. Further, it has been proposed that this hypothesis is best supported by failure to find a positive relationship between time (e.g., clade age) and species richness. Here, I critically review the evidence for these claims, and propose how we might better study the ecological and evolutionary origins of species richness patterns. In fact, ecological limits can only influence species richness in clades by influencing speciation and extinction, and so this new "alternative paradigm" is simply one facet of the traditional idea that ecology influences diversification. The only direct evidence for strict ecological limits on richness (i.e., constant diversity over time) is from the fossil record, but many studies cited as supporting this pattern do not, and there is evidence for increasing richness over time. Negative evidence for a relationship between clade age and richness among extant clades is not positive evidence for constant diversity over time, and many recent analyses finding no age-diversity relationship were biased to reach this conclusion. More comprehensive analyses strongly support a positive age-richness relationship. There is abundant evidence that both time and ecological influences on diversification rates are important drivers of both large-scale and small-scale species richness patterns. The major challenge for future studies is to understand the ecological and evolutionary mechanisms underpinning the relationships between time, dispersal, diversification, and species richness patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号