首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anthropogenic climate change is altering the geographical distribution and regular movements of species. Highly-mobile pelagic seabirds, such as albatrosses, are particularly threatened by human activities, such as fisheries bycatch. Predicting the impact of climate change on how these animals roam the ocean is an important step towards making informed conservation decisions. In this study, we used a mechanistic model of migratory movements to predict how the migration of albatross species that breed in the southern Indian Ocean may change between now and the end of the century. The model is able to generate non-breeding movement patterns of albatrosses that correspond to empirical patterns from tracking data, thus providing confidence in the ability of the model to make future predictions. We projected the model using environmental conditions for 2100 based on a scenario assuming high emissions (IPCC RCP 8.5). Overall, we found very little projected change in the non-breeding distribution of albatrosses compared to the present. Some change, however, is predicted for large albatrosses, which, due to their size, are more affected by wind, and are projected to migrate further eastwards in the future scenario. These results contrast with previous analyses focusing on the breeding distribution that used statistical modelling, such as habitat and species distributions models, and predicted poleward shifts in geographical distributions of various seabird species including albatrosses. Therefore, it highlights the need for formal comparison of predicted changes in distribution during different phases of the annual cycle of the albatrosses and/or integration of the different approaches. Our analysis also predicts that the overlap of albatrosses with Regional Fisheries Management Organisations (RFMOs) during the non-breeding season will remain similar in 2100 compared to today. This implies that large-scale by-catch mitigation measures implemented through fisheries management organisations will remain important over the next hundred years of climate change.  相似文献   

2.
Hundreds of thousands of seabirds are killed each year as bycatch in longline fisheries. Seabirds are predominantly caught during line setting but bycatch is generally recorded during line hauling, many hours after birds are caught. Bird loss during this interval may lead to inaccurate bycatch information. In this 15 year study, seabird bycatch was recorded during both line setting and line hauling from four fishing regions: Indian Ocean, Southern Ocean, Coral Sea and central Pacific Ocean. Over 43,000 albatrosses, petrels and skuas representing over 25 species were counted during line setting of which almost 6,000 seabirds attempted to take the bait. Bait-taking interactions were placed into one of four categories. (i) The majority (57%) of bait-taking attempts were “unsuccessful” involving seabirds that did not take the bait nor get caught or hooked. (ii) One-third of attempts were “successful” with seabirds removing the bait while not getting caught. (iii) One-hundred and seventy-six seabirds (3% of attempts) were observed being “caught” during line setting, with three albatross species – Laysan (Phoebastria immutabilis), black-footed (P. nigripes) and black-browed (Thalassarche melanophrys)– dominating this category. However, of these, only 85 (48%) seabird carcasses were retrieved during line hauling. Most caught seabirds were hooked through the bill. (iv) The remainder of seabird-bait interactions (7%) was not clearly observed, but likely involved more “caught” seabirds. Bait taking attempts and percentage outcome (e.g. successful, caught) varied between seabird species and was not always related to species abundance around fishing vessels. Using only haul data to calculate seabird bycatch grossly underestimates actual bycatch levels, with the level of seabird bycatch from pelagic longline fishing possibly double what was previously thought.  相似文献   

3.
More than 18 million seabirds nest on 58 Pacific islands protected within vast U.S. Marine National Monuments (1.9 million km2). However, most of these seabird colonies are on low-elevation islands and sea-level rise (SLR) and accompanying high-water perturbations are predicted to escalate with climate change. To understand how SLR may impact protected islands and insular biodiversity, we modeled inundation and wave-driven flooding of a globally important seabird rookery in the subtropical Pacific. We acquired new high-resolution Digital Elevation Models (DEMs) and used the Delft3D wave model and ArcGIS to model wave heights and inundation for a range of SLR scenarios (+0.5, +1.0, +1.5, and +2.0 m) at Midway Atoll. Next, we classified vegetation to delineate habitat exposure to inundation and identified how breeding phenology, colony synchrony, and life history traits affect species-specific sensitivity. We identified 3 of 13 species as highly vulnerable to SLR in the Hawaiian Islands and quantified their atoll-wide distribution (Laysan albatross, Phoebastria immutabilis; black-footed albatross, P. nigripes; and Bonin petrel, Pterodroma hypoleuca). Our models of wave-driven flooding forecast nest losses up to 10% greater than passive inundation models at +1.0 m SLR. At projections of + 2.0 m SLR, approximately 60% of albatross and 44% of Bonin petrel nests were overwashed displacing more than 616,400 breeding albatrosses and petrels. Habitat loss due to passive SLR may decrease the carrying capacity of some islands to support seabird colonies, while sudden high-water events directly reduce survival and reproduction. This is the first study to simulate wave-driven flooding and the combined impacts of SLR, groundwater rise, and storm waves on seabird colonies. Our results highlight the need for early climate change planning and restoration of higher elevation seabird refugia to prevent low-lying protected islands from becoming ecological traps in the face of rising sea levels.  相似文献   

