首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High glycemic index diet can induce multiple diseases. Many research indicated that oxidative stress played important role in many pathological conditions. However, the impact of gene expression and dietary habit on oxidation process are still less clear. We used high-glucose diet to feed C57BL/6J mice for 4 weeks, measured the redox status, physiological and biochemical changes related to diabetes and consequence of metabolic syndrome (nonalcoholic fatty liver, cardiovascular disease), and detected the expressions of 14,446 genes in liver of C57BL/6J mice with DNA microarray. The results showed high-glucose diet induced elevated fatty acid accumulation in liver, insulin resistance index and higher weight in C57BL/6J mice, which indicated high-glucose diet caused to the initiation and development of diabetes and consequence of metabolic syndrome. The results also showed high-glucose diet induced oxidative stress in liver of C57BL/6J mice, which might the cause of initiation and development of diabetes and consequence of metabolic syndrome. Microarray analysis found expressions of genes related to thiol redox, fatty acid oxidation in peroxisome and cytochrome P450 were significantly changed, indicating system in which non-enzyme antioxidant capacity was impaired and sources from which reactive oxygen species (ROS) generated, which revealed the molecular mechanism of oxidative stress induced by high-glucose diet. We validated our microarray findings by conducting real-time RT–PCR assays on selected genes.  相似文献   

2.
In a comparative study of A/J (Gpi-1a) and C57BL/6J (Gpi-1b) mice, we observed that erythrocytes of A/J mice exhibited significantly higher glucose phosphate isomerase (GPI) activity compared to erythrocytes of C57BL/6J mice on a per cell, per gram of protein, or per gram of hemoglobin basis. Higher GPI activity per cell was detected for peripheral blood lymphocytes of A/J compared to C57BL/6J mice. (A/J X C57BL/6J)F1 mice expressed erythrocyte and peripheral blood lymphocyte GPI activities intermediate to those of the parental mouse strains. The GPI activities of spleen lymphocytes from A/J, C57BL/6J, or (A/J X C57BL/6J)F1 mice were not significantly different from each other. The higher activity in the A/J mice could be due to GPI of a higher catalytic rate or to the presence of more GPI molecules. In order to distinguish these two possibilities, GPI was purified to homogeneity from both strains of mice. The specific activities (activity per milligram of protein) of the purified enzymes from the two strains were found to be similar, indicating that GPI from the A/J strain was not a more active enzyme. Antibody to the purified enzymes was prepared and used in an enzyme-linked immunosorbent assay (ELISA) to compare the relative amounts of enzyme molecules in cells of A/J and C57BL/6J mice. Results of the ELISA tests on peripheral blood lymphocytes indicated that A/J mice contain more molecules of GPI per cell and, therefore, have a higher GPI activity than C57BL/6J mice.  相似文献   

3.
Effects of two different periods of fasting were studied on glucose tolerance and insulin response to glucose in genetically diabetic KK and nondiabetic C57BL/6J mice. Blood sugar levels of the KK mice did not differ markedly from those of the C57BL/6J mice at the fed state or after 8 h fasting. They were, however, significantly higher in the KK mice when fasted for 18 h. The serum IRI levels, which were at least twice as high in the KK mice, decreased more markedly after 18 h fasting. The KK mice showed impaired glucose tolerance after 8 h fasting, which became more pronounced after 18 h fasting. The insulin response to glucose in the KK mice was not altered after an 8-hour fast; it was, however, diminished greatly after an 18-hour fast. These data suggest that prolonged fasting is necessary to detect the diabetic traits in the KK mice. The C57BL/6J mice showed neither impaired glucose tolerance nor diminished insulin response to glucose at both periods of fasting. Studies with the F1 hybrids (KK male X C57BL/6J female), which carry half of the diabetic genes, suggest that the mode of inheritance of diabetes in the KK mice might be polygenic.  相似文献   

