首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
In our previous study, we generated a strain of 19‐P (1030) in which artificial RNA interference (RNAi) was induced by transcribing a hairpin RNA of ~780‐bp stem. We utilized this RNAi‐induced strain to uncover RNAi‐related genes. Random insertional mutagenesis was performed to generate tag‐mutants that show a RNAi deficient phenotype. The 92‐12C is one such tag‐mutant, which bears a 14‐kb deletion in chromosome 1. Complementation of 92‐12C revealed that a protein gene, including a Cys‐Cys‐Cys‐His‐type zinc finger motif and an ankyrin repeat motif, is essential for effective RNAi in Chlamydomonas reinhardtii (Dangeard). BLAST analysis revealed that the zinc finger protein is homologous to an mRNA splicing‐related protein of other species. Therefore, one of the probable scenarios is that mRNA coding for RNAi‐related proteins cannot be properly spliced, which causes RNAi deficiency in the 92‐12C tag‐mutant.  相似文献   

2.
3.
Prosurfactant protein C (proSP‐C) is a 197‐residue integral membrane protein, in which the C‐terminal domain (CTC, positions 59–197) is localized in the endoplasmic reticulum (ER) lumen and contains a Brichos domain (positions 94–197). Mature SP‐C corresponds largely to the transmembrane (TM) region of proSP‐C. CTC binds to SP‐C, provided that it is in nonhelical conformation, and can prevent formation of intracellular amyloid‐like inclusions of proSP‐C that harbor mutations linked to interstitial lung disease (ILD). Herein it is shown that expression of proSP‐C (1–58), that is, the N‐terminal propeptide and the TM region, in HEK293 cells results in virtually no detectable protein, while coexpression of CTC in trans yields SDS‐soluble monomeric proSP‐C (1–58). Recombinant human (rh) CTC binds to cellulose‐bound peptides derived from the nonpolar TM region, but not the polar cytosolic part, of proSP‐C, and requires ≥5‐residues for maximal binding. Binding of rhCTC to a nonhelical peptide derived from SP‐C results in α‐helix formation provided that it contains a long TM segment. Finally, rhCTC and rhCTC Brichos domain shows very similar substrate specificities, but rhCTCL188Q, a mutation linked to ILD is unable to bind all peptides analyzed. These data indicate that the Brichos domain of proSP‐C is a chaperone that induces α‐helix formation of an aggregation‐prone TM region.  相似文献   

4.
5.
6.
7.
DNGR‐1 is receptor expressed by certain dendritic cell (DC) subsets and by DC precursors in mouse. It possesses a C‐type lectin‐like domain (CTLD) followed by a poorly characterized neck region coupled to a transmembrane region and short intracellular tail. The CTLD of DNGR‐1 binds F‐actin exposed by dead cell corpses and causes the receptor to signal and potentiate cross‐presentation of dead cell‐associated antigens by DCs. Here, we describe a conformational change that occurs in the neck region of DNGR‐1 in a pH‐ and ionic strength‐dependent manner and that controls cross‐presentation of dead cell‐associated antigens. We identify residues in the neck region that, when mutated, lock DNGR‐1 in one of the two conformational states to potentiate cross‐presentation. In contrast, we show that chimeric proteins in which the neck region of DNGR‐1 is replaced by that of unrelated C‐type lectin receptors fail to promote cross‐presentation. Our results suggest that the neck region of DNGR‐1 is an integral receptor component that senses receptor progression through the endocytic pathway and has evolved to maximize extraction of antigens from cell corpses, coupling DNGR‐1 function to its cellular localization.  相似文献   

