共查询到20条相似文献,搜索用时 0 毫秒
1.
Hepatocellular triglyceride synthesis and transfer to lipid droplets and nascent very low density lipoproteins 总被引:3,自引:0,他引:3
The transfer of triglyceride from sites of synthesis in the endoplasmic reticulum to cytoplasmic lipid droplets and nascent VLDL (very low density lipoproteins) in rat liver in vivo has been examined with [3H]glycerol, cell fractionation, and electron microscopy. Rates of mass transfer of newly synthesized triglyceride were estimated from the specific radioactivity of triglyceride present in microsomal membranes and the radioactivity observed in recipient triglyceride pools. Fasting decreased the transfer of triglyceride to nascent VLDL without affecting transfer to lipid droplets. Stimulation of triglyceride synthesis with 2-tetradecylglycidic acid (TDGA) increased transfer of triglyceride to nascent VLDL 5-fold, and to lipid droplets 14-fold, 1 hr after TDGA administration. Triglyceride transfer to nascent VLDL was increased 6-fold, and to lipid droplets 37-fold, above control rates 6 hr following TDGA treatment, indicative of saturation of triglyceride assembly into nascent VLDL and storage of excess triglyceride in lipid droplet reservoirs. These liver triglyceride pools were concurrently expanded and electron microscopy demonstrated more abundant VLDL particles in the endoplasmic reticulum together with a proliferation of lipid droplets in hepatocytes. TDGA progressively decreased hepatic sn-glycerol-3-phosphate in fasting rats while triglyceride synthesis increased, indicating that sn-glycerol-3-phosphate does not limit the rate of triglyceride synthesis in this metabolic state. Results implicate triglyceride transfer from endoplasmic reticulum membranes to nascent VLDL as a regulated determinant of hepatic VLDL assembly and VLDL triglyceride secretion in vivo. 相似文献
2.
The assembly of very low density lipoproteins involves the formation of a primordial, poorly lipidated apoB-containing particle in the endoplasmic reticulum, followed by the addition of neutral lipid from luminal lipid droplets (LLD). However, the lipid and protein compositions of LLD have not been determined. We have isolated LLD from mouse liver microsomes and analyzed their lipid and protein compositions. LLD are variably sized particles relatively poor in triacylglycerol (TG) content when compared with the lipid composition of cytosolic lipid droplets (CLD). They are devoid of apoB, adipophilin, and albumin but contain numerous proteins different from those found on CLD, including TG hydrolase (TGH), carboxylesterase 1 (Ces1), microsomal triglyceride transfer protein (MTP), and apoE. Ectopic expression of TGH in McArdle RH7777 hepatoma cells resulted in decreased cellular TG levels, demonstrating a role for TGH in the mobilization of hepatic neutral lipid stores. The isolation and characterization of LLD provide new supporting evidence for the two-step assembly of very low density lipoproteins. 相似文献
3.
Li YT Sugiyama E Ariga T Nakayama J Hayama M Hama Y Nakagawa H Tai T Maskos K Li SC Kasama T Ksama T 《Journal of lipid research》2002,43(7):1019-1025
By TLC, GM4 was found to be the major ganglioside in the liver of six shark species examined: Odontaspis taurus, Negaprion brevirostris, Sphyrna lewini, Mustelus griseus, Mustelus manazo, and Prionace glauca. A detailed analysis of the glycosphingolipids (GSLs) in the liver of O. taurus (sand tiger shark) showed that it contained approximately 110 nmol of lipid-bound sialic acid per gram of wet tissue, of which 80% was GM4. By extracting the liver of O. taurus with chloroform/methanol, followed by chromatographic separation of GSLs using DEAE-Sephadex A-25 and Iatrobeads columns, we have isolated GM4 in pure form with a yield of approximately 5 mg per 100 g of wet tissue. The structures of both the sugar chain and the ceramide moiety of this GM4 were analyzed by chemical analysis, mass spectrometry, and NMR spectroscopy. Similar to GM4 isolated from other sources, 92% of fatty acids in the ceramide of this GM4 were 2-hydroxylated. However, unlike the long-chain bases found in other GSLs, the total long-chain bases in this GM4 were found to contain 43% octadecasphingenine and 50% nonadecasphingenine. Immunohistochemical analysis using a monoclonal antibody against GM4 revealed that the hepatocytes of both M. griseus (spotless smooth hound) and M. manazo (smooth hound) were filled with lipid droplets and GM4 was primarily associated with the membrane structure surrounding lipid droplets. 相似文献
4.