4.
Marine megafauna, including seabirds, are critically affected by fisheries bycatch. However, bycatch risk may differ on temporal and spatial scales due to the uneven distribution and effort of fleets operating different fishing gear, and to focal species distribution and foraging behavior. Scopoli's shearwater Calonectris diomedea is a long‐lived seabird that experiences high bycatch rates in longline fisheries and strong population‐level impacts due to this type of anthropogenic mortality. Analyzing a long‐term dataset on individual monitoring, we compared adult survival (by means of multi‐event capture–recapture models) among three close predator‐free Mediterranean colonies of the species. Unexpectedly for a long‐lived organism, adult survival varied among colonies. We explored potential causes of this differential survival by (1) measuring egg volume as a proxy of food availability and parental condition; (2) building a specific longline bycatch risk map for the species; and (3) assessing the distribution patterns of breeding birds from the three study colonies via GPS tracking. Egg volume was very similar between colonies over time, suggesting that environmental variability related to habitat foraging suitability was not the main cause of differential survival. On the other hand, differences in foraging movements among individuals from the three colonies expose them to differential mortality risk, which likely influenced the observed differences in adult survival. The overlap of information obtained by the generation of specific bycatch risk maps, the quantification of population demographic parameters, and the foraging spatial analysis should inform managers about differential sensitivity to the anthropogenic impact at mesoscale level and guide decisions depending on the spatial configuration of local populations. The approach would apply and should be considered in any species where foraging distribution is colony‐specific and mortality risk varies spatially.  相似文献   

5.
The white-chinned petrel (Procellaria aequinoctialis) is the seabird species most commonly killed by Southern Hemisphere longline fisheries. Despite the importance of diving ability for mitigating longline bycatch, little is known of this species’ diving behaviour. We obtained data from temperature–depth recorders from nine white-chinned petrels breeding on Marion Island, southwestern Indian Ocean, during the late incubation and chick-rearing period. Maximum dive depth (16 m) was slightly deeper than the previous estimate (13 m), but varied considerably among individuals (range 2–16 m). Males dived deeper than females, and birds feeding chicks dived deeper than incubating birds, but dive rate did not differ between the sexes. Time of day had no significant effect on dive depth or rate. Our findings will help to improve the design and performance of mitigation measures aimed at reducing seabird bycatch in longline fisheries, such as the calculation of minimum line sink rates and optimum aerial coverage of bird-scaring lines.  相似文献   

6.
The boreal Northeast Atlantic is strongly affected by current climate change, and large shifts in abundance and distribution of many organisms have been observed, including the dominant copepod Calanus finmarchicus, which supports the grazing food web and thus many fish populations. At the same time, large‐scale declines have been observed in many piscivorous seabirds, which depend on abundant small pelagic fish. Here, we combine predictions from a niche model of C. finmarchicus with long‐term data on seabird breeding success to link trophic levels. The niche model shows that environmental suitability for C. finmarchicus has declined in southern areas with large breeding seabird populations (e.g. the North Sea), and predicts that this decline is likely to spread northwards during the 21st century to affect populations in Iceland and the Faroes. In a North Sea colony, breeding success of three common piscivorous seabird species [black‐legged kittiwake (Rissa tridactyla), common guillemot (Uria aalge) and Atlantic puffin (Fratercula arctica)] was strongly positively correlated with local environmental suitability for C. finmarchicus, whereas this was not the case at a more northerly colony in west Norway. Large seabird populations seem only to occur where C. finmarchicus is abundant, and northward distributional shifts of common boreal seabirds are therefore expected over the coming decades. Whether or not population size can be maintained depends on the dispersal ability and inclination of these colonial breeders, and on the carrying capacity of more northerly areas in a warmer climate.  相似文献   

