首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Zebra mussels (Dreissena polymorpha) filter feed phytoplankton and reduce available pelagic energy, potentially driving fish to use littoral energy sources in lakes. However, changes in food webs and energy flow in complex fish communities after zebra mussel establishment are poorly known. We assessed impacts of zebra mussels on fish littoral carbon use, trophic position, isotopic niche size, and isotopic niche overlap among individual fish species using δ13C and δ15N data collected before (2014) and after (2019) zebra mussel establishment in Lake Ida, MN. Isotope data were collected from 11 fish species, and from zooplankton and littoral invertebrates to estimate baseline isotope values. Mixing models were used to convert fish δ13C and δ15N into estimates of littoral carbon and trophic position, respectively. We tested whether trophic position, littoral carbon use, isotopic niche size, and isotopic niche overlap changed from 2014 to 2019 for each fish species. We found few effects on fish trophic position, but 10 out of 11 fish species increased littoral carbon use after zebra mussel establishment, with mean littoral carbon increasing from 43% before to 67% after establishment. Average isotopic niche size of individual species increased significantly (2.1-fold) post zebra mussels, and pairwise-niche overlap between species increased significantly (1.2-fold). These results indicate zebra mussels increase littoral energy dependence in the fish community, resulting in larger individual isotopic niches and increased isotopic niche overlap. These effects may increase interspecific competition among fish species and could ultimately result in reduced abundance of species less able to utilize littoral energy sources.

  相似文献   

2.

Small nearshore fishes are an important part of lacustrine and functional diversity and link pelagic and benthic habitats by serving as prey for larger nearshore and offshore fishes. However, the trophic complexity of these small nearshore fishes is often unrecognized and detailed studies of their role in food webs are lacking. Here, we examined niche space patterns of small nearshore fish species using Bayesian analyses of carbon and nitrogen stable isotope data in nine freshwater lakes that are among the largest lakes in Minnesota. We found considerable variability in niche areas within species and high variability in niche overlap across species. At the assemblage level, niche overlap (average diet overlap of all species pairs at a lake) decreased as whole-lake species richness increased, possibly indicating a greater degree of resource specialization in more speciose lakes. Overall fish niche space was weakly but significantly related to niche space of their invertebrate prey. Although nearshore benthic resources contributed to fish diets in all lakes, all fish species also had non-negligible and variable contributions from pelagic zooplankton. This inter- and intraspecific variability in trophic niche space likely contributes to the multi-level trophic complexity, functional diversity, and potentially food web resilience to ecosystem changes.

  相似文献   

3.
Invasive fish species impact aquatic ecosystems and modify native communities, often leading to a decline in local species. These ecological impacts include the transmission of pathogens, predation, competition as well as hybridization. Two invasive fish species, the common bleak Alburnus alburnus and the topmouth gudgeon Pseudorabora parva, have both been recently found co-occurring in several regions of southern Europe, such as the Italian Arno River. Nonetheless, the trophic relationships among invasive fish species, especially cyprinids, remain poorly understood, and no studies have reported the trophic interaction between these two species. This study compared length–weight relationship and used stomach content and stable isotope analysis of two co-occurring populations in the Arno River to characterize the growth and overlap of potential trophic niches. It also found similar allometric growth in both species, a wider generalist trophic niche for P. parva and a more specialized niche for A. alburnus. A considerable niche overlap was found, suggesting that feeding competition can occur if resources were to be limited. Moreover, the niche of P. parva was more likely to overlap with that of A. alburnus than vice versa, suggesting that P. parva can be considered as a potential over competitor. Nonetheless, the authors found in the overlapping populations no evidence of realized competition, probably avoided through a combination of fine-scale mechanisms. They also highlighted that these two invasive species can co-exist and share resources, at least in an open ecosystem like a river, thus potentially doubling up their trophic impact on local communities.  相似文献   