4.
Alcohol dehydrogenase class IV (ADH4) participates in retinol metabolism and is expressed primarily in ocular, digestive, and reproductive tissues of the mouse. A naturally occurring genetic variant in C57BL/6J mice results in a faster migrating ADH4 enzyme during electrophoresis when compared to other non-C57BJ/6J strains. The C57BL/6 ADH4 gene coding sequence is found to have two nucleotide substitutions when compared to the gene from C3HeB/FeJ mice. The substitution in exon 5 encodes Arg120 instead of Cys120 in C57BL/6 ADH4 polypeptide; that would account for the protein electrophoretic phenotype. Arg120 is present in all published mammalian ADH4 sequences but is only in a limited number of mouse strains. The Arg120 residue is part of the outer loop of the substrate binding pocket and appears to have an effect on the affinity of the enzyme for several substrates.  相似文献   

5.
6.
Obese, diabetic C57BL/Ks db/db mice that lack the long-form leptin receptor exhibit no decrease in body weight or food intake when treated with leptin. Here we compared responses to leptin in two strains of db/db mice: C57BL/6J mice that are hyperglycemic and hyperinsulinemic and C57BL/Ks that are hyperglycemic and normo- or hypoinsulinemic. Chronic intraperitoneal infusion of 10 microgram leptin/day partially reversed hyperglycemia in C57BL/6J male mice but exaggerated the diabetic state of female mice. Bolus intraperitoneal injections of 40 microgram leptin/day did not effect glucose in either strain of male db/db mice, whereas chronic intraperitoneal infusion of 20 microgram leptin/day significantly reduced fasting blood glucose in male mice from both strains, especially C57BL/6J mice. Food intake, body weight, rectal temperature, and body fat did not change. Chronic intraperitoneal infusion of 10 microgram leptin/day significantly reduced body fat in lean db/+ C57BL/6J but not in C57BL/Ks mice. Thus peripherally administered leptin is active in mice that have only short-form leptin receptors, and the response is dependent on the method of leptin administration and the background strain.  相似文献   

7.
The studies described here provide information about the genetic and morphological bases for the significant differences in testis size among three closely related C57BL mouse substrains: C57BL/6J, C57BL/6ByJ, and C57BL/10J. C57BL/6J mice have normal-size testes while the other two substrains have small-size testes. Genes controlling testis size are postulated to be among the estimated forty genes that differ between the C57BL/6J and C57BL/6ByJ substrains. The number of genes involved in testis size regulation was examined using recombinant inbred mouse strains. An investigation of the role of Y chromosome genes was performed by completing molecular analyses with a mouse Y chromosome-specific probe. Sertoli and germ cell counts provided insight into the morphological basis for the different testis sizes. The experimental results suggest that there are at least two autosomal testis-size genes and that they control testis size by regulating the number of Sertoli cells.  相似文献   

8.
B Tiplady  J J Killian  P Mandel 《Life sciences》1976,18(10):1065-1070
Tyrosine hydroxylase has been measured in brains of three inbred strains of mice ; DBA/2J ; C57 BL/6J and BALB/cJ. Compared to C57 BL/6J, DBA/2J showed a higher enzyme activity in hypothalamus, a lower activity in pons-medulla, and no significant changes in cortex or striatum. BALB/cJ showed a higher level of activity in all regions studied (striatum, pons-medulla and hypothalamus). No effect of isolation or of social dominance position were noted on the enzyme activities in C57 BL/6J or BALB/cJ mice.  相似文献   

9.
10.
Inbred mouse strains exhibit differences in susceptibility to influenza A infections. However, the molecular mechanisms underlying these differences are unknown. Therefore, we infected a highly susceptible mouse strain (DBA/2J) and a resistant strain (C57BL/6J) with influenza A H1N1 (PR8) and performed genome-wide expression analysis. We found genes expressed in lung epithelium that were specifically down-regulated in DBA/2J mice, whereas a cluster of genes on chromosome 3 was only down-regulated in C57BL/6J. In both mouse strains, chemokines, cytokines and interferon-response genes were up-regulated, indicating that the main innate immune defense pathways were activated. However, many immune response genes were up-regulated in DBA/2J much stronger than in C57BL/6J, and several immune response genes were exclusively regulated in DBA/2J. Thus, susceptible DBA/2J mice showed a hyper-inflammatory response. This response is similar to infections with highly pathogenic influenza virus and may serve as a paradigm for a hyper-inflammatory host response to influenza A virus.  相似文献   

