首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the genetic control of cytosolic fructose-1,6-bisphosphatase (cytFBPase) activity, and the relationships between sucrose synthesis capacity and photosynthesis, growth, flowering and whole-plant carbon partitioning in Flaveria linearis Lag. F1; F2, and selfed lines generated from plants with low or high cytFBPase activity were used. CytFBPase activity was controlled by one gene and inherited co-dominantly, giving three classes of activity (low, intermediate and high). Reversed O2 sensitivity of photosynthesis, which indicates an end-product limitation on photosynthesis, was controlled by one gene and co-segregated with low cytFBPase activity. A low activity of cytFBPase decreased the growth rate. A recessive day-neutral flowering trait in Flaveria linearis did not co-segregate with cytFBPase activity. Plants with low cytFBPase activity had an increased shoot-to-root ratio, and flowering caused an additional shift in carbon partitioning to shoots only in plants with low cytFBPase activity. These data indicate that altering sucrose synthesis can affect photosynthesis and plant growth and development.  相似文献   

2.
Wide variation exists in the growth responses of C3 plants to elevated CO2 levels. To investigate the role of photosynthetic feedback in this phenomenon, photosynthetic parameters and growth were measured for lines of Flaveria linearis with low, intermediate or high cytosolic fructose-1,6-bisphosphatase (cytFBPase) activity when grown at either 35 or 65 Pa CO2. The effects of pot size on the responses of these lines to elevated CO2 were also examined. Photosynthesis and growth of plants with low cytFBPase activity were less responsive to elevated CO2, and these plants had a reduced maximum potential for photosynthesis and growth. Plants with intermediate cytFBPase activity also showed a lower relative growth enhancement when grown at 65 Pa CO2. There was a significant pot size effect on photosynthesis and growth for line 85-1 (high cytFBPase). This effect was greatest for line 85-1 when grown at 35 Pa CO2, since these plants showed the greatest downward acclimation of photosynthesis when grown in small pots. There was a minimal pot size effect for line 84-9 (low cytFBPase), and this could be partly attributed to the reduced CO2 sensitivity of this line. It is proposed that the capacity for sucrose synthesis in C3, plants is partly responsible for their wide variation in CO2 responsiveness.  相似文献   

3.
Trevanion SJ 《Planta》2002,215(4):653-665
Fructose 2,6-bisphosphate (F26BP) is a competitive inhibitor of the cytosolic fructose 1,6-bisphosphatase (cytFBPase, EC 3.1.3.11). In spinach (Spinacia oleracea L.) leaves it is a significant component of the complex regulatory network that co-ordinates rates of photosynthesis, sucrose synthesis and starch synthesis. However the role of F26BP has only been studied in plants that predominantly store starch in their leaves and its role in other species is not clear. This paper examines the significance of F26BP in the regulation of photosynthetic carbon metabolism in the intact leaves of wheat (Triticum aestivum L.), a plant that accumulates predominantly sucrose. The approach taken was to vary rates of photosynthesis and then correlate measurements of F26BP and a range of other metabolites with rates of carbohydrate synthesis obtained from (14)CO(2)-feeding experiments performed under physiological conditions. It was found that: (i) Amounts of 3-phosphoglycerate and fructose-6-phosphate are correlated with the amount of F26BP. (ii) F26BP is involved in inhibiting cytFBPase at low light and low CO(2), but other factors, for example triose-phosphate, must also be involved. (iii) Amounts of both F26BP and substrate are involved in co-ordinating rates of photosynthesis and sucrose synthesis, but the relative importance of these depends on the conditions. (iv) Amounts of F26BP do not correlate with the partitioning of fixed carbon between sucrose and starch. Together these data suggest that the amount of F26BP in wheat is regulated by mechanisms similar to those in spinach, and that the metabolite is one of the factors involved in co-ordinating sucrose synthesis and photosynthesis. However F26BP does not appear to be involved in regulating the partitioning of fixed carbon between sucrose and starch in wheat under the experimental conditions examined.  相似文献   