4.
  1. Ecological opportunity (i.e. the diversity of available resources) has a pivotal role in shaping niche variation and trophic specialisation of animals. However, ecological opportunity can be described with regard to both diversity and abundance of resources. The degree to which these two components contribute to niche variation remains unexplored.
  2. To address this, we used an extensive dataset on fish diet and benthic invertebrate diversity and density from 73 sampling events in three Norwegian rivers in order to explore realised trophic niches and the response of dietary niche variation along gradients of resource diversity (potential trophic niches), resource density (as a proxy of resource abundance) and fish density (as a proxy of inter‐ and intra‐specific competition) in a freshwater top predator (the brown trout, Salmo trutta L.).
  3. Linear models indicated that individual and population niche variation increased with increasing ecological opportunity in terms of prey diversity. However, no simple cause‐and‐effect associations between niche indices and prey abundance were found. Our multiple regression analyses indicated that the abundance of certain resources (e.g. Chironomidae) can interact with prey diversity to determine individual and population realised trophic niches. Niche variation (within‐individual component and inter‐individual diet variation) decreased with increasing inter‐ and intra‐specific competition.
  4. This study extends prevailing trophic ecology theory by identifying diversity, rather than density, of available prey resources as a primary driver of niche variation in fish of temperate riverine systems with no extensive resource limitation. The study also shows that ecological opportunity may mask the direction of the effect (compression or expansion) of competition on niche variation when food resources are diverse.
  5. Our study provides novel empirical insight to the driving forces behind niche variation and reveals that diversity, rather than density, of available prey resources may be a primary driver of niche variation in freshwater fish. Our study supports the view that a broader potential trophic niche promotes broader realised trophic niche variation by individuals, which leads to individual niche diversification by opening access to alternatives resources, resulting in a concomitant rise in the realised trophic niche width of the population.
  相似文献   

5.
1. Interspecific niche differences have long been identified as a major explanation for the occurrence of species-rich communities. However, much fieldwork studying variation in local species richness has focused upon physical habitat attributes or regional factors, such as the size of the regional species pool. 2. We applied indices of functional diversity and niche overlap to data on the species niche to examine the importance of interspecific niche differentiation for species richness in French lake fish communities. We combined this information with environmental data to test generalizations of the physiological tolerance and niche specialization hypotheses for species-energy relationships. 3. We found evidence for a largely non-saturating relationship (relative to random expectation) between species richness and functional evenness (evenness of spacing between species in niche space), while functional richness (volume of niche space occupied) peaked at moderate levels of species richness and niche overlap showed an initial decrease followed by saturation. This suggests that increased niche specialization may have allowed species to coexist in the most species-rich communities. 4. We tested for evidence that increased temperature, local habitat area, local habitat diversity and immigration affected species richness via increased niche specialization. Temperature explained by far the largest amount of variation in species richness, functional diversity and niche overlap. These results, combined with the largely non-saturating species richness-functional evenness relationship, suggest that increased temperature may have permitted increased species richness by allowing increased niche specialization. 5. These results emphasize the importance of niche differences for species coexistence in species-rich communities, and indicate that the conservation of functional diversity may be vital for the maintenance of species diversity in biological communities. Our approach may be applied readily to many types of community, and at any scale, thus providing a flexible means of testing niche-based hypotheses for species richness gradients.  相似文献   

6.
Diet overlap and niche breadth are well-known species traits from trophic ecology that can assist in explaining how species interact and coexist as well as the ecological mechanisms that influence biodiversity. In the present study, we analyzed the relationships between these trophic variables and indicators of resource availability with some attributes of fish assemblages (species richness, Shannon diversity index, evenness, density and individual body size). The physical and chemical characteristics of the biotopes (topography, water quality and conservation of slopes) were examined to identify possible patterns. Monthly sampling using electrofishing was conducted in 2003 along five streams located in the Cuiabá River watershed. The relationships between environmental variables and attributes of fish assemblages were evaluated using Spearman correlation. Species richness and abundance varied among streams, with higher values (54 and 82 species) found in low-gradient streams that drained small swampy areas discharging in Cuiabá River. Diet overlap showed significant and negative correlations with species richness, the diversity index, abundance, variation in body size and food availability and positive correlations with evenness and niche breadth. Environments that had greater food availability had a reduced variety of food items (smaller amplitude) and distinct values in terms of dietary overlap. Nevertheless, to explain resource partitioning in a fish assemblage (overlap), it is necessary to consider food availability and niche breadth (degree of trophic specialization) beyond the interaction of these variables with species richness and density. In conclusion, high diversity and abundance values were strongly associated with a high degree of trophic specialization (low amplitude of trophic niche) and a small degree of overlap in the diet.  相似文献   

7.
8.
1. The mechanisms that structure biological communities hold the key to understanding ecosystem functioning and the maintenance of biodiversity. Patterns of species abundances have been proposed as a means of differentiation between niche-based and neutral processes, but abundance information alone cannot provide unequivocal discrimination. 2. We combined species niche information and species' relative abundances to test the effects of two opposing structuring mechanisms (environmental filtering and niche complementarity) on species' relative abundances in French lacustrine fish communities. The test involved a novel method comparing the abundance-weighted niche overlap within communities against that expected when relative abundances were randomized among species within the community. 3. Observed overlap was consistently significantly lower than expected at random for two (swimming ability and trophic status) of four primary niche axes across lakes of differing physical environments. Thus, for these niche axes, pairs of abundant species tended to have relatively low niche overlap, while rare species tended to have relatively high niche overlap with abundant species. 4. This suggests that niche complementarity may have acted to enhance ecosystem function and that it is important for species coexistence in these fish communities. The method used may be easily applied to any sort of biological community and thus may have considerable potential for determining the generality of niche complementarity effects on community structure.  相似文献   