Okumura T 《Journal of physiology and biochemistry》2011,67(4):629-636
Five proteins of the perilipin (Plin) family such as Plin1 (perilipin) Plin2 (adipose differentiation-related protein), Plin3
(tail-interacting protein of 47 kDa), Plin4 (S3-12), and Plin5 (myocardial lipid droplet protein) are characterized as lipid
droplet (LD) proteins in adipocytes. Recent reports have demonstrated that fat-specific protein 27 (FSP27) and hypoxia-inducible
protein 2 (HIG2) are also thought to be novel LD proteins in addition to proteins of the Plin family. Growing evidence have
shown that LD proteins play a role in the pathophysiology in the fatty liver disease which is characterized by hepatocytes
containing LD with excessive neutral lipid. Studies showed LD proteins such as Plin1, Plin2, Plin3, Plin5, FSP27, and HIG2
are expressed in the liver steatosis. Among them, a high fat diet increases expression of Plin2 and/or FSP27 through activation
of peroxisome proliferator-activated receptor γ to develop fatty liver. In this article, recent advances on the role of LD
proteins in pathophysiology of fatty liver diseases are summarized. 相似文献
5.
6.
Altered ultrastructural morphology of self-aggregated low density lipoproteins: coalescence of lipid domains forming droplets and vesicles 总被引:3,自引:0,他引:3
Lipid droplets and vesicles can presumably be formed directly from lipoproteins in the extracellular space in atherosclerosis, but an in vitro demonstration of the phenomenon in the absence of cellular pathways has been lacking. Low density lipoproteins (LDL) are known to undergo self-aggregation after brief vortexing in vitro. In the present study, LDL aggregates were examined by electron microscopy, using new mordant techniques for lipid visualization, and by chemical analysis. Aggregation of LDL by vortexing is regularly accompanied by the formation of comparatively large lipid droplets (up to 600 nm diameter) and vesicles. Aggregates containing droplets and vesicles were formed after as little as 5 sec of vortexing, and LDL protein and cholesteryl ester were almost completely (95%) incorporated into aggregates after 4 min vortexing. Substantial fractions of phospholipid and unesterified cholesterol from the original LDL remained in solution even after 4 min vortexing, forming large multilamellar vesicles that did not adhere to the aggregated material. Spontaneous aggregates retrieved from LDL solutions after prolonged storage were also examined by electron microscopy, revealing similar lipid droplets and vesicles. The ultrastructural appearance of LDL aggregated in vitro is remarkably similar to the appearance of extracellular lipid deposits in atherosclerosis, lending credence to the hypothesis of direct extracellular formation of these deposits from lipoproteins. 相似文献
7.
Guangang Gao Yuanyuan Sheng Hongyuan Yang Boon Tin Chua Li Xu 《Cell biology international》2019,43(12):1492-1504
Double FYVE‐containing protein 1 (DFCP1) is ubiquitously expressed, participates in intracellular membrane trafficking and labels omegasomes through specific interactions with phosphatidylinositol‐3‐phosphate (PI3P). Previous studies showed that subcellular DFCP1 proteins display multi‐organelle localization, including in the endoplasmic reticulum (ER), Golgi apparatus and mitochondria. However, its localization and function on lipid droplets (LDs) remain unclear. Here, we demonstrate that DFCP1 localizes to the LD upon oleic acid incubation. The ER‐targeted domain of DFCP1 is indispensable for its LD localization, which is further enhanced by double FYVE domains. Inhibition of PI3P binding at the FYVE domain through wortmannin treatment or double mutation at C654S and C770S have no effect on DFCP1's LD localization. These show that the mechanisms for DFCP1 targeting the omegasome and LDs are different. DFCP1 deficiency in MEF cells causes an increase in LD number and reduces LD size. Interestingly, DFCP1 interacts with GTP‐bound Rab18, an LD‐associated protein. Taken together, our work demonstrates the dynamic localization of DFCP1 is regulated by nutritional status in response to cellular metabolism. 相似文献
8.