8.
Bcl‐2 is an anti‐apoptotic protein that inhibits apoptosis elicited by multiple stimuli in a large variety of cell types. BMRP (also known as MRPL41) was identified as a Bcl‐2 binding protein and shown to promote apoptosis. Previous studies indicated that the amino‐terminal two‐thirds of BMRP contain the domain(s) required for its interaction with Bcl‐2, and that this region of the protein is responsible for the majority of the apoptosis‐inducing activity of BMRP. We have performed site‐directed mutagenesis analyses to further characterize the BMRP/Bcl‐2 interaction and the pro‐apoptotic activity of BMRP. The results obtained indicate that the 13–17 amino acid region of BMRP is necessary for its binding to Bcl‐2. Further mutagenesis of this motif shows that amino acid residue aspartic acid (D) 16 of BMRP is essential for the BMRP/Bcl‐2 interaction. Functional analyses conducted in mammalian cells with BMRP site‐directed mutants BMRP(13Ala17) and BMRP(D16A) indicate that these mutants induce apoptosis through a caspase‐mediated pathway, and that they kill cells slightly more potently than wild‐type BMRP. Bcl‐2 is still able to counteract BMRP(D16A)‐induced cell death significantly, but not as completely as when tested against wild‐type BMRP. These results suggest that the apoptosis‐inducing ability of wild‐type BMRP is blocked by Bcl‐2 through several mechanisms. J. Cell. Biochem. 113: 3498–3508, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Chromobacterium violaceum is a Gram‐negative bacterium that causes fatal septicaemia in humans and animals. C. violaceum ATCC 12472 possesses genes associated with two distinct type III secretion systems (T3SSs). One of these systems is encoded by Chromobacterium pathogenicity islands 1 and 1a (Cpi‐1/‐1a), another is encoded by Chromobacterium pathogenicity island 2 (Cpi‐2). Here we show that C. violaceum causes fulminant hepatitis in a mouse infection model, and Cpi‐1/‐1a‐encoded T3SS is required for its virulence. In addition, using C. violaceum strains with defined mutations in the genes that encode the Cpi‐1/‐1a or Cpi‐2 locus in combination with cultured mammalian cell lines, we found that C. violaceum is able to induce cytotoxicity in a Cpi‐1/‐1a‐dependent manner. Characterization of Chromobacterium‐induced cytotoxicity revealed that cell lysis by C. violaceum infection involves the formation of pore structures on the host cell membrane, as demonstrated by protection by cytotoxicity in the presence of osmoprotectants. Finally, we demonstrated that CipB, a Cpi‐1/‐1a effector, is implicated in translocator‐mediated pore formation and the ability of CipB to form a pore is essential for Chromobacterium‐induced cytotoxicity. These results strongly suggest that Cpi‐1/‐1a‐encoded T3SS is a virulence determinant that causes fatal infection by the induction of cell death in hepatocytes.  相似文献   

10.
11.
Mcl‐1 is an antiapoptotic Bcl‐2‐family protein that protects cells against death. Structures of Mcl‐1, and of other anti‐apoptotic Bcl‐2 proteins, reveal a surface groove into which the α‐helical BH3 regions of certain proapoptotic proteins can bind. Despite high overall structural conservation, differences in this groove afford binding specificity that is important for the mechanism of Bcl‐2 family function. We report the crystal structure of human Mcl‐1 bound to a BH3 peptide derived from human Bim and the structures for three complexes that accommodate large physicochemical changes at conserved Bim sites. The mutations had surprisingly modest effects on complex stability, and the structures show that Mcl‐1 can undergo small changes to accommodate the mutant ligands. For example, a shift in a leucine side chain fills a hole left by an isoleucine‐to‐alanine mutation at the first hydrophobic buried position of Bim BH3. Larger changes are also observed, with shifting of helix α3 accommodating an isoleucine‐to‐tyrosine mutation at this same position. We surveyed the variation in available Mcl‐1 and Bcl‐xL structures and observed moderate flexibility that is likely critical for facilitating interactions of diverse BH3‐only proteins with Mcl‐1. With the antiapoptotic Bcl‐2 family members attracting significant attention as therapeutic targets, these structures contribute to our growing understanding of how specificity is achieved and can help to guide the design of novel inhibitors that target Mcl‐1.  相似文献   

12.
One of the greatest unresolved questions in aging biology is determining the genetic basis of interspecies longevity variation. Gene duplication is often the key to understanding the origin and evolution of important Eutherian phenotypes. We systematically identified longevity‐associated genes in model organisms that duplicated throughout Eutherian evolution. Longevity‐associated gene families have a marginally significantly higher rate of duplication compared to non‐longevity‐associated gene families. Anti‐longevity‐associated gene families have significantly increased rate of duplication compared to pro‐longevity gene families and are enriched in neurodegenerative disease categories. Conversely, duplicated pro‐longevity‐associated gene families are enriched in cell cycle genes. There is a cluster of longevity‐associated gene families that expanded solely in long‐lived species that is significantly enriched in pathways relating to 3‐UTR‐mediated translational regulation, metabolism of proteins and gene expression, pathways that have the potential to affect longevity. The identification of a gene cluster that duplicated solely in long‐lived species involved in such fundamental processes provides a promising avenue for further exploration of Eutherian longevity evolution.  相似文献   