9.
三种荒漠蜥蜴空间和营养生态位研究   总被引:3,自引:0,他引:3  
同一荒漠蜥蜴群落中,荒漠沙蜥(Phrynocephalusprzewalskii)和虫纹麻蜥(Eremiasvermiculata),密点麻蜥(Eremiasmultiocellata)占不有同的空间生态位,其间几乎不存在竞争。两个近缘种虽然占有相同空间生态位,但个体大的密点麻蜥食物种类特化,个体小的虫纹麻蜥偏重于利用较小的食物资源。占有相同空间生态位的近缘种,营养生态位向不同方向特化,利用不同的食物资源,从而在竞争中共存,保持群落结构的稳定性。  相似文献   

10.
11.
Neotropical bat communities are among the most diverse mammal communities in the world, and a better understanding of these assemblages may permit inferences about how so many species coexist. While broad trophic guilds (e.g., frugivore, insectivore) of bats are recognized, details of diet and similarities among species remain largely unknown. We used stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) to characterize the community structure of a diverse Neotropical bat fauna from Belize to test predictions of niche theory and the competitive exclusion principle. We predicted that (1) interspecific variation in isotopic overlap would be greater within guilds than between guilds, and (2) no two sympatric populations would have isotopic niches that overlap completely, unless there is variation along some other axis (e.g., temporal, spatial). We additionally tested body size as an explanatory metric of potential overlap and predicted that larger‐bodied animals would have greater niche breadths. Results suggest that while guild‐level characterizations of communities are at least somewhat informative, there are multiple examples of intra‐ and inter‐guild species pairs with significantly overlapping isotopic niches, suggesting that, counter to predictions, they may compete for resources. Understanding the trophic structure of animal communities is fundamental to conservation and management of endangered species and ecosystems and important for evolutionary studies, and stable isotope analyses can provide key insights as well as informing hypotheses of the diet of species that are not well known. Abstract in Spanish is available with online material.  相似文献   

12.
海州湾鱼类群落功能多样性的时空变化   总被引:2,自引:0,他引:2  
功能多样性是联系物种、生态环境和生态系统功能的基础.从功能多样性的角度研究群落结构,有助于更好地理解生物多样性与生态系统功能之间的关系.本研究根据2011—2017年(除2012年外)春、秋季海州湾渔业资源底拖网调查数据,选取反映鱼类摄食、运动、生态适应性、繁殖行为和种群动态特征的13个功能性状,利用功能丰富度指数、功能均匀度指数、功能离散度指数和群落特征加权平均数指数(CWM),研究了海州湾鱼类群落功能多样性的季节、年际和空间的变化.结果表明: 海州湾鱼类群落功能多样性指数具有显著的季节差异,其中秋季功能丰富度指数显著高于春季,春季功能离散度指数显著高于秋季,鱼类洄游是造成功能多样性指数季节变化的主要原因;CWM分析表明,春季鱼类群落优势种为营养级较高、运动能力较强、生长系数、恢复力和脆弱性较高的冷/暖温性鱼类,秋季则相反,春、秋季鱼类群落均以产浮性卵鱼类为主;鱼类群落功能多样性指数呈现一定的年际变化,其中春、秋季各功能多样性指数在不同年际均呈波动趋势,表明海州湾鱼类群落稳定性较低;鱼类群落功能多样性指数呈现显著的空间差异,其中20 m以深远岸水域功能离散度指数较高.海州湾鱼类群落功能多样性具有明显的时空变化特征,鱼类生态位与其对资源的利用均随季节、年际和空间而变化.  相似文献   

13.
Invasive species are one of the widespread stressors of aquatic ecosystems. Several studies document food web effects of invasive fish, but little information is available on the effects of invasive macrophytes. We studied differences in food chain length as well as trophic position and trophic diversity of fish and odonates in lakes dominated by native plants or invasive Eurasian watermilfoil. Trophic position and food chain length were determined using baseline-adjusted δ15N isotope signatures. Trophic diversity, or isotope niche width, was estimated from convex hull area analysis. Results show that trophic position of secondary consumers was not affected by the invasive macrophyte, whereas trophic diversity was greater in watermilfoil-dominated lakes. The direction of isotopic niche expansion was different in fish and odonates, suggesting potential decoupling in predator–prey interactions. This study shows that dominant non-native macrophytes may cause significant changes in food web structure of invaded ecosystems. Trophic diversity may be a more sensitive indicator of environmental stress than trophic position and has the potential to be used for assessment of invasive species impacts and restoration success.  相似文献   

