首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background  

Neuropeptide ligands have to fit exactly into their respective receptors and thus the evolution of the coding regions of their genes is constrained and may be strongly conserved. As such, they may be suitable for the reconstruction of phylogenetic relationships within higher taxa. CAPA peptides of major lineages of cockroaches (Blaberidae, Blattellidae, Blattidae, Polyphagidae, Cryptocercidae) and of the termite Mastotermes darwiniensis were chosen to test the above hypothesis. The phylogenetic relationships within various groups of the taxon Dictyoptera (praying mantids, termites and cockroaches) are still highly disputed.  相似文献   

3.
4.
5.

Background  

Multiple candidate regions as sites for Schizophrenia and Bipolar susceptibility genes have been reported, suggesting heterogeneity of susceptibility genes or oligogenic inheritance. Linkage analysis has suggested chromosome 13q32 as one of the regions with evidence of linkage to Schizophrenia and, separately, to Bipolar disorder (BP). SLC15A1 and GPC5 are two of the candidate genes within an approximately 10-cM region of linkage on chromosome 13q32. In order to identify a possible role for these candidates as susceptibility genes, we performed mutation screening on the coding regions of these two genes in 7 families (n-20) affected with Bipolar disorder showing linkage to 13q32.  相似文献   

6.
7.

Background  

Approximately 35% of human genes contain introns within the 5' untranslated region (UTR). Introns in 5'UTRs differ from those in coding regions and 3'UTRs with respect to nucleotide composition, length distribution and density. Despite their presumed impact on gene regulation, the evolution and possible functions of 5'UTR introns remain largely unexplored.  相似文献   

8.
Localizing triplet periodicity in DNA and cDNA sequences   总被引:1,自引:0,他引:1  

Background  

The protein-coding regions (coding exons) of a DNA sequence exhibit a triplet periodicity (TP) due to fact that coding exons contain a series of three nucleotide codons that encode specific amino acid residues. Such periodicity is usually not observed in introns and intergenic regions. If a DNA sequence is divided into small segments and a Fourier Transform is applied on each segment, a strong peak at frequency 1/3 is typically observed in the Fourier spectrum of coding segments, but not in non-coding regions. This property has been used in identifying the locations of protein-coding genes in unannotated sequence. The method is fast and requires no training. However, the need to compute the Fourier Transform across a segment (window) of arbitrary size affects the accuracy with which one can localize TP boundaries. Here, we report a technique that provides higher-resolution identification of these boundaries, and use the technique to explore the biological correlates of TP regions in the genome of the model organism C. elegans.  相似文献   

9.
10.
11.

Background  

The current knowledge of genes and proteins comes from 'naturally designed' coding and non-coding regions. It would be interesting to move beyond natural boundaries and make user-defined parts. To explore this possibility we made six non-natural proteins in E. coli. We also studied their potential tertiary structure and phenotypic outcomes.  相似文献   

12.

Background  

Analysis of any newly sequenced bacterial genome starts with the identification of protein-coding genes. Despite the accumulation of multiple complete genome sequences, which provide useful comparisons with close relatives among other organisms during the annotation process, accurate gene prediction remains quite difficult. A major reason for this situation is that genes are tightly packed in prokaryotes, resulting in frequent overlap. Thus, detection of translation initiation sites and/or selection of the correct coding regions remain difficult unless appropriate biological knowledge (about the structure of a gene) is imbedded in the approach.  相似文献   

13.

Background  

Several bioinformatic approaches have previously been used to find novel sites of ADAR mediated A-to-I RNA editing in human. These studies have discovered thousands of genes that are hyper-edited in their non-coding intronic regions, especially in alu retrotransposable elements, but very few substrates that are site-selectively edited in coding regions. Known RNA edited substrates suggest, however, that site selective A-to-I editing is particularly important for normal brain development in mammals.  相似文献   

14.

Background  

There has been remarkably little study of nucleotide substitution rate variation among plant nuclear genes, in part because orthology is difficult to establish. Orthology is even more problematic for intergenic regions of plant nuclear genomes, because plant genomes generally harbor a wealth of repetitive DNA. In theory orthologous intergenic data is valuable for studying rate variation because nucleotide substitutions in these regions should be under little selective constraint compared to coding regions. As a result, evolutionary rates in intergenic regions may more accurately reflect genomic features, like recombination and GC content, that contribute to nucleotide substitution.  相似文献   

15.