Recent advances have transformed our understanding of lipid droplets (LDs). Once regarded as inert lipid storage granules, LDs are now recognized as multi-functional organelles that affect many aspects of cell biology and metabolism. However, fundamental questions concerning the biogenesis and growth of LDs remain unanswered. Recent studies have uncovered novel modes of LD growth (including rapid/homotypic as well as slow/atypical LD fusion), and identified key proteins (e.g. Fsp27, seipin, FITM2 and perilipin 1) and lipids (e.g. phosphatidylcholine and phosphatidic acid) that regulate the size of LDs. Phospholipids appear to have an evolutionarily conserved role in LD growth. Protein factors may regulate LD expansion directly and/or indirectly through modulating the level and composition of phospholipids on LD surface. 相似文献
9.
Although caveolins normally reside in caveolae, they can accumulate on the surface of cytoplasmic lipid droplets (LDs). Here, we first provided support for our model that overaccumulation of caveolins in the endoplasmic reticulum (ER) diverts the proteins to nascent LDs budding from the ER. Next, we found that a mutant H-Ras, present on the cytoplasmic surface of the ER but lacking a hydrophobic peptide domain, did not accumulate on LDs. We used the fact that wild-type caveolin-1 accumulates in LDs after brefeldin A treatment or when linked to an ER retrieval motif to search for mutants defective in LD targeting. The hydrophobic domain, but no specific sequence therein, was required for LD targeting of caveolin-1. Certain Leu insertions blocked LD targeting, independently of hydrophobic domain length, but dependent on their position in the domain. We propose that proper packing of putative hydrophobic helices may be required for LD targeting of caveolin-1. 相似文献
10.
Ostermeyer AG Paci JM Zeng Y Lublin DM Munro S Brown DA 《The Journal of cell biology》2001,152(5):1071-1078
Caveolin-1 is normally localized in plasma membrane caveolae and the Golgi apparatus in mammalian cells. We found three treatments that redirected the protein to lipid storage droplets, identified by staining with the lipophilic dye Nile red and the marker protein ADRP. Caveolin-1 was targeted to the droplets when linked to the ER-retrieval sequence, KKSL, generating Cav-KKSL. Cav-DeltaN2, an internal deletion mutant, also accumulated in the droplets, as well as in a Golgi-like structure. Third, incubation of cells with brefeldin A caused caveolin-1 to accumulate in the droplets. This localization persisted after drug washout, showing that caveolin-1 was transported out of the droplets slowly or not at all. Some overexpressed caveolin-2 was also present in lipid droplets. Experimental reduction of cellular cholesteryl ester by 80% did not prevent targeting of Cav-KKSL to the droplets. Cav-KKSL expression did not grossly alter cellular triacylglyceride or cholesteryl levels, although droplet morphology was affected in some cells. These data suggest that accumulation of caveolin-1 to unusually high levels in the ER causes targeting to lipid droplets, and that mechanisms must exist to ensure the rapid exit of newly synthesized caveolin-1 from the ER to avoid this fate. 相似文献
11.
Turró S Ingelmo-Torres M Estanyol JM Tebar F Fernández MA Albor CV Gaus K Grewal T Enrich C Pol A 《Traffic (Copenhagen, Denmark)》2006,7(9):1254-1269
Alcoholic and nonalcoholic liver steatosis and steatohepatitis are characterized by the massive accumulation of lipid droplets (LDs) in the cytosol of hepatocytes. Although LDs are ubiquitous and dynamic organelles found in the cells of a wide range of organisms, little is known about the mechanisms and sites of LD biogenesis. To examine the participation of these organelles in the pathophysiological disorders of steatotic livers, we used a combination of mass spectrometry (matrix-assisted laser desorption ionization-time of flight and LC-MS electrospray) and Western blot analysis to study the composition of LDs purified from rat liver after a partial hepatectomy. Fifty proteins were identified. Adipose differentiation-related protein was the most abundant, but other proteins such as calreticulin, TIP47, Sar1, Rab GTPases, Rho and actin were also found. In addition, we identified protein associated with lipid droplets I ALDI (tentatively named Associated with LD protein 1), a novel protein widely expressed in liver and kidney corresponding to the product of 0610006F02Rik (GI:27229118). Our results show that, upon lipid loading of the cells, ALDI translocates from the endoplasmic reticulum into nascent LDs and indicate that ALDI may be targeted to the initial lipid deposits that eventually form these droplets. Moreover, we used ALDI expression studies to view other processes related to these droplets, such as LD biogenesis, and to analyze LD dynamics. In conclusion, here we report the composition of hepatic LDs and describe a novel bona fide LD-associated protein that may provide new insights into the mechanisms and sites of LD biogenesis. 相似文献
12.