4.
The balance between carbon assimilation, storage and utilisation during photosynthesis is dependent on partitioning of photoassimilate between starch and sucrose, and varies in response to changes in the environment. However, the extent to which the capacity to modulate carbon partitioning rapidly through short‐term allosteric regulation may contribute to plant performance is unknown. Here we examine the physiological role of fructose 2,6‐bisphosphate (Fru‐2,6‐P2) during photosynthesis, growth and reproduction in Arabidopsis thaliana (L.). In leaves this signal metabolite contributes to coordination of carbon assimilation and partitioning during photosynthesis by allosterically modulating the activity of cytosolic fructose‐1,6‐bisphosphatase. Three independent T‐DNA insertional mutant lines deficient in 6‐phosphofructo‐2‐kinase/fructose‐2,6‐bisphosphatase (F2KP), the bifunctional enzyme responsible for both the synthesis and degradation of Fru‐2,6‐P2, lack Fru‐2,6‐P2. These plants have normal steady‐state rates of photosynthesis, but exhibit increased partitioning of photoassimilate into sucrose and have delayed photosynthetic induction kinetics. The F2KP‐deficient plants grow normally in constant environments, but show reduced growth and seed yields relative to wildtype plants in fluctuating light and/or temperature. We conclude that Fru‐2,6‐P2 is required for optimum regulation of photosynthetic carbon metabolism under variable growth conditions. These analyses suggest that the capacity of Fru‐2,6‐P2 to modulate partitioning of photoassimilate is an important determinant of growth and fitness in natural environments.  相似文献   

5.
We investigated the individual effect of null mutations of each of the four sucrose‐phosphate synthase (SPS) genes in Arabidopsis (SPSA1, SPSA2, SPSB and SPSC) on photosynthesis and carbon partitioning. Null mutants spsa1 and spsc led to decreases in maximum SPS activity in leaves by 80 and 13%, respectively, whereas null mutants spsa2 and spsb had no significant effect. Consistently, isoform‐specific antibodies detected only the SPSA1 and SPSC proteins in leaf extracts. Leaf photosynthesis at ambient [CO2] was not different among the genotypes but was 20% lower in spsa1 mutants when measured under saturating [CO2] levels. Carbon partitioning at ambient [CO2] was altered only in the spsa1 null mutant. Cold treatment of plants (4 °C for 96 h) increased leaf soluble sugars and starch and increased the leaf content of SPSA1 and SPSC proteins twofold to threefold, and of the four null mutants, only spsa1 reduced leaf non‐structural carbohydrate accumulation in response to cold treatment. It is concluded that SPSA1 plays a major role in photosynthetic sucrose synthesis in Arabidopsis leaves, and decreases in leaf SPS activity lead to increased starch synthesis and starch turnover and decreased Ribulose 1,5‐bisphosphate regeneration‐limited photosynthesis but not ribulose 1·5‐bisphosphate carboxylase/oxygenase (Rubisco)‐limited photosynthesis, indicating a limitation of triose‐phosphate utilization (TPU).  相似文献   

6.
Prior data indicated that enhanced availability of sucrose, a major product of photosynthesis in source leaves and the carbon source for secondary wall cellulose synthesis in fiber sinks, might improve fiber quality under abiotic stress conditions. To test this hypothesis, a family of transgenic cotton plants (Gossypium hirsutum cv. Coker 312 elite) was produced that over-expressed spinach sucrose-phosphate synthase (SPS) because of its role in regulation of sucrose synthesis in photosynthetic and heterotrophic tissues. A family of 12 independent transgenic lines was characterized in terms of foreign gene insertion, expression of spinach SPS, production of spinach SPS protein, and development of enhanced extractable V max SPS activity in leaf and fiber. Lines with the highest V max SPS activity were further characterized in terms of carbon partitioning and fiber quality compared to wild-type and transgenic null controls. Leaves of transgenic SPS over-expressing lines showed higher sucrose:starch ratio and partitioning of 14C to sucrose in preference to starch. In two growth chamber experiments with cool nights, ambient CO2 concentration, and limited light below the canopy, the transgenic line with the highest SPS activity in leaf and fiber had higher fiber micronaire and maturity ratio associated with greater thickness of the cellulosic secondary wall.  相似文献   