11.
12.
Plasma from BALB/c mice bled 90 minutes after allogeneic lymphocyte injection significantly rises glucose induced insulin secretion. This rise is observed in pancreas either from non-treated or from allogeneized mice. This rise is time and dose-dependent. An 1/40 dilution is enough to bring about a significant increase on insulin secretion. This effect is seen when mice are bled between 60 and 180 minutes after injection with a maximum effect at 90-120 minutes. Plasma from BALB/c mice injected with C57BL/6 J lymphocytes rises insulin secretion from BALB/c, C57BL/6 J, C3h and C57BL/KsJ mice pancreas. Plasma from streptozotocin diabetic BALB/c mice and from genetically diabetic C57BL/KsJ mdb-mdb mice injected with allogeneic lymphocytes stimulates glucose induced insulin secretion but to a lesser extent than plasma from normal non-diabetic mice does.  相似文献   

13.
C57BL mice exposed to 14 Gy of whole-thorax irradiation develop significant histologic lung fibrosis within 52 weeks, whereas CBA and C3H mice do not exhibit substantial fibrosis during this time. The purpose of the present study was to determine whether this strain-dependent difference in radiation histopathology is associated with genetic differences in pulmonary endothelial metabolic activity or in endothelial radioresponsiveness. C57BL/6J, C57BL/10J, CBA/J, and C3H/HeJ mice were sacrificed 12 weeks after exposure to 0 or 14 Gy of 300-kV X rays to the whole thorax. Lung angiotensin converting enzyme (ACE) activity and plasminogen activator (PLA) activity were measured as indices of pulmonary endothelial function; and lung hydroxyproline (HP) content served as an index of pulmonary fibrosis. Lung ACE and PLA activities in sham-irradiated C57BL/6J and CB57BL/10J mice were only half as high as those in sham-irradiated CBA/J and C3H/HeJ mice. Exposure to 14 Gy of X rays produced a slight but nonsignificant reduction in lung ACE and PLA activity in the C57BL strains, and a significant reduction in the CBA/J and C3H/HeJ mice. Even after 14 Gy, however, lung ACE and PLA activities in CBA/J and C3H/HeJ mice were higher than those in sham-irradiated C57BL/6J and C57BL/10J mice. Lung HP content in all four strains increased significantly after irradiation, but this increase was accompanied by an increase in lung wet weight. As a result, HP concentration (per milligram wet weight) remained constant or increased slightly in both C57BL strains and actually decreased in the CBA/J and C3H/HeJ mice. These data demonstrate significant genetic differences in both intrinsic pulmonary endothelial enzyme activity and endothelial radioresponsiveness among the four strains of mice. Specifically, strains prone to radiation-induced pulmonary fibrosis (C57BL/6J, C57BL/10J) exhibit only half as much lung ACE and PLA activity as do strains resistant to fibrosis (CBA and C3H).  相似文献   

14.
HIV protease inhibitors acutely block glucose transporters (GLUTs) in vitro, and this may contribute to altered glucose homeostasis in vivo. However, several GLUT-independent mechanisms have been postulated. To determine the contribution of GLUT blockade to protease inhibitor-mediated glucose dysregulation, the effects of ritonavir were investigated in mice lacking the insulin-sensitive glucose transporter GLUT4 (G4KO). G4KO and control C57BL/6J mice were administered ritonavir or vehicle at the start of an intraperitoneal glucose tolerance test and during hyperinsulinemic-euglycemic clamps. G4KO mice exhibited elevated fasting blood glucose compared with C57BL/6J mice. Ritonavir impaired glucose tolerance in control mice but did not exacerbate glucose intolerance in G4KO mice. Similarly, ritonavir reduced peripheral insulin sensitivity in control mice but not in G4KO mice. Serum insulin levels were reduced in vivo in ritonavir-treated mice. Ritonavir reduced serum leptin levels in C57BL/6J mice but had no effect on serum adiponectin. No change in these adipokines was observed following ritonavir treatment of G4KO mice. These data confirm that a primary effect of ritonavir on peripheral glucose disposal is mediated through direct inhibition of GLUT4 activity in vivo. The ability of GLUT4 blockade to contribute to derangements in the other molecular pathways that influence insulin sensitivity remains to be determined.  相似文献   