7.
Immigration is a major demographic parameter shaping population dynamics and is an important driver of eco‐evolutionary patterns, but the fitness consequences for individuals following their settlement to a new population (immigrants) remain poorly tested in wild animal populations, particularly among long‐lived species. Here we show that immigrants have a lower fitness than residents in three wild seabird populations (wandering albatross Diomedea exulans, southern fulmar Fulmarus glacialoides, snow petrel Pagodroma nivea). Across all species and during a 32‐year period, immigrants made on average ?9 to 29% fewer breeding attempts, had 5–31% fewer fledglings, had 2–16% lower breeding success and produced 6–46% fewer recruits. Female immigration and male residency were also favored through differences in breeding performance. We provide evidence for selection against immigrants in wild populations of long‐lived species and our results are consistent with female‐biased dispersal in birds being driven by asymmetric limiting resources and the competitive ability of dispersers vs. non‐dispersers.  相似文献   

8.
Sato N  Ochi D  Minami H  Yokawa K 《PloS one》2012,7(5):e37546
To improve the effectiveness of tori-lines it is necessary to evaluate the ability of tori-lines to mitigate seabird bycatch and determine what kind of seabird species gather during line settings, attack the bait and are incidentally caught. We conducted two experiments in the western North Pacific and examined the effectiveness for seabird mitigation of light streamer tori-lines which have no long streamers but many light (short) streamers and are mainly used in the North Pacific area. Firstly, the effectiveness of two different types of tori-line (light streamer (1 m) and long streamer (up to 7 m) tori-line) and of two different colors (yellow and red) of light streamers for seabird bycatch avoidance was evaluated using 567 sets based on data from 20 offshore surface commercial longliners. No significant difference in the bycatch number between the different tori-line types and streamer colors was found. Secondly, we investigated the characteristics of the seabird bycatch in the North Pacific and the effectiveness of three different types of streamers (light, hybrid and modified light types) by detailed observations of seabird attacks using a chartered longline vessel. Although the appearance rate of albatrosses and shearwaters were 40.9% and 27.7%, Laysan albatross was the main seabird species that followed the vessel but shearwaters seldom followed the vessel and did not aggregate during line setting. In all attacks on bait observed during line settings, 81% and 7% were by albatrosses and shearwaters, respectively. In the number of primary attacks by Laysan albatrosses which attacked most aggressively of all seabirds, there were no significant differences among the tori-line types. No individuals of shearwater were caught. The results of both experiments indicated that light streamer tori-lines were as effective as tori-lines with long streamers for mitigating seabird bycatch in the North Pacific.  相似文献   

9.
Fisheries have an enormous economic importance, but reconciling their socio‐economic features with the conservation and sustainability of marine ecosystems presents major challenges. Bycatch mortality from fisheries is clearly among the most serious global threats for marine ecosystems, affecting a wide range of top predators. Recent estimates report ca. 200,000 seabirds killed annually by bycatch in European waters. However, there is an urgent need to rigorously estimate actual mortality rates and quantify effects of bycatch on populations. The Mediterranean Sea is one of the most impacted regions. Here, we estimate for the first time both bycatch mortality rates and their population‐level effects on three endemic and vulnerable Mediterranean taxa: Scopoli's shearwater, Mediterranean shag, and Audouin's gull, that die in different types of fishing gears: longlines, gillnets and sport trolling, respectively. We use multi‐event capture–recapture modelling to estimate crucial demographic parameters, including the probabilities of dying in different fishing gears. We then build stochastic demography models to forecast the viability of the populations under different management scenarios. Longline bycatch was particularly severe for adults of Scopoli's shearwaters and Audouin's gulls (ca. 28% and 23% of total mortality, respectively) and also for immature gulls (ca. 90% of mortality). Gillnets had a lower impact, but were still responsible for ca. 9% of juvenile mortality on shags, whereas sport trolling only slightly influenced total mortality in gulls. Bycatch mortality has high population‐level impacts in all three species, with shearwaters having the highest extinction risk under current mortality rates. Different life‐history traits and compensatory demographic mechanisms between the three species are probably influencing the different bycatch impact: for shearwaters, urgent conservation actions are required to ensure the viability of their populations. Results will be very useful for guiding future seabird conservation policies and moving towards an ecosystem‐based approach to sustainable fisheries management.  相似文献   