7.
Oxygen sensitivity and partitioning of carbon was measured in a mutant line of Flaveria linearis that lacks most of the cytosolic fructose-1,6-bisphosphatase found in wild-type lines. Photosynthesis of leaves of the mutant line was nearly insensitive to O2, as found before. The mutant plants partitioned 2.5 times less carbon into sucrose than the wild type in a pulse chase experiment, with the extra carbon going mainly to starch but also to amino acids. From 10 to 50 min postlabeling, radioactivity chased out of the amino acid fraction to starch in both lines. In the middle of the light period, starch grains were larger in the mutant than in the wild type and covered 30% of the chloroplast area as seen with an electron microscope. Starch grains were found in both mesophyll and bundle sheath chloroplasts in both lines in these C3-C4 intermediate plants. At the end of the dark period, the starch levels were considerably reduced from what they were in the middle of the light in both lines. The concentration of sucrose was higher in the mutant line despite the lack of cytosolic fructose-1,6-bisphosphatase. The amino acid fraction accounted for about 30% of all label following a 10-min chase period. In the mutant line, most of the label was in the glycine + serine fraction, with 10% in the alanine fraction. In wild-type leaves, 35% of the label in amino acids was in alanine. These results indicate that this mutant survives the reduced cytosolic fructose-1,6-bisphosphatase activity by partitioning more carbon to starch and less to sucrose during the day and remobilizing the excess starch at night. However, these results raise two other questions about this mutant. First, why is the sucrose concentration high in a plant that partitions less carbon to sucrose, and second, why is alanine heavily labeled in the wild-type plants but not in the mutant plants?  相似文献   

8.
The mutant plant of Flaveria linearis characterized by Brown et al. (Plant Physiol. 81: 212-215) was studied to determine the cause of the reduced sensitivity to O2. Analysis of CO2 assimilation metabolites of freeze clamped leaves revealed that both 3-phosphoglycerate and ribulose 1,5-bisphosphate were high in the mutant plant relative to F. linearis with normal O2 sensitivity. The kcat of ribulose-1,5-bisphosphate carboxylase (RuBPCase) was equal in all plant material tested (range 18-22 s−1) indicating that no tight binding inhibitor was present. The degree of RuBPCase carbamylation was reduced in the mutant plant relative to the wild-type plant. Since 3-phosphoglycerate was high in the mutant plant and photosynthesis did not exhibit properties associated with RuBPCase limitations, we believe that the decarbamylation of RuBPCase was a consequence of another lesion in photosynthesis. Fructose 1,6-bisphosphate and its precursors, such as the triose phosphates, were in high concentration in the mutant plant relative to the wild type. The concentrations of the product of the fructose 1,6-bisphosphatase reaction, fructose 6-phosphate, and its isomer, glucose 6-phosphate, were the same in both plants. We found that the mutant plant had up to 75% less cytosolic fructose 1,6-bisphosphatase activity than the wild type but comparable levels of stromal fructose 1,6-bisphosphatase. We conclude that the reduced fructose-1,6-bisphosphatase activity restricts the mutant plant's capacity for sucrose synthesis and this leads to reduced or reversed O2 sensitivity.  相似文献   

9.
To further elucidate the mechanisms underlying carbon-partitioning in plants, we established an experimental system by generating transgenicArabidopsis lines that overexpress both the fructose 6-phosphate, 2-kinase (F6P,2-K) and the fructose 2,6-bisphosphatase (F26BPase) domains. We also produced knockout transgenic plants for these domains via RNAi and T-DNA tagging. In F6P,2-K overexpressing transgenics, F6P,2-K activity increased slightly and Fru-2,6-P2 levels were elevated by 80%, compared with the wild type (WT). F26BPase activity was similar between the WT and transgenic plants. However, when that domain was overexpressed, F26BPase activity was increased by 70% compared with the WT, whereas F6P,2-K activity was reduced to 85% of the WT level. In knockout and RNAi mutant lines that showed reduced F6P,2-K and F26BPase activities, levels of Fru-2,6-P2 were only between 3 to 7% of those for the WT. In F6P,2-K overexpressing transgenic lines, the levels of starch, hexose, and triose phosphates slightly increased, while sucrose content was marginally reduced. In F26BPase overexpressing plants, however, the levels of soluble sugars and hexose phosphates were slightly increased, but starch and triose phosphate contents declined. Furthermore, compared with the WT, the levels of soluble sugars rose while starch and hexose phosphate quantities decreased in 2-kinase/fructose-2,6-bisphophatase knockout mutants. Therefore, our data reaffirms that Fru-2,6-P2 contributes to the regulation of photosynthetic carbon-partitioning between starch and sucrose inArabidopsis leaves by limiting sucrose synthesis.  相似文献   