《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2020,1865(5):158589
Staphylococcal nuclease and Tudor domain containing 1 (SND1) is an evolutionarily conserved protein present in eukaryotic cells from protozoa to mammals. SND1 has gained importance because it is overexpressed in aggressive cancer cells and diverse primary tumors. Indeed, it is regarded as a marker of cancer malignity. A broad range of molecular functions and the participation in many cellular processes have been attributed to SND1, mostly related to the regulation of gene expression. An increasing body of evidence points to a relevant relationship between SND1 and lipid metabolism. In this review, we summarize the knowledge about SND1 and its molecular and functional relationship with lipid metabolism. We highlight that SND1 plays a direct role in the regulation of cholesterol metabolism by affecting the activation of sterol response element-binding protein 2 (SREBP2) and we propose that that might have implications in the response of lipid homeostasis to stress situations. 相似文献
13.
Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets 总被引:26,自引:0,他引:26
Hepatitis C virus (HCV) is the major causative pathogen associated with liver cirrhosis and hepatocellular carcinoma. The virus has a positive-sense RNA genome encoding a single polyprotein with the virion components located in the N-terminal portion. During biosynthesis of the polyprotein, an internal signal sequence between the core protein and the envelope protein E1 targets the nascent polypeptide to the endoplasmic reticulum (ER) membrane for translocation of E1 into the ER. Following membrane insertion, the signal sequence is cleaved from E1 by signal peptidase. Here we provide evidence that after cleavage by signal peptidase, the signal peptide is further processed by the intramembrane-cleaving protease SPP that promotes the release of core protein from the ER membrane. Core protein is then free for subsequent trafficking to lipid droplets. This study represents an example of a potential role for intramembrane proteolysis in the maturation of a viral protein. 相似文献
14.
Soulages JL Firdaus SJ Hartson S Chen X Howard AD Arrese EL 《Insect biochemistry and molecular biology》2012,42(5):305-320
The lipid droplets (LDs) are intracellular organelles mainly dedicated to the storage and provision of fatty acids. To accomplish these functions the LDs interact with other organelles and cytosolic proteins. In order to explore possible correlations between the physiological states of cells and the protein composition of LDs we have determined and compared the proteomic profiles of lipid droplets isolated from the fat bodies of 5th-instar larvae and adult Manduca sexta insects and from ovaries. These LD-rich tissues represent three clearly distinct metabolic states in regard to lipid metabolism: 1) Larval fat body synthesizes fatty acids (FA) and accumulates large amounts as triglyceride (TG); 2) Fat body from adult insects provides FA to support reproduction and flight; 3) Ovaries do not synthesize FA, but accumulate considerable amounts of TG in LDs. Major qualitative and semi-quantitative variations in the protein compositions of the LDs isolated from these three tissues were observed by MS/MS and partially validated by immuno-blotting. The differences observed included changes in the abundance of lipid droplet specific proteins, cytosolic proteins, mitochondrial proteins and also proteins associated with the machinery of protein synthesis. These results suggest that changes in the interaction of LDs with other organelles and cytosolic proteins are tightly related to the physiological state of cells. Herein, we summarize and compare the protein compositions of three subtypes of LDs and also describe for the first time the proteomic profile of LDs from an insect ovary. The compositions and compositional differences found among the LDs are discussed to provide a platform for future studies on the role of LDs, and their associated proteins, in cellular metabolism. 相似文献
15.