Background

For most sequenced prokaryotic genomes, about a third of the protein coding genes annotated are "orphan proteins", that is, they lack homology to known proteins. These hypothetical genes are typically short and randomly scattered throughout the genome. This trend is seen for most of the bacterial and archaeal genomes published to date.

Results

In contrast we have found that a large fraction of the genes coding for such orphan proteins in the Methanopyrus kandleri AV19 genome occur within two large regions. These genes have no known homologs except from other M. kandleri genes. However, analysis of their lengths, codon usage, and Ribosomal Binding Site (RBS) sequences shows that they are most likely true protein coding genes and not random open reading frames.

Conclusions

Although these regions can be considered as candidates for massive lateral gene transfer, our bioinformatics analysis suggests that this is not the case. We predict many of the organism specific proteins to be transmembrane and belong to protein families that are non-randomly distributed between the regions. Consistent with this, we suggest that the two regions are most likely unrelated, and that they may be integrated plasmids.
  相似文献   

16.

Background  

Enrichment of loci by DNA hybridization-capture, followed by high-throughput sequencing, is an important tool in modern genetics. Currently, the most common targets for enrichment are the protein coding exons represented by the consensus coding DNA sequence (CCDS). The CCDS, however, excludes many actual or computationally predicted coding exons present in other databases, such as RefSeq and Vega, and non-coding functional elements such as untranslated and regulatory regions. The number of variants per base pair (variant density) and our ability to interrogate regions outside of the CCDS regions is consequently less well understood.  相似文献   

17.

Background

The chicken is an important agricultural and avian-model species. A survey of gene expression in a range of different tissues will provide a benchmark for understanding expression levels under normal physiological conditions in birds. With expression data for birds being very scant, this benchmark is of particular interest for comparative expression analysis among various terrestrial vertebrates.

Methodology/Principal Findings

We carried out a gene expression survey in eight major chicken tissues using whole genome microarrays. A global picture of gene expression is presented for the eight tissues, and tissue specific as well as common gene expression were identified. A Gene Ontology (GO) term enrichment analysis showed that tissue-specific genes are enriched with GO terms reflecting the physiological functions of the specific tissue, and housekeeping genes are enriched with GO terms related to essential biological functions. Comparisons of structural genomic features between tissue-specific genes and housekeeping genes show that housekeeping genes are more compact. Specifically, coding sequence and particularly introns are shorter than genes that display more variation in expression between tissues, and in addition intergenic space was also shorter. Meanwhile, housekeeping genes are more likely to co-localize with other abundantly or highly expressed genes on the same chromosomal regions. Furthermore, comparisons of gene expression in a panel of five common tissues between birds, mammals and amphibians showed that the expression patterns across tissues are highly similar for orthologuous genes compared to random gene pairs within each pair-wise comparison, indicating a high degree of functional conservation in gene expression among terrestrial vertebrates.

Conclusions

The housekeeping genes identified in this study have shorter gene length, shorter coding sequence length, shorter introns, and shorter intergenic regions, there seems to be selection pressure on economy in genes with a wide tissue distribution, i.e. these genes are more compact. A comparative analysis showed that the expression patterns of orthologous genes are conserved in the terrestrial vertebrates during evolution.  相似文献   

18.
19.

Background  

Genomic instability has been reported at microsatellite tracts in few coding sequences. We have shown that the Bloom syndrome BLM gene may be a target of microsatelliteinstability (MSI) in a short poly-adenine repeat located in its coding region. To further characterize the involvement of BLM in tumorigenesis, we have investigated mutations in nine genes containing coding microsatellites in microsatellite mutator phenotype (MMP) positive and negative gastric carcinomas (GCs).  相似文献   

20.

Motivation  

Sequence-based methods for phylogenetic reconstruction from (nucleic acid) sequence data are notoriously plagued by two effects: homoplasies and alignment errors. Large evolutionary distances imply a large number of homoplastic sites. As most protein-coding genes show dramatic variations in substitution rates that are not uncorrelated across the sequence, this often leads to a patchwork pattern of (i) phylogenetically informative and (ii) effectively randomized regions. In highly variable regions, furthermore, alignment errors accumulate resulting in sometimes misleading signals in phylogenetic reconstruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号