10.
Diel C export from source leaves of two Flaveria linearis lines [85-1: high cytosolic fructose-1,6-bisphosphatase (cytFBPase) and 84-9: low cytFBPase] were estimated using three methods, including leaf steady-state (14)CO(2) labelling, leaf metabolite analysis, and leaf dry mass analysis in conjunction with leaf CO(2) exchange measurements. Synthesis and accumulation of starch during the daytime were much higher in 84-9. Relative (14)C-export (export as a % of photosynthesis) in the light was 36% higher in 85-1. The diel export patterns from (14)C-analyses correlated with those based on metabolite or dry weight/gas exchange analyses during the daytime, but not during the night. Night-time export estimated from (14)C-disappearance was 3.6 times lower than those estimated using the other methods. Even though the starch degradation at night was greater for 84-9, night-time export in 84-9 was similar to 85-1, since 84-9 showed both higher respiration and accumulation of soluble sugars (i.e. glucose) at night. Patterns of (14)C allocation to sink organs were also different in the two lines. Main stem growth was less in 84-9, being reduced most in the light when leaf export was lower relative to 85-1. Supplementation with sucrose for 1 h daily via the roots at a time when leaf export in 84-9 was low relative to 85-1 increased the stem growth rate of 84-9 to a level similar with that of 85-1. This study provides evidence that diel C availability predicted by source strength (e.g. C-export rate) influences main stem extension growth and the pattern of sink development in F. linearis.  相似文献   

11.
The constitutive cytosolic expression of a yeast (Saccharomyces cerevisiae) invertase within potato (Solanum tuberosum) tubers has previously been documented to produce a dramatic metabolic phenotype in which glycolysis, respiration and amino acid synthesis are markedly enhanced at the cost of starch synthesis. These transgenic lines were further characterised by a massive cycle of sucrose degradation and resynthesis via sucrose-phosphate synthase. We have recently developed a B33 patatin driven alc gene construct allowing tight chemical control of gene expression following supply of acetaldehyde with minimal pleiotropic effects of the inducing agent on metabolism. This construct was used for chemical induction of the yeast invertase gene after 10-weeks growth to dissect the complex metabolic phenotype obtained after constitute expression. Inducible expression led to increased invertase activity within 24 h in well-defined areas within growing tubers. Although the sucrose levels were reduced, there was no effect on the levels of starch whilst levels of many amino acids decreased. Labelling experiments revealed that these lines exhibited increased rates of sucrose cycling, whereas rates of glycolysis and of starch synthesis were not substantially changed. From these results we conclude that sucrose cycling is stimulated in response to a short-term increase in the rate of sucrose mobilisation, providing evidence for a role of sucrose cycling as a buffering capacity that regulates the net rate of sucrose usage. In contrast, the dramatic increase in hexose-phosphate levels and the switch from starch synthesis to respiration seen on the constitutive expression of the invertase was not observed in the inducible lines, suggesting that this is the result of cumulative pleiotropic effects that occurred when the transgene was expressed throughout development.  相似文献   

12.
Cheng L  Zhou R  Reidel EJ  Sharkey TD  Dandekar AM 《Planta》2005,220(5):767-776
Sorbitol is a primary end-product of photosynthesis in apple (Malus domestica Borkh.) and many other tree fruit species of the Rosaceae family. Sorbitol synthesis shares a common hexose phosphate pool with sucrose synthesis in the cytosol. In this study, Greensleeves apple was transformed with a cDNA encoding aldose 6-phosphate reductase (A6PR, EC 1.1.1.200) in the antisense orientation. Antisense expression of A6PR decreased A6PR activity in mature leaves to approximately 15–30% of the untransformed control. The antisense plants had lower concentrations of sorbitol but higher concentrations of sucrose and starch in mature leaves at both dusk and predawn. 14CO2 pulse-chase labeling at ambient CO2 demonstrated that partitioning of the newly fixed carbon to starch was significantly increased, whereas that to sucrose remained unchanged in the antisense lines with decreased sorbitol synthesis. Total activities of ribulose 1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39), sucrose-phosphate synthase (EC 2.4.1.14), and ADP-glucose pyrophosphorylase (EC 2.7.7.27) were not significantly altered in the antisense lines, whereas both stromal and cytosolic fructose-1,6-bisphosphatase (EC 3.1.3.11) activities were higher in the antisense lines with 15% of the control A6PR activity. Concentrations of glucose 6-phosphate and fructose 6-phosphate (F6P) were higher in the antisense plants than in the control, but the 3-phosphoglycerate concentration was lower in the antisense plants with 15% of the control A6PR activity. Fructose 2, 6-bisphosphate concentration increased in the antisense plants, but not to the extent expected from the increase in F6P, comparing sucrose-synthesizing species. There was no significant difference in CO2 assimilation in response to photon flux density or intercellular CO2 concentration. We concluded that cytosolic FBPase activity in vivo was down-regulated and starch synthesis was up-regulated in response to decreased sorbitol synthesis. As a result, CO2 assimilation in source leaves was sustained at both ambient CO2 and saturating CO2.  相似文献   