Dynamic activity of lipid droplets: protein phosphorylation and GTP-mediated protein translocation 总被引:1,自引:0,他引:1
Bartz R Zehmer JK Zhu M Chen Y Serrero G Zhao Y Liu P 《Journal of proteome research》2007,6(8):3256-3265
Lipid droplet is a cellular organelle with a neutral lipid core surrounded by a phospholipid monolayer and coated with structural as well as functional proteins. The determination of these proteins, especially their functional regulations and dynamic movement on and off droplets, holds a key to resolving the biological functions of the cellular organelle. To address this, we carried out a comprehensive proteomic study that includes a complete proteomic, a phosphoprotein proteomic, and a comparative proteomic analysis using purified lipid droplets and mass spectrometry techniques. The complete proteome identified 125 proteins of which 70 proteins had not been identified on droplets of mammalian cells previously. In phosphoprotein proteomic analysis, 7 functional lipid droplet proteins were determined to be phosphorylated, including adipose differentiation related protein (ADRP/ADFP), two Rab proteins, and four lipid metabolism enzymes, including adipose triglyceride lipase (ATGL). To understand the dynamics of lipid droplets, GTP-dependent protein recruitment was analyzed by comparative proteomics. Arf1 and some of its coatomers, three other Arfs, several other small G-proteins including 3 Rabs, and several lipid synthetic enzymes were recruited from cytosol to purified droplets. Together, the present study suggests that lipid droplet is an active and dynamic cellular organelle that governs lipid homeostasis and intracellular trafficking through protein phosphorylation as well as GTP-regulated protein translocation. 相似文献
16.
Sterol carrier protein-2 expression modulates protein and lipid composition of lipid droplets 总被引:2,自引:0,他引:2
Atshaves BP Storey SM McIntosh AL Petrescu AD Lyuksyutova OI Greenberg AS Schroeder F 《The Journal of biological chemistry》2001,276(27):25324-25335
Despite the critical role lipid droplets play in maintaining energy reserves and lipid stores for the cell, little is known about the regulation of the lipid or protein components within the lipid droplet. Although immunofluorescence of intact cells as well as Western analysis of isolated lipid droplets revealed that sterol carrier protein-2 (SCP-2) was not associated with lipid droplets, SCP-2 expression significantly altered the structure of the lipid droplet. First, the targeting of fatty acid and cholesterol to the lipid droplets was significantly decreased. Second, the content of several proteins important for lipid droplet function was differentially increased (perilipin A), reduced severalfold (adipose differentiation-related protein (ADRP), vimentin), or almost completely eliminated (hormone-sensitive lipase and proteins >93 kDa) in the isolated lipid droplet. Third, the distribution of lipids within the lipid droplets was significantly altered. Double labeling of cells with 12-(N-methyl)-N-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-octadecanoic acid (NBD-stearic acid) and antisera to ADRP showed that 70, 24, and 13% of lipid droplets contained ADRP, NBD-stearic acid, or both, respectively. SCP-2 expression decreased the level of ADRP in the lipid droplet but increased the proportion wherein ADRP and NBD-stearic acid colocalized by 3-fold. SCP-2 expression also decreased the lipid droplet fatty acid and cholesterol mass (nmol/mg protein) by 5.2- and 6.6-fold, respectively. Finally, SCP-2 expression selectively altered the pattern of esterified fatty acids in favor of polyunsaturated fatty acids within the lipid droplet. Displacement studies showed differential binding affinity of ADRP for cholesterol and fatty acids. These data suggested that SCP-2 and ADRP play a significant role in regulating fatty acid and cholesterol targeting to lipid droplets as well as in determining their lipid and protein components. 相似文献
17.
