首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tian Y  Zhang H  Pan X  Chen X  Zhang Z  Lu X  Huang R 《Transgenic research》2011,20(4):857-866
Rice (Oryza sativa L.) is a warm-season plant exposed to various stresses. Low temperature is an important factor limiting extension of rice cultivation areas and productivity. Previously, we have demonstrated that tomato ERF protein TERF2 enhances freezing tolerance of transgenic tobacco and tomato plants. Herein, we report that overexpression of TERF2 enhances transgenic rice tolerance to cold without affecting growth or agronomic traits. Physiological assays revealed that TERF2 could not only increase accumulation of osmotic substances and chlorophyll, but also reduce reactive oxygen species (ROS) and malondialdehyde (MDA) content and decrease electrolyte leakage in rice under cold stress. Further analysis of gene expression showed that TERF2 could activate expression of cold-related genes, including OsMyb, OsICE1, OsCDPK7, OsSODB, OsFer1, OsTrx23, and OsLti6, in transgenic rice plants under natural condition or cold stress. Thus, our findings demonstrated that TERF2 modulated expression of stress-related genes and a series of physiological adjustments under cold stress, indicating that TERF2 might have important regulatory roles in response to abiotic stress in rice and possess potential utility in improving crop cold tolerance.  相似文献   

2.
3.
4.
EIN2 (ethylene insensitive 2) is a very important component in the ethylene signal transduction pathway. Recently, the genomic DNA and full-length cDNA of LeEIN2 (tomato EIN2) have been isolated in our laboratory. To reveal the function of LeEIN2, transgenic tomato plants with reduced expression levels of LeEIN2 were produced. The fruit ripening and expressions of ripening-related genes encoding polygalacturonase and TomLoxB were inhibited in the LeEIN2-silenced transgenic plants compared to the wild-type Ailsa Craig. In the seedling ethylene response assay, the transgenic tomato plants with reduced LeEIN2 expression exhibited ethylene insensitivity. These results indicate that LeEIN2 plays a critical role in regulating tomato fruit ripening and is a positive regulator in ethylene signal transduction pathway.  相似文献   

5.
We investigated chilling-induced changes in ethylene levels in Arabidopsis to find plants with distinct patterns of ethylene production in the cold-related biosynthetic pathway. The sensitive mutants identified here includedchs1-2,chs4-2, andchs6-2. Among these, plants of thechs4-2 mutant produced more ethylene than did the wild type after both were transferred from 4°C or 10°C to 22°C. This mutant also showed less freezing tolerance and more electrolyte leakage than the wild-type plants. Our results suggest a relationship between ethylene biosynthesis and chilling sensitivity in the mutant To determine which of the enzymes involved in ethylene biosynthesis were induced by chilling, we tested the activities of ACC synthase and ACC oxidase in both mutant and wild-type plants, and found greater activity by ACC synthase as well as a higher ACC content in the mutants after all the plants were transferred from 10°C to 22°C. However, ACC oxidase activity did not differ between mutant and wild-type plants in response to chilling treatment Therefore, we conclude thatchs4-2 mutants produce more ethylene than do other mutants or the wild type during their recovery from chilling conditions. Furthermore, we believe that ACC synthase is the key enzyme involved in this response.  相似文献   

6.
7.
8.
9.
10.
On the basis of the results of gene chip analysis of the salt-tolerant wheat mutant RH8706-49 under conditions of salt stress, we identified and cloned an unknown salt-induced gene TaST (Triticum aestivum salt-tolerant). Real-time quantitative PCR analysis showed that the expression of the gene was induced by salt stress. Transgenic Arabidopsis plants overexpressing the TaST gene showed higher salt tolerance than the wild-type controls. Subcellular localization studies revealed that the protein encoded by this gene was in the nucleus. In comparison with wild-type controls, transgenic Arabidopsis plants accumulated more Ca2+, soluble sugar, and proline and less Na+ under salt stress. Real-time quantitative PCR analysis showed that Arabidopsis plants overexpressing TaST also showed increased expression of many stress-related genes. All these findings indicated that TaST can enhance the salt tolerance of transgenic Arabidopsis plants.  相似文献   

11.
12.
The entire (e) locus of tomato (Solanum lycopersicum L.) controls leaf morphology. Dominant E and recessive e allele of the locus produce pinnate compound and complex reduced leaves. Previous research had indicated that SlIAA9, an Aux/IAA gene, was involved in tomato leaf morphology. Down-regulation of SlIAA9 gene by antisense transgenic method decreased the leaf complex of tomato and converted tomato compound leaves to simple leaves. The leaf morphology of these transgenic lines was similar with leaf morphology of tomato entire mutant. In this paper, we report that a single-base deletion mutation in the coding region of SlIAA9 gene results in tomato entire mutant phenotypes.  相似文献   

13.
14.
15.
16.
The glycine-methylation biosynthetic pathway of glycinebetaine (GB) has been investigated, but only a few studies on GB accumulation in transgenic higher plants have utilized this pathway. In this study, two methyltransferase genes named ApGSMT2 and ApDMT2, encoding proteins catalyzing GB biosynthesis from glycine, were cloned from a relative strain of Aphanothece halophytica. The potential roles of ApGSMT2 and ApDMT2 in GB synthesis were first examined in transgenic Escherichia coli, which had increased levels of GB and improved salt tolerance. Then ApGSMT2 and ApDMT2 were transferred into tobacco. Compared with transgenic tobacco expressing betA, transgenic tobacco co-expressing ApGSMT2 and ApDMT2 accumulated more GB and exhibited enhanced drought resistance with better germination performance, higher relative water content, less cell membrane damage and better photosynthetic capacity under drought stress. We concluded that the ApGSMT2 and ApDMT2 genes cloned in this study will be very useful for engineering GB-accumulating transgenic plants with enhanced drought resistance.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号