14.
Understanding the trophic relationships among closely related species is a way to obtain subsidies for their management and conservation of their habitats. The diets of three co-occurring abundant fish species of the Gerreidae family (Diapterus rhombeus, Eucinostomus argenteus and Eucinostomus gula) in a tropical bay were described. The tested hypothesis was that the three sympatric species present shifts in their use of resource during the ontogenetic development to facilitate their coexistence. Size groups for each species were categorized according to breakpoints in the morphological structures determined by piecewise regression models. Significant overlapping in diets was found for all size classes of D. rhombeus but not for size classes of the Eucinostomus genus. Furthermore, different size classes of D. rhombeus did not overlap diet with size classes of the Eucinostomus genus. The specialization in feeding niches corresponding to growth seems to bring benefits for this group of fish rather than a generalist feeding strategy. The hypothesis of the available resources partitioning was accepted only between the two genera (Diapterus and Eucinostomus), and among size classes of the Eucinostomus genus that seemed to follow the principle of limiting similarity. However, different size classes of D. rhombeus exhibited strong evidence of an intraspecific overlapping of the trophic niche. It seems that different processes related to use of the trophic niche dimension are structuring these closely related fish species.  相似文献   

15.
The positive effects of biodiversity on the functioning of ecosystems are well demonstrated in laboratory microcosms but the precise mechanisms underlying higher ecosystem process rates in natural assemblages are less well understood. We investigated, under semi-natural conditions (field enclosures), the potentially interactive effects of species identity and trophic function (i.e., feeding guild) on consumer growth, using a fish assemblage in a tropical stream. We tested the relative importance of species identity and trophic function on consumer growth by placing 2 fish of either (i) the same species, (ii) different species but of similar trophic function, or (iii) different species of different trophic functions in each of 72 stream enclosures for 48 days and measuring biomass change, individual diet composition and behavior. We predicted that if functional diversity had a larger impact than species diversity, then fish growth would be highest for pairs of species from different functional groups (i.e., those with the highest diet complementarity), intermediate for different species within a guild, and lowest for the same species (those with the lowest complementarity and highest niche overlap), such that functional variation between species in different guilds would exceed functional differences within guilds. Our results show that functional heterogeneity rather than species diversity per se had the greatest impact on food resources used complementarily, leading to higher biomass accrual. Mechanistically, higher growth rates were driven by concomitant increases in resource intake and reductions in antagonistic interactions. Together, these results underscore the importance of functional diversity on macroconsumer production in natural assemblages.  相似文献   

16.
Characterizing relationships between individual body size and trophic niche position is essential for understanding how population and food-web dynamics are mediated by size-dependent trophic interactions. However, whether (and how) intraspecific size-trophic relationships (i.e., trophic ontogeny pattern at the population level) vary with time remains poorly understood. Using archival specimens of a freshwater predatory fish Gymnogobius isaza (Tanaka 1916) from Lake Biwa, Japan, we assembled a long-term (>40 years) time-series of the size-dependence of trophic niche position by examining nitrogen stable isotope ratios (δ 15N) of the fish specimens. The size-dependence of trophic niche position was defined as the slope of the relationship between δ 15N and log body size. Our analyses showed that the slope was significantly positive in about 60% of years and null in other years, changing through time. This is the first quantitative (i.e., stable isotope) evidence of long-term variability in the size-trophic relationship in a predatory fish. This finding had implications for the fish trophic dynamics, despite that about 60% of the yearly values were not statistically different from the long-term average. We proposed hypotheses for the underlying mechanism of the time-varying size-trophic relationship.  相似文献   

17.
Body size exerts multiple effects on plankton food-web interactions. However, the influence of size structure on trophic transfer remains poorly quantified in the field. Here, we examine how the size diversity of prey (nano-microplankton) and predators (mesozooplankton) influence trophic transfer efficiency (using biomass ratio as a proxy) in natural marine ecosystems. Our results support previous studies on single trophic levels: transfer efficiency decreases with increasing prey size diversity and is enhanced with greater predator size diversity. We further show that communities with low nano-microplankton size diversity and high mesozooplankton size diversity tend to occur in warmer environments with low nutrient concentrations, thus promoting trophic transfer to higher trophic levels in those conditions. Moreover, we reveal an interactive effect of predator and prey size diversities: the positive effect of predator size diversity becomes influential when prey size diversity is high. Mechanistically, the negative effect of prey size diversity on trophic transfer may be explained by unicellular size-based metabolic constraints as well as trade-offs between growth and predation avoidance with size, whereas increasing predator size diversity may enhance diet niche partitioning and thus promote trophic transfer. These findings provide insights into size-based theories of ecosystem functioning, with implications for ecosystem predictive models.  相似文献   