15.
Septic shock, which is a major complication observed after trauma and other human diseases, is likely the product of a prolonged and poorly controlled systemic inflammatory response. Symptoms of sepsis can be partially reproduced by injection of bacterial LPS in mice. Differences in mortality between C57BL/6J(high) and A/J(low) mice after LPS injection have been previously observed and correlated with differences in the inflammatory response between these two inbred strains. In the present study, we have mapped four loci responsible for differences in levels of LPS-induced IL-10, named modifier of IL-10, between the two strains. A locus within mouse chromosome 8 was confirmed using chromosome 8 consomic mice. This locus was further reduced in size by haplotype analysis and evaluated by the presence of potential candidate genes. The macrophage scavenger receptor 1 (Msr1) within this locus emerged as a candidate gene based on differences at the expression and structural levels between C57BL/6J and A/J mice. In comparison with wild-type (C57BL/6J) mice, Msr1 knockout mice displayed reduced levels of LPS-induced IL-10, but not of TNF-alpha or IL-6, confirming a specific role for this gene in the regulation of IL-10. These results suggest that Msr1 is involved in the regulation of the anti-inflammatory process, thus offering a new perspective on the molecular mechanisms involved in endotoxemia and sepsis.  相似文献   

16.
Two electrophoretic variants of phosphoglucose isomerase (PGI) were purified from whole body extracts of DBA/2J and C57BL/6J mice by a substrate-affinity elution from an 8-(6-aminohexyl) amino-ATP-Sepharose column followed by preparative isoelectric focusing. Both PGI variants were shown to be dimers of the same molecular weight, sedimentation coefficient, and K m for fructose-6-phosphate. The isoelectric points were found to be 8.4 and 8.7 for variants from DBA/2J and C57BL/6J mice, respectively. Differential thermal stability was observed for the two variants in 0.1 m tris-HCl buffer, pH 8.0, at 54 C; the half-lives of the purified PGI from DBA/2J and C57BL/6J mice were shown to be 3.4 and 1.8 min, respectively, under those conditions. Similar differences were observed for the enzyme variants in the crude homogenates. Antisera against PGI from DBA/2J mice were raised in rabbits. The variants from DBA/2J and C57BL/6J mice showed no significant differences in their respective inactivation curves by the antisera. Results of amino acid composition analyses and peptide mappings of the two PGI variants indicate that the genetic variation of this enzyme might result from a single charged amino acid substitution.D. J. C. is a National Institutes of Health Visiting Fellow.  相似文献   

17.
Interindividual and interstrain variations in cholesterol absorption efficiency occur in humans and animals. We investigated physiological biliary and small intestinal factors that might determine variations in cholesterol absorption efficiency among inbred mouse strains. We found that there were significant differences in cholesterol absorption efficiency measured by plasma, fecal, and lymphatic methods: <25% in AKR/J, C3H/J, and A/J strains; 25-30% in SJL/J, DBA/2J, BALB/cJ, SWR/J, and SM/J strains; and 31-40% in C57L/J, C57BL/6J, FVB/J, and 129/SvJ strains. In (AKRxC57L)F1 mice, the cholesterol absorption efficiency (31 +/- 6%) mimicked that of the C57L parent (37 +/- 5%) and was significantly higher than in AKR mice (24 +/- 4%). Although biliary bile salt compositions and small intestinal transit times were similar, C57L mice displayed significantly greater bile salt secretion rates and pool sizes than AKR mice. In examining lymphatic cholesterol transport in the setting of a chronic biliary fistula, C57L mice displayed significantly higher cholesterol absorption rates compared with AKR mice. Because biliary and intestinal transit factors were accounted for, we conclude that genetic variations at the enterocyte level determine differences in murine cholesterol absorption efficiency, with high cholesterol absorption likely to be a dominant trait. This study provides baseline information for identifying candidate genes that regulate intestinal cholesterol absorption at the cellular level.  相似文献   