13.
Inflammatory bowel disease is a kind of multi‐aetiological chronic disease that is driven by multidimensional factors. Hypoxia‐inducible factor‐1α (HIF‐1α) plays an important role in anti‐inflammatory and cellular responses to hypoxia. Previous studies have found that B or T‐cell‐specific HIF‐1α knock out mice exhibit severe colonic inflammation. However, we know very little about other functions of HIF‐1α in intestinal epithelial cells (IECs). In our study, HIF‐1αΔIEC mice were used to study the function of HIF‐1α in IECs. HIF‐1α was knocked down in Caco‐2 cells by transfection with a small interfering (si) RNA. Immunohistochemical staining and western blotting were used to detect the expression of zonula occluden‐1 (ZO‐1) and Occludin. The content of colon was harvested for high‐performance liquid chromatography analysis to examine the levels of butyrate in the gut. Our research found that HIF‐1α played a protective role in dextran sulphate sodium‐induced colitis, which was partly due to its regulation of tight junction (TJ) protein expression. Further study revealed that HIF‐1α mediated TJ proteins levels by moderating the content of butyrate. Moreover, we found that butyrate regulated TJ protein expression, which is dependent on HIF‐1α. These results indicated that there is a mutual regulatory mechanism between butyrate and HIF‐1α, which has an important role in the maintenance of barrier function of the gastrointestinal tract.  相似文献   

14.
Inositol polyphosphate‐1‐phosphatase (INPP1) is an enzyme that is responsible for glycolysis and lipid metabolism. Here, we discovered that INPP1 expression was up‐regulated in CC tissues compared to that in adjacent normal tissues by RT‐qPCR. Inositol polyphosphate‐1‐phosphatase overexpression promoted and INPP1 knockdown suppressed cell viability, cellular migration/invasion and EMT in CC cells. To explore the mechanism of dysregulation, INPP1 was predicted to be a target of miR‐27a, and a pmiRGLO dual‐luciferase reporter assay showed that miR‐27a bound to the 3′ UTR of INPP1. RT‐qPCR revealed that miR‐27a was also up‐regulated and had a positive correlation with INPP1 expression in CC tissues. Furthermore, shR‐INPP1 could favour the malignant phenotype reversion induced by miR‐27a, suggesting that miR‐27a up‐regulates INPP1 to promote tumorigenic activities. Altogether, our findings show that the up‐regulation of INPP1 by miR‐27a contributes to tumorigenic activities and may provide a potential biomarker for CC.  相似文献   

15.
16.
The Bcl‐2 family modulates sensitivity to chemotherapy in many cancers, including melanoma, in which the RAS/BRAF/MEK/ERK pathway is constitutively activated. Mcl‐1, a major anti‐apoptotic protein in the Bcl‐2 family, is extensively expressed in melanoma and contributes to melanoma's well‐documented chemoresistance. Here, we provide the first evidence that Mcl‐1 phosphorylation at T163 by ERK1/2 and JNK is associated with the resistance of melanoma cell lines to the existing BH3 mimetics gossypol, S1 and ABT‐737, and a novel anti‐apoptotic mechanism of phosphorylated Mcl‐1 (pMcl‐1) is revealed. pMcl‐1 antagonized the known BH3 mimetics by sequestering pro‐apoptotic proteins that were released from Bcl‐2/Mcl‐1. Furthermore, an anthraquinone BH3 mimetic, compound 6, was identified to be the first small molecule to that induces endogenous apoptosis in melanoma cells by directly binding Bcl‐2, Mcl‐1, and pMcl‐1 and disrupting the heterodimers of these proteins. Although compound 6 induced upregulation of the pro‐apoptotic protein Noxa, its apoptotic induction was independent of Noxa. These data reveal the promising therapeutic potential of targeting pMcl‐1 to treat melanoma. Compound 6 is therefore a potent drug that targets pMcl‐1 in melanoma.  相似文献   