18.
大山雀和褐头山雀种间关系研究   总被引:4,自引:0,他引:4  
刘nai发  李岩 《动物学研究》1989,10(4):277-284
在地理分布重叠地区的大山雀Parus major和褐头山雀Parus montanus栖息地海拔高度不同。大山雀栖于海拔2,370米以下,集中于次生杨桦林和老年人工杨树林;褐头山雀栖于海拔2,300米以上,集中于混交林和山杨栎林。它们的栖息地有一定重叠,但重叠值较低。重叠地带觅食生态位的四维中,树种选择一维有所不同,其余三维生态位重叠值均较大。两个种营养生态位有一定重叠,食物大小的重叠值更大。在进化发展过程中,两种山雀间完全的生态分离没有发生。  相似文献   

19.
1. Generalist fish species are recognised as important couplers of benthic and pelagic food‐web compartments in lakes. However, interspecific niche segregation and individual specialisation may limit the potential for generalistic feeding behaviour. 2. We studied summer habitat use, stomach contents and stable isotopic compositions of the generalist feeder Arctic charr coexisting with its common resource competitor brown trout in five subarctic lakes in northern Norway to reveal population‐level and individual‐level niche plasticity. 3. Charr and trout showed partial niche segregation in all five lakes. Charr used all habitat types and a wide variety of invertebrate prey including zooplankton, whereas trout fed mainly on insects in the littoral zone. Hence, charr showed a higher potential to promote habitat and food‐web coupling compared to littoral‐dwelling trout. 4. The level of niche segregation between charr and trout and between pelagic‐caught and littoral‐caught charr depended on the prevailing patterns of interspecific and intraspecific resource competition. The two fish species had partially overlapping trophic niches in one lake where charr numerically dominated the fish community, whereas the most segregated niches occurred in lakes where trout were more abundant. 5. In general, pelagic‐caught charr had substantially narrower dietary and isotopic niches and relied less on littoral carbon sources compared to littoral‐caught conspecifics that included generalist as well as specialised benthivorous and planktivorous individuals. Despite the partially specialised planktivorous niche and thus reduced potential of pelagic‐dwelling charr to promote benthic–pelagic coupling, the isotopic compositions of both charr subpopulations suggested a significant reliance on both littoral and pelagic carbon sources in all five study lakes. 6. Our study demonstrates that both interspecific niche segregation between and individual trophic specialisation within generalist fish species can constrain food‐web coupling and alter energy mobilisation to top consumers in subarctic lakes. Nevertheless, pelagic and littoral habitats and food‐web compartments may still be highly integrated due to the potentially plastic foraging behaviour of top consumers.  相似文献   

20.
Aim In times of biodiversity crisis, it is extremely important to understand diversity gradients. In particular, the study of the diversity of ecological functions is a key issue for the management of ecosystem integrity. Here we identify areas of low functional diversity of the native fish fauna in European drainage basins and we determine the relative importance of three underlying mechanisms: environmental filtering, geographic isolation and climatic history. Location The European continent. Methods Based on 14 morphological traits that are closely related to fish function (habitat and dietary niches), three independent functional diversity indices [functional richness (FR), functional evenness (FE), functional divergence (FD)] were calculated for 128 European drainage basins with a total of 230 fish species. The indices were standardized for species richness using null models. The patterns of the standardized indices are described and three potentially underlying mechanisms are tested using variance partitioning and multi‐linear regression models. Results FR and FD were highest in eastern European drainage basins and in Great Britain and lowest in the Mediterranean. FE patterns were less pronounced. All observed patterns were mainly governed by geographic isolation and present environmental conditions. Within the environmental conditions, average annual temperature and precipitation were good predictors for functional diversity. The role of habitat diversity and size was negligible. Main conclusions Geographic isolation coupled with harsh environmental conditions such as extreme temperatures and low precipitation, as in Mediterranean regions, can lead to low FR and FD. This can be explained by extinction that could not be compensated by re‐colonization and high speciation. Due to their high functional redundancy, communities in these areas might better withstand further species extinctions on a small scale. Over the short term, however, their often extremely low FR suggests a less flexible functioning that can hinder their ability to withstand today's rapid environmental and anthropogenic threats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号