10.
We studied the distribution and abundance of seabirds along the Beagle Channel during February and March 1997. We examined the distribution and abundance, following the strip transects methodology, of species and their relation with habitat and foraging strategy of the birds. We divided the study area into six zones a priori. We made 20 trips aboard tourist vessels. The species most abundant in the study area were the imperial cormorant, dolphin gull, kelp gull, black-browed albatross, South American tern and Chilean skua. We concluded that seabirds were distributed non-randomly in the marine environment of the Beagle Channel. The shallow waters present the largest seabird density in the Beagle Channel. The Islas Bridges zone had the highest total density of seabirds, followed by the Bahía Ushuaia zone. The first zone holds colonies of most of the seabird species nesting in the channel. The presence of seabirds in the Bahía Ushuaia zone is influenced by the Islas Bridges zone itself, from where breeding birds come, and also by Ushuaia city, the port and the open garbage dump, where birds that feed on carrion can find alternative sources of food. The distribution of species in the whole study area was related to the foraging strategies, interactions with other species and characteristics of the habitat. We identified three groups of bird species and four independent species by cluster analysis. The first group included the black-browed albatross and the Magellanic penguin, which were associated with deep waters. In the second group the imperial cormorant and Chilean skua were associated with shallow waters along the study area, especially in the Islas Bridges zone where these species breed. Lastly, the kelp gull and southern giant petrel formed interspecific groups on the coast in places influenced by humans. The independent species numbered four. The rock cormorant associated with shallow waters in kelp bed areas. Showing a completely different foraging behaviour from the rest of the species, the dolphin gull occurred in shallow waters in the Islas Bridges zone associated with sea lions' and cormorants' colonies. Diving petrels were associated with deep waters on the west side of the channel. The South American tern was distributed all along the study area. Accepted: 14 November 1999  相似文献   

11.
Bycatch in longline fisheries threatens the viability of some seabird populations. The Hawaii longline swordfish fishery reduced seabird captures by an order of magnitude primarily through mitigating bycatch during setting. Now, 75% of captures occur during hauling. We fit observer data to a generalized additive regression model with mixed effects to determine the significance of the effect of various factors on the standardized seabird haul catch rate. Density of albatrosses attending vessels during hauling, leader length and year had largest model effects. The standardized haul catch rate significantly increased with increased albatross density during hauling. The standardized catch rate was significantly higher the longer the leader: shorter leaders place weighted swivels closer to hooks, reducing the likelihood of baited hooks becoming available to surface-scavenging albatrosses. There was a significant linear increasing temporal trend in the standardized catch rate, possibly partly due to an observed increasing temporal trend in the local abundance of albatrosses attending vessels during hauling. Swivel weight, Beaufort scale and season were also significant but smaller model effects. Most (81%) haul captures were on branchlines actively being retrieved. Future haul mitigation research should therefore focus on reducing bird access to hooks as crew coil branchlines, including methods identified here of shorter leaders and heavier swivels, and other potentially effective methods, including faster branchline coiling and shielding the area where hooks becomes accessible. The proportion of Laysan albatross (Phoebastria immutabilis) captures that occurred during hauling was significantly, 1.6 times, higher than for black-footed albatrosses (P. nigripes), perhaps due to differences in the time of day of foraging and in daytime scavenging competitiveness; mitigating haul bycatch would therefore be a larger benefit to Laysans. Locally, findings identify opportunities to nearly eliminate seabird bycatch. Globally, findings fill a gap in knowledge of methods to mitigate seabird bycatch during pelagic longline hauling.  相似文献   