Structural determinants that target the hepatitis C virus core protein to lipid droplets 总被引:7,自引:0,他引:7
Boulant S Montserret R Hope RG Ratinier M Targett-Adams P Lavergne JP Penin F McLauchlan J 《The Journal of biological chemistry》2006,281(31):22236-22247
Hepatitis C virus core protein is targeted to lipid droplets, which serve as intracellular storage organelles, by its C-terminal domain, termed D2. From circular dichroism and nuclear magnetic resonance analyses, we demonstrate that the major structural elements within D2 consist of two amphipathic alpha-helices (Helix I and Helix II) separated by a hydrophobic loop. Both helices require a hydrophobic environment for folding, indicating that lipid interactions contribute to their structural integrity. Mutational studies revealed that a combination of Helix I, the hydrophobic loop, and Helix II is essential for efficient lipid droplet association and pointed to an in-plane membrane interaction of the two helices at the phospholipid layer interface. Aside from lipid droplet association, membrane interaction of D2 is necessary for folding and stability of core following maturation at the endoplasmic reticulum membrane by signal peptide peptidase. These studies identify critical determinants within a targeting domain that enable trafficking and attachment of a viral protein to lipid droplets. They also serve as a unique model for elucidating the specificity of protein-lipid interactions between two membrane-bound organelles. 相似文献
18.
Wang C Hu YM He JW Gu JM Zhang H Hu WW Yue H Gao G Xiao WJ Yu JB Ke YH Hu YQ Li M Liu YJ Fu WZ Ren Y Zhang ZL 《PloS one》2011,6(12):e28874
Low density lipoprotein receptor-related protein 2 gene (LRP2) is located next to the genomic region showing suggestive linkage with both hip and wrist bone mineral density (BMD) phenotypes. LRP2 knockout mice showed severe vitamin D deficiency and bone disease, indicating the involvement of LRP2 in the preservation of vitamin D metabolites and delivery of the precursor to the kidney for the generation of 1α,25(OH)(2)D(3). In order to investigate the contribution of LRP2 gene polymorphisms to the variation of BMD in Chinese population, a total of 330 Chinese female-offspring nuclear families with 1088 individuals and 400 Chinese male-offspring nuclear families with 1215 individuals were genotyped at six tagSNPs of the LRP2 gene (rs2389557, rs2544381, rs7600336, rs10210408, rs2075252 and rs4667591). BMD values at the lumbar spine 1-4 (L1-4) and hip sites were measured by DXA. The association between LRP2 polymorphisms and BMD phenotypes was assessed by quantitative transmission disequilibrium tests (QTDTs) in female- and male-offspring nuclear families separately. In the female-offspring nuclear families, rs2075252 and haplotype GA of rs4667591 and rs2075252 were identified in the nominally significant total association with peak BMD at L1-4; however, no significant within-family association was found between peak BMD at the L1-4 and hip sites and six tagSNPs or haplotypes. In male-offspring nuclear families, neither the six tagSNPs nor the haplotypes was in total association or within-family association with the peak BMD variation at the L1-4 and hip sites by QTDT analysis. Our findings suggested that the polymorphisms of LRP2 gene is not a major factor that contributes to the peak BMD variation in Chinese population. 相似文献
19.
20.
Wolins NE Skinner JR Schoenfish MJ Tzekov A Bensch KG Bickel PE 《The Journal of biological chemistry》2003,278(39):37713-37721
Most animals store lipid intracellularly in protein-coated droplets. The protein coat usually contains at least one member of the PAT (perilipin, adipose differentiation-related protein, and TIP47) family. Evidence suggests that PAT proteins control access to the lipid they enclose. The protein S3-12, which has sequence similarity to the PAT proteins, was found in a screen for adipocyte-specific proteins. The adipocyte expression of S3-12 and its similarity to the PAT proteins suggest that S3-12 is involved in adipocyte lipid storage. To test this hypothesis, we supplemented 3T3-L1 adipocytes with fatty acids and assessed the distribution of S3-12 by immunofluorescence microscopy. Prior to fatty acid incubation, S3-12 was distributed diffusely throughout the cytoplasm on punctate structures of heterogeneous size. After 10 min of lipid loading, S3-12 localized to 500-nm structures concentrated at the adipocyte periphery. After longer incubations, S3-12 coated the surface of lipid droplets up to several micrometers in diameter. Initially, these droplets were distinct from those droplets surrounded by perilipin; but by 240 min, most perilipin-coated droplets had some S3-12 on the surface as well. We additionally report that the formation of S3-12-coated droplets 1) required glucose and fatty acids that can be incorporated into triacylglycerol, 2) was blocked by an inhibitor of triacylglycerol synthesis, and 3) was insulin-dependent. This study reports for the first time the early morphological events in the genesis and maturation of adipocyte lipid droplets. 相似文献