17.
An input‐output‐based life cycle inventory (IO‐based LCI) is grounded on economic environmental input‐output analysis (IO analysis). It is a fast and low‐budget method for generating LCI data sets, and is used to close data gaps in life cycle assessment (LCA). Due to the fact that its methodological basis differs from that of process‐based inventory, its application in LCA is a matter of controversy. We developed a German IO‐based approach to derive IO‐based LCI data sets that is based on the German IO accounts and on the German environmental accounts, which provide data for the sector‐specific direct emissions of seven airborne compounds. The method to calculate German IO‐based LCI data sets for building products is explained in detail. The appropriateness of employing IO‐based LCI for German buildings is analyzed by using process‐based LCI data from the Swiss Ecoinvent database to validate the calculated IO‐based LCI data. The extent of the deviations between process‐based LCI and IO‐based LCI varies considerably for the airborne emissions we investigated. We carried out a systematic evaluation of the possible reasons for this deviation. This analysis shows that the sector‐specific effects (aggregation of sectors) and the quality of primary data for emissions from national inventory reporting (NIR) are the main reasons for the deviations. As a rule, IO‐based LCI data sets seem to underestimate specific emissions while overestimating sector‐specific aspects.  相似文献   

18.
In many bacterial pathogens, the second messenger c‐di‐GMP stimulates the production of an exopolysaccharide (EPS) matrix to shield bacteria from assaults of the immune system. How c‐di‐GMP induces EPS biogenesis is largely unknown. Here, we show that c‐di‐GMP allosterically activates the synthesis of poly‐β‐1,6‐N‐acetylglucosamine (poly‐GlcNAc), a major extracellular matrix component of Escherichia coli biofilms. C‐di‐GMP binds directly to both PgaC and PgaD, the two inner membrane components of the poly‐GlcNAc synthesis machinery to stimulate their glycosyltransferase activity. We demonstrate that the PgaCD machinery is a novel type c‐di‐GMP receptor, where ligand binding to two proteins stabilizes their interaction and promotes enzyme activity. This is the first example of a c‐di‐GMP‐mediated process that relies on protein–protein interaction. At low c‐di‐GMP concentrations, PgaD fails to interact with PgaC and is rapidly degraded. Thus, when cells experience a c‐di‐GMP trough, PgaD turnover facilitates the irreversible inactivation of the Pga machinery, thereby temporarily uncoupling it from c‐di‐GMP signalling. These data uncover a mechanism of c‐di‐GMP‐mediated EPS control and provide a frame for c‐di‐GMP signalling specificity in pathogenic bacteria.  相似文献   

19.
AFAP1‐AS1 is a long non‐coding RNA that is associated with tumorigenesis and poor prognosis in a variety of cancers. We have been suggested that AFAP1‐AS1 increases tumorigenesis in laryngeal carcinoma specifically by enhancing stemness and chemoresistance. We assessed AFAP1‐AS1 expression in human laryngeal specimens, paired adjacent normal tissues and human HEp‐2 cells. Indeed, we found not only that AFAP1‐AS1 was up‐regulated in laryngeal carcinoma specimens and cells, but also that stemness‐associated genes were overexpressed. Silencing of AFAP1‐AS1 promoted HEp‐2 cell chemoresistance under cisplatin treatment. Expression of AFAP1‐AS1 was increased in drug‐resistant Hep‐2 cells. We then probed the mechanism of AFAP1‐AS1 activity and determined that miR‐320a was a potential molecular target of AFAP1‐AS1. Luciferase reporter and qRT‐PCR assays of AFAP1‐AS1 and miR‐320a levels in human specimens and cell cultures indicated that AFAP1‐AS1 negatively regulates miR‐320a. To discover the molecular mechanism of miR‐320a, we again used the DIANA Tools algorithm to predict its genetic target, RBPJ. After cloning the 3′‐untranslated regions (3′‐UTR) of RBPJ into a luciferase reporter, we determined that miR‐320a did in fact reduce RBPJ mRNA and protein levels. Ultimately, we determined that AFAP1‐AS1 increases RBPJ expression by negatively regulating miR‐320a and RBPJ overexpression rescues stemness and chemoresistance inhibited by AFAP1‐AS1 silencing. Taken together, these results suggest that AFAP1‐AS1 can serve as a prognostic biomarker in laryngeal carcinoma and that miR‐320a has the potential to improve standard therapeutic approaches to the disease, especially for cases in which cancer cell stemness and drug resistance present significant barriers to effective treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号