13.
Analyses of transgenic sugarcane clones with 45–95% reduced cytosolic pyrophosphate: d-fructose-6-phosphate 1-phosphotransferase (PFP, EC 2.7.1.90) activity displayed no visual phenotypical change, but significant changes were evident in in vivo metabolite levels and fluxes during internode development. In three independent transgenic lines, sucrose concentrations increased between three- and sixfold in immature internodes, compared to the levels in the wildtype control. There was an eightfold increase in the hexose-phosphate:triose-phosphate ratio in immature internodes, a significant restriction in the triose phosphate to hexose phosphate cycle and significant increase in sucrose cycling as monitored by 13C nuclear magnetic resonance. This suggests that an increase in the hexose-phosphate concentrations resulting from a restriction in the conversion of hexose phosphates to triose phosphates drive sucrose synthesis in the young internodes. These effects became less pronounced as the tissue matured. Decreased expression of PFP also resulted in an increase of the ATP/ADP and UTP/UDP ratios, and an increase of the total uridine nucleotide and, at a later stage, the total adenine nucleotide pool, revealing strong interactions between PPi metabolism and general energy metabolism. Finally, decreased PFP leads to a reduction of PPi levels in older internodes indicating that in these developmental stages PFP acts in the gluconeogenic direction. The lowered PPi levels might also contribute to the absence of increases in sucrose contents in the more mature tissues of transgenic sugarcane with reduced PFP activity.  相似文献   

14.
Physicochemical properties of storage starch largely determine rice grain quality and food characteristics. Therefore, modification of starch property is effective to fine‐tune cooked rice textures. To obtain new resources with modified starch property as breeding materials, we screened a mutant population of a japonica cultivar Nipponbare and found two independent mutant lines, altered gelatinization (age)1 and age2, with moderate changes in starch gelatinization property. A combination of conventional genetic analyses and the latest mapping method, MutMapPlus, revealed that both of these lines harbour novel independent mutant alleles of starch branching enzyme IIb (BEIIb) gene. In age1, amino acid substitution of Met‐723 to Lys completely abolished BEIIb enzyme activity without significant reduction in its protein level. A transposon insertion in an intron of BEIIb gene reduced BEIIb protein level and activity in age2. Production of a series of the mutant lines by combining age alleles and indica‐type starch synthase IIa allele established stepwise alteration of the physicochemical properties of starch including apparent amylose content, thermal property, digestibility by α‐amylase and branched structures of amylopectin. Consistent with the alteration of starch properties, the results of a sensory evaluation test demonstrated that warm cooked rice of the mutants showed a variety of textures without marked reduction in overall palatability. These results suggest that a series of the mutant lines are capable of manipulation of cooked rice textures.  相似文献   

15.
The incorporation of 14C into sucrose and hexose phosphates during steady-state photosynthesis was examined in intact leaves of Zea mays L. plants. The compartmentation of sucrose synthesis between the bundle sheath and mesophyll cells was determined by the rapid fractionation of the mesophyll and comparison of the labelled sucrose in this compartment with that in a complete leaf after homogenisation. From these experiments it was concluded that the majority of sucrose synthesis occurred in the mesophyll cell type (almost 100% when the time-course of sucrose synthesis was extrapolated to the time of 14C-pulsing). The distribution of enzymes involved in sucrose synthesis between the two cell types indicated that sucrose-phosphate synthetase was predominantly located in the mesophyll, as was cytosolic (neutral) fructose-1,6-bisphosphatase activity. Stromal (alkaline) fructose-1,6-bisphosphatase activity was found almost exclusively in the bundle-sheath cells. No starch was found in the mesophyll tissue. These data indicate that in Zea mays starch and sucrose synthesis are spatially, separated with sucrose synthesis occurring in the mesophyll compartment and starch synthesis in the bundle sheath.  相似文献   