12.
Spatial and temporal distribution of seabird transiting and foraging at sea is an important consideration for marine conservation planning. Using at‐sea observations of seabirds (n = 317), collected during the breeding season from 2012 to 2016, we built boosted regression tree (BRT) models to identify relationships between numerically dominant seabird species (red‐footed booby, brown noddy, white tern, and wedge‐tailed shearwater), geomorphology, oceanographic variability, and climate oscillation in the Chagos Archipelago. We documented positive relationships between red‐footed booby and wedge‐tailed shearwater abundance with the strength in the Indian Ocean Dipole, as represented by the Dipole Mode Index (6.7% and 23.7% contribution, respectively). The abundance of red‐footed boobies, brown noddies, and white terns declined abruptly with greater distance to island (17.6%, 34.1%, and 41.1% contribution, respectively). We further quantified the effects of proximity to rat‐free and rat‐invaded islands on seabird distribution at sea and identified breaking point distribution thresholds. We detected areas of increased abundance at sea and habitat use‐age under a scenario where rats are eradicated from invaded nearby islands and recolonized by seabirds. Following rat eradication, abundance at sea of red‐footed booby, brown noddy, and white terns increased by 14%, 17%, and 3%, respectively, with no important increase detected for shearwaters. Our results have implication for seabird conservation and island restoration. Climate oscillations may cause shifts in seabird distribution, possibly through changes in regional productivity and prey distribution. Invasive species eradications and subsequent island recolonization can lead to greater access for seabirds to areas at sea, due to increased foraging or transiting through, potentially leading to distribution gains and increased competition. Our approach predicting distribution after successful eradications enables anticipatory threat mitigation in these areas, minimizing competition between colonies and thereby maximizing the risk of success and the conservation impact of eradication programs.  相似文献   

13.
Invasive species are the main threat to island biodiversity; seabirds are particularly vulnerable and are one of the most threatened groups of birds. Gough Island, a UNESCO World Heritage Site in the South Atlantic Ocean, is an Important Bird and Biodiversity Area, and one of the most important seabird colonies globally. Invasive House Mice Mus musculus depredate eggs and chicks of most seabird species on the island, but the extent of their impact has not been quantified. We used field data and bootstrapped normal distributions to estimate breeding success and the number of surviving chicks for 10 seabird species on Gough Island, and compared estimates with those of analogous species from predator‐free islands. We examined the effects of season and nest‐site location on the breeding success of populations on Gough Island, predicting that the breeding success of Gough birds would be lower than that of analogues, particularly among small burrow‐nesting species. We also predicted that winter‐breeding species would exhibit lower breeding success than summer‐breeding species, because mice have fewer alternative food sources in winter; and below‐ground nesters would have lower breeding success than surface nesters, as below‐ground species are smaller so their chicks are easier prey for mice. We did indeed find that seabirds on Gough Island had low breeding success compared with analogues, losing an estimated 1 739 000 (1 467 000–2 116 000) eggs/chicks annually. Seven of the 10 focal species on Gough Island had particularly high chick mortality and may have been subject to intense mouse predation. Below‐ground and winter breeders had lower breeding success than surface‐ and summer‐breeders. MacGillivray's Prion Pachyptila macgillivrayi, Atlantic Petrel Pterodroma incerta and Tristan Albatross Diomedea dabbenena are endemic or near‐endemic to Gough Island and are likely to be driven to extinction if invasive mice are not removed.  相似文献   