18.
A 9-kb repetitive DNA fragment (70-38) located near the centromere of the mouse X chromosome is amplified and translocated to an autosome in different inbred strains of mice. In situ hybridization and hybrid cell studies showed that probe 70-38 is located only on the X chromosome in mouse strains A/J, AKR/J, BALB/cJ, CBA/J, C3H/HeJ, C57BL/6J, DBA/2J and SWR/J. However, in four other mouse strains the DNA sequence is found near the centromere of an autosome in addition to the X chromosome. This autosome differs among the mouse strains (chromosome 11 in C57BL/10J or ScSn, chromosome 13 in NZB/B1NJ and chromosome 17 in SJL/J and PO). In those strains where the repeated sequence is located on an autosome, it has been amplified to about 100 copies. Restriction enzyme digestion patterns suggest a common structure for 70-38 sequences in the different strains. The changes in copy number, restriction enzyme digestion patterns, and chromosomal location of 70-38 reflect a rapid genomic evolution inbred mouse strains.  相似文献   

19.
Analysis of gene expression in the wound repair/regeneration process   总被引:5,自引:0,他引:5  
Wound repair/regeneration is a complex process consisting of three stages: inflammation, tissue regrowth, and remodeling, which together involve the action of hundreds of genes. In order to i) identify and analyze the genes that are expressed at the inflammatory stage of repair (i.e., 24 h after injury) and ii) evaluate the molecular basis of fast-wound repair/regeneration in adult mammals, we examined the expression of 8734 sequence-verified genes in response to ear punch in a fast wound-repair/regeneration strain, MRL/MpJ-Faslpr mice, and a slow-wound-repair strain, C57BL/6J mice. Many differentially expressed genes can be assigned to wound-repairing pathways known to be active during the inflammatory phase, whereas others are involved in pathways not previously associated with wound repair. Many genes of unknown function (ESTs) exhibited a more than twofold increase in MRL/MpJ-Faslpr or C57BL/6J mice, suggesting that current understanding of the molecular events at the inflammatory stage of repair is still limited. A comparison of the differential expression profiles between MRL/MpJ-Faslpr and C57BL/6J mice suggests that fast-wound-repair in MRL/MpJ-Faslpr mice is mediated by a metabolic shift toward a low inflammatory response and an enhanced tissue repair. Received: 16 June 2000 / Accepted: 31 August 2000  相似文献   

20.
The inbred mouse strain C57BL/6 is commonly used for the generation of transgenic mouse and is a well established strain in bone research. Different vendors supply different substrains of C57BL/6J as wild‐type animals when genetic drift did not incur any noticeable phenotype. However, we sporadically observed drastic differences in the bone phenotype of “WT” C57BL/6J mice originating from different labs and speculated that these variations are attributable, at least in part, to the variation between C57BL/6J substrains, which is often overlooked. C57BL/6J‐OlaHsd is a commonly used substrain that despite a well defined deletion in the alpha‐synuclein (Snca) and multimerin‐1 (Mmrn1) genes, was reported to display no obvious phenotype and is used as WT control. Here, we compared the bone phenotype of C57BL/6J‐OlaHsd (6J‐OLA) to C57BL/6J‐RccHsd (6J‐RCC) and to the original C57BL/6J (6J‐JAX). Using μCT analysis, we found that 6J‐OLA mice display a significantly lower trabecular bone mass compared to 6J‐RCC and 6J‐JAX. PCR analysis revealed that both the Snca and Mmrn1 genes are expressed in bone tissue of 6J‐RCC animals but not of 6J‐OLA mutants, suggesting either one or both genes play a role in bone metabolism. In vitro analysis demonstrated increase in osteoclasts number and decreased osteoblast mineralization in cells derived from 6J‐OLA compared with 6J‐RCC. Our data may shed light on unexplained differences in basal bone measurements between different research centers and reiterate the importance of specifying the exact substrain type. In addition, our findings describe the physiological role for Mmrn1 and/or Snca in bone remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号