16.
Starch and sucrose metabolism of one- and two-year-old needles of Norway spruce (Picea abies [L.] Karst., about 30 years old) was investigated from three months before until three months after bud break at a natural site. We distinguish different metabolic states according to the extractable activities of enzymes (α-amylase [EC 3.2.1.1], ADP-glucose pyrophosphorylase [AGP, EC 2.7.7.27], D-enzyme [EC 2.4.1.25], starch phosphorylase [STP. EC 2.4.1.1]), sucrose phosphate synthase [SPS, EC 2.4.1.14], sucrose syntbase [SS, EC 2.4.1.13]. acid invertase [AI, EC 3.2.1.261) and pool sizes of related metabolites (starch, glucose, fructose, sucrose, raffinose, stachyose, fructose 6-phosphate [F6P], glucose 6-phosphate [G6P], fructose 2,6-bisphosphate [F26BP], and inorganic phosphate [P1]). The period ending with bud break was characterized by high rates of net photosynthesis, a pronounced decrease in the amount of soluble sugars, and a steep rise in starch (from the detection limit to approximately 600 nmol glycosyl units [mg dry weight]-1). In parallel, the extractable activity of AGP increased, while D-enzyme was on a relative high level when compared with the period after bud break. With respect to sucrose metabolism, F26BP, an inhibitor of sucrose synthesis, decreased from 1 to 0.4 pmol (mg dry weight)-1. This was complemented by SPS activity, which was due to both increased protein levels shown by immunoblotting and activation under metabolite control (high levels of G6P and a low Pi/G6P ratio). This indicates a high capacity of synthesis of starch and sucrose in the period before bud break. These observations are in accordance with estimates of photosynthetic carbon gain, which indicate that in early spring large amounts of carbon from current photosynthesis are exported out of the needles. In addition, the content of nonstructural carbohydrates (expressed as hexoses) increased in the bark of the stem. This could also be a consequence of an enhanced carbon export from the needles. After the onset of bud break, starch concentration decreased in all tissues under investigation. In contrast, the level of total nonstructural carbohydrates in the outermost sapwood nearly doubled from bud break until the end of sampling. In the needles, net photosynthesis was reduced by about 75% and a decrease in SPS activity and protein level were found together with lower G6P concentration, and an increased Pi/G6P ratio. These results suggest that during that period sucrose synthesis was reduced in the older needles. In addition, under conditions of reduced photosynthesis, carbon demand of current year needles was in part ensured by the mobilization of starch in the older needles. Taken together our data show that before bud break carbon metabolism of mature leaves is related with the sink demands of storage organs. After bud break the accumulated assimilate pools in needles and stem, mainly the bark, are mobilized and support carbon supply to new tissues.  相似文献   

17.
Rates of photosynthesis, sucrose synthesis, starch accumulation and degradation were measured in sugar beet (Beta vulgaris L.) and bean (Phaseolus vulgaris L.) plants under a square-wave light regime and under a sinusoidal regime that simulated the natural daylight period. Photosynthesis rate increased in a measured manner in direct proportion to the increasing light level. In contrast to this close correspondence between photosynthesis and light, a lag in photosynthesis rate was seen during the initial hour under square-wave illumination. The leaf appeared to be responding to limits set by carbon metabolism rather than by gas exchange or light reactions. Under the sinusoidal regime starch degradation occurred during the first and last 2 hours of the photoperiod, likely in response to photosynthesis rate rather than directly to light level. Starch broke down when photosynthesis was below a threshold rate and accumulated above this rate. Under square-wave illumination, accumulation of starch did not begin until irradiance was at full level for an hour or more and photosynthesis was at or near its maximum. Under a sinusoidal light regime, sucrose synthesis rate comprised carbon that was newly fixed throughout the day plus that from starch degradation at the beginning and end of the day. Synthesis of sucrose from recently fixed carbon increased with increasing net carbon fixation rate while its formation from degradation of starch decreased correspondingly. The complementary sources of carbon maintained a relatively steady rate of sucrose synthesis under the changing daytime irradiance.  相似文献   