14.
Aim We examined patterns of covariation among piscivorous and planktivorous seabirds breeding at St Lazaria Island in order to evaluate their responses to interannual changes in sea surface temperature, a variable that affects marine food webs. In addition, we evaluated seabird population trends for responses to decadal‐scale changes in the marine ecosystem. Location St Lazaria Island, Sitka Sound, Alaska. Methods Established seabird monitoring protocols for the Alaska Maritime National Wildlife Refuge were followed in estimating population trends, the timing of nesting events and the reproductive success of eight species of seabirds between 1994 and 2006. Results  Population increases were noted for storm‐petrels (Oceanodroma furcata and O. leucorhoa), rhinoceros auklets (Cerorhinca monocerata) and glaucous‐winged gulls (Larus glaucescens). We found no population trend for pelagic cormorants (Phalacrocorax pelagicus), but it appeared that populations of common (Uria aalge) and thick‐billed (U. lomvia) murres and of tufted puffins (Fratercula cirrhata) declined. We detected no linear trends in either breeding chronology or reproductive success over the study period for any seabird. All species of piscivorous seabirds apparently responded similarly to environmental cues as there was a positive covariation among species in the timing of nesting. Piscivores tended to nest earlier, and most species had higher rates of reproductive success in years with relatively warm spring sea temperatures. In contrast, planktivorous Leach’s storm‐petrels (O. leucorhoa) tended to nest earlier when spring and summer sea temperatures were relatively cool. Clearly, seabirds at St Lazaria were responding to interannual changes in sea temperatures near the breeding colony, probably as a result of effects on the food webs. Main conclusions Every seabird species we monitored at St Lazaria exhibited significant population trends between 1994 and 2006. For most species there appeared to be a relationship between both the timing of nesting and reproductive rates and spring or summer sea surface temperatures. Responses at both decadal (populations) and interannual (timing and reproductive success) scales make seabirds useful candidates for helping to monitor change in the marine environment.  相似文献   

15.
The impacts of climate change on marine species are often compounded by other stressors that make direct attribution and prediction difficult. Shy albatrosses (Thalassarche cauta) breeding on Albatross Island, Tasmania, show an unusually restricted foraging range, allowing easier discrimination between the influence of non-climate stressors (fisheries bycatch) and environmental variation. Local environmental conditions (rainfall, air temperature, and sea-surface height, an indicator of upwelling) during the vulnerable chick-rearing stage, have been correlated with breeding success of shy albatrosses. We use an age-, stage- and sex-structured population model to explore potential relationships between local environmental factors and albatross breeding success while accounting for fisheries bycatch by trawl and longline fisheries. The model uses time-series of observed breeding population counts, breeding success, adult and juvenile survival rates and a bycatch mortality observation for trawl fishing to estimate fisheries catchability, environmental influence, natural mortality rate, density dependence, and productivity. Observed at-sea distributions for adult and juvenile birds were coupled with reported fishing effort to estimate vulnerability to incidental bycatch. The inclusion of rainfall, temperature and sea-surface height as explanatory variables for annual chick mortality rate was statistically significant. Global climate models predict little change in future local average rainfall, however, increases are forecast in both temperatures and upwelling, which are predicted to have detrimental and beneficial effects, respectively, on breeding success. The model shows that mitigation of at least 50% of present bycatch is required to offset losses due to future temperature changes, even if upwelling increases substantially. Our results highlight the benefits of using an integrated modeling approach, which uses available demographic as well as environmental data within a single estimation framework, to provide future predictions. Such predictions inform the development of management options in the face of climate change.  相似文献   

16.
The effects of temporal, spatial, environmental and operational effects on seabird incidental mortality in the legal Patagonian toothfish longline fishery operating, between 2003 and 2006, in French exclusive economic zones of Crozet and Kerguelen Islands were analysed. During the study period, the mean bycatch rate varied from 0.05 to 0.12 birds per 1,000 hooks. Two species were concerned by incidental mortality: white-chinned petrels (88%) and grey petrels (11.5%). Males of white-chinned petrel seemed more at a risk than females. Logbooks data tended to underreport mortality when compared with dedicated fishery observers. The results indicate that temporal (season or phenology) and spatial (area) factors reflecting mortality risk for seabirds played the most significant role in the incidental mortality of the two species. Operational (integrated weight mainline, number of scaring lines and number of hooks hauled) and environmental factors (wind/vessel angle, moon brightness) were also influential, although less significantly, in increasing this mortality risk. Our two steps analyses by separately modelling the probability of presence and the abundance given presence suggest that the decrease in seabird bycatch over the period was mainly due to an important decrease in probability (occurrence) of mortality.  相似文献   

17.
The Salvin’s albatross, Thalassarche salvini, is a mollymawk that regularly visit the coasts of Chile and Peru along the Humboldt Current, occurring mainly as non-breeders. However, information on presence and distribution of this species in southern Chile (42°–57°S) is particularly scarce and limited to only a few observations, principally obtained in the inner fjords and channels, there is no information for areas more oceanic (continental shelf and slope). New records of Salvin’s albatross were obtained in the development of a project assessment of the interaction between commercial pelagic fisheries and marine mammals and seabirds. The observation effort (census during hauling operations) covered all seasons approximately 1 year. These records provide new information on the presence and abundance of this albatross for a wide latitudinal range offshore in the southern Chile that is also an area of operation of fishing fleets (e.g. Patagonian toothfish fishery). Our results suggest that probably this species flies around the southern cone of South America via Cape Horn–Drake Passage to get to the Patagonian Continental Shelf in the South Atlantic Ocean, which probably could be occurring during the austral spring and summer.  相似文献   

18.
In the Mediterranean, the survival of endemic long-lived seabirds despite the long-standing introduction of one of the most damaging alien predator, the ship rat (Rattus rattus), on most islands constitutes an amazing conservation paradox. A database gathering information on approximately 300 Western Mediterranean islands was analyzed through generalized linear models to identify the factors likely to influence ship rat presence and to account for how ship rat presence and island characteristics may have driven the presence and abundance of seabirds. Our review showed that few Mediterranean islands remain rat-free. At the regional scale, rat presence was only a limiting factor in the abundance of the smallest seabird, the storm petrel (Hydrobates pelagicus), while the distribution and abundance of the three shearwaters were more influenced by island characteristics. We hypothesized that the long-term persistence of these seabirds may have been facilitated by the various biogeographical contexts of Mediterranean islands, likely to provide intra-island refuges.  相似文献   

19.
Abstract

Many albatross populations are declining and a major cause is believed to be incidental mortality from fishing. We investigated the effect of fishing on southern Buller's albatross Thalassarche bulleri bulleri, using a new approach to seabird population modelling that allows estimation of demographic parameters from multiple data types. Three types of data were used: a 60-year set of mark–recapture observations, four censuses of the breeding population, and estimates of fishing effort and bycatch. The fisheries risk to the viability of this population over the last 60 years appears to have been small, since the adult population is estimated to have increased about five-fold over that time. There is some cause for concern in recent changes (population growth has slowed, and perhaps reversed, and adult survival rates are falling). The most common age at first breeding was 12 years, and about 80% of adults breed each year. Annual survival was estimated to be 0.91 for juveniles, and varied between this value and 1 for adults. Though this population is not in immediate danger from fishing, there is a need for continued monitoring to see whether the recent fall in survival rates persists and causes a decline in abundance. Our analysis showed that when, as is common, mark–recapture data do not provide good estimates of all demographic rates, the assessment of seabird population trends can be improved by the use of other types of data, particularly abundance.  相似文献   

20.
Breeding population sizes of penguins, fulmarine etrels and skuas were estimated for the first time on a major part of the Terre Adélie coast and a section of the King George V Land coast during the 1997/1998 austral summer. We counted 106,400 breeding pairs and 12,400 Adélie penguin (Pygoscelis adeliae) chicks by direct counts, and 6960 breeding pairs from aerial photographs. Minimum breeding populations for other species are (direct counts): Antarctic fulmar (Fulmarus glacialoides) 6861 pairs, Antarctic petrel (Thalassoica antarctica) 4574 pairs, cape petrel (Daption capense) 194 pairs, snow petrel (Pagodroma nivea) 767 pairs, south polar skua (Catharacta maccormicki) 129 pairs and subantarctic skua (Catharacta lonnbergi) 1 breeding bird. We discovered 29 new seabird breeding locations in King George V Land, including 6 Antarctic fulmar, 4 Antarctic petrel, 3 cape petrel, 6 snow petrel and 10 south polar skua colonies. The largest colonies found contained up to 4205 breeding pairs of Antarctic fulmars. Population sizes of all species obtained in this study are higher than those found during previous partial surveys. Although these differences are in great part due to differences in survey methods, they also reflect real population changes. Our minimum population sizes obtained for a small portion of the Antarctic coast (<2%) suggest an underestimation of the estimated world breeding populations for several species of Antarctic seabirds. Accepted: 28 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号