18.
End product feedback effects on photosynthetic electron transport   总被引:7,自引:0,他引:7  
The inhibition of photosynthetic electron transport when starch and sucrose synthesis limit the overall rate of photosynthesis was studied inPhaseolus vulgaris L. andXanthium strumarium L. The starch and sucrose limitation was established by reducing photorespiration by manipulation of the partial pressure of O2 and CO2. Chlorophylla fluorescence quenching, the redox state of Photosystem I (estimated by the redox status of NADP-dependent malate dehydrogenase), and the intermediates of the xanthophyll cycle were investigated. Non-photochemical fluorescence quenching increased, NADP-dependent malate dehydrogenase remained at 100% activity, and the amount of violaxanthin decreased when starch and sucrose synthesis limited photosynthesis. In addition, O2-induced feedback caused a decrease in photochemical quenching. These results are consistent with a downward regulation of photosynthetic electron transport during end product feedback on photosynthesis. When leaves were held in high CO2 for 4 hours, the efficiency of Photosystem II was reduced when subsequently measured under low light. The results indicate that the quantum efficiency of open Photosystem II centers was reduced by the 4 hour treatment. We interpret the results to indicate that feedback from starch and sucrose synthesis on photosynthetic electron transport stimulates mechanisms for dissipating excess light energy but that these mechanisms do not completely protect leaves from long-term inhibition of photosynthetic electron transport capacity.  相似文献   

19.
Sulphite at concentrations from 0.5 to 5.0 mM was supplied to illuminated, detached poplar (Populus deltoides Bartr. ex Marsh) leaves via the transpiration stream. Chlorophyll a fluorescence parameters, the contents of fructose-2,6-bisphosphate (Fru2,6BP) and starch, and extractable specific activity of sucrose-phosphate synthase (SPS), sucrose synthase (SuSy), acid invertase (AI), neutral invertase (NI), ATP-dependent fructose-6-phosphate 1-phosphotransferase (PFK) and pyrophosphate-dependent fructose-6-phosphate 1-phosphotransferase (PFP) were measured. Chlorophyll fluorescence parameters appeared to be unaffected by sulphite. Application of ≥ 1.0 mM sulphite led to an increase in the content of Fru2,6BP and starch. There was also a decline in the activity of SPS, NI and PFK. On the other hand, the influence of sulphite on the activity of AI and PFP was negligible. Specific activity of SuSy was inhibited by 1.0 and 2.5 mM but activated by 5.0 mM of sulphite. On the basis of the results obtained in the present study, we postulate that sulphite at concentrations ≥ 1.0 mM inhibits primarily sucrose synthesis, favours starch accumulation and has an indirect effect on the sucrolytic activities in poplar leaves.  相似文献   

20.
Hanson KR 《Plant physiology》1992,99(1):276-283
Mutant NS458 of Nicotiana sylvestris (Speg. et Comes) contains a defective plastid phosphoglucomutase and accumulates only trace amounts of starch. Determinations of carbon partitioning using tracer d-[3-14C]glyceric acid showed that the maximal CO2 assimilation by mature leaves of the mutant at saturating [CO2] and light and low [O2] was close to the flux for sucrose formation in the wild type. The mutant is characterized by exceptionally slow oscillations in maximal CO2 assimilation. The postulate that these slow oscillations follow changes in the cytosolic rate of sucrose phosphate synthesis has been investigated. Studies with wild-type and mutant leaf discs subjected to various treatments failed to indicate that any significant activation-inactivation cycle in sucrose-P synthase activity can occur. The rate of sucrose phosphate synthesis, however, might be altered by variations in the supply of uridine UDP-glucose which is controlled by the rate of ATP regeneration (via UTP regeneration). Treating mutant leaf protoplasts and young leaves with oligomycin, an inhibitor of mitochondrial ATP regeneration, reduced photosynthesis by as much as 25 and 40%, respectively. The wild type failed to show inhibition by oligomycin, i.e. its effect is masked when starch and sucrose synthesis can interact. It is concluded that maximal CO2 assimilation in the mutant is fine tuned by mitochondrial metabolism such that interactions between sucrose synthesis and mitochondrial processes may generate the observed oscillations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号