首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell kinetics in the jejunal crypt of the male Wistar rat were studied using autoradiographic techniques with tritiated thymidine and a stathmokinetic technique with vincristine. The migration rate measured by following the movement of the 50 % peak on the labelling index distribution curve with time after injection of tritiated thymidine gave a value of 1.43 ± 0.14 (SE) cell positions per hour, compared with a value from a cumulative birth rate of 1.78 cell positions per hour. The crypt column length was 32.9 ± 0.2 cells and the column count was 22.3 ± 0.2. This measurement gave a total crypt population of 734 cells, compared with an estimate of 650 ± 6 from direct observation of squashed, microdissected crypts. In each crypt 22.5 ± 0.5 mitoses were present, and the crypt cell production rate was 32 cells per crypt per hour; this latter value was confirmed using two independent techniques. The crypt growth fraction calculated from the durations of phases of the cell cycle and the labelling index was 0.62. A value of 0.61 was found from the labelling index distribution curve. As assessed from crypt squashes, there were 403 proliferating cells per crypt.  相似文献   

2.
Epithelial cell kinetics were investigated in the descending colon of the rat. The number of cells per crypt was found to be approximately 625, with 33 cells per cell column and 19 cell columns per crypt circumference. The growth fraction of the colonic crypt was 0.42, and proliferating cells were situated largely in the lower half of the crypt. The cell cycle time was 50.5 h, with values for the G1, S and G2 phases of 40.0, 7.6 and 2.9 h respectively. Cell migration studies showed that it took 60-72 h for a cell to migrate from the upper border of the proliferative cell compartment in the crypt to the luminal surface of the colon. Data were also obtained from continuous labelling with tritiated thymidine and from studying the circadian rhythm of proliferative activity, which suggest that the cells in the bottom of the crypt may constitute a separate, more slowly cycling (stem)cell compartment.  相似文献   

3.
Forty hairless mice were given injections of tritiated thymidine every 4th hour during 10 days. At 24 hr intervals groups of four mice were killed. The numbers of labelled basal and differentiating cells were determined by autoradiography with a stripping film technique. To determine the background activity skin sections from uninjected control mice were subjected to the same stripping film procedure. Another group of hairless mice was given one single pulse labelling with tritiated thymidine. The number of labelled mitoses was scored for 12 hr after the injection. At 10, 12 and 15 hr after the injection, the numbers of labelled basal and differentiating cells were also determined. A mathematical model of cell population kinetics in the epidermis has been suggested. The results of different simulations on this model were compared with the observed results. The curve of mean grain counts under continuous labelling increased from day to day with two well-defined plateaux. The percentage of all labelled cells increased rapidly up to the 3rd day, and thereafter the curves gradually flattened off. When basal cells and differentiated cells were considered separately the labelling index of the basal cells increased rapidly for the first 3 days and then flattened off at the 100% level on the 5th day. The labelling index of the differentiating cells was low during the first 3–4 days. Then a steep increase in the percentage of labelled differentiating cells was seen, but the curve flattened off again close to the 100 % level after the 7th day. The labelled mitosis curve had its maximum 5 hr after the thymidine injection. The curve fell again to almost zero at 12 hr. Ten, 12 and 15 hr after the injection, 6, 7 and 7% respectively of the labelled cells were found in the spinous layer. It was concluded that three grains over each nucleus could be used as lower limit for considering a cell as labelled. On this basis, tritiated thymidine injections every 4th hour can be considered as continuous labelling.  相似文献   

4.
The present study was undertaken in order to try to define some of the kinetic parameters in the colonic mucosa of normal Wistar rats. Preliminary observations showed considerable morphological differences in the mucosa from site to site along the length of the colon. In particular the height of the crypts (measured in cells) was variable. In addition labelling index studies demonstrated dramatic variations in the distribution of labelling along the length of the crypts from site to site in the bowel. A single site in the descending colon was selected for more detailed study using a stathmokinetic agent, vincristine, and the continous labelling technique with tritiated thymidine. The results of these investigations suggest that there exists at the base of the crypt a subpopulation of cells cycling more slowly than the cells in the rest of the proliferative compartment. Growth fraction appears to fall with rising cell positions within the crypt.  相似文献   

5.
The cell population kinetics of the epidermis were studied in 4-month-old pigs. Mitotic figures were confined to the basal cell (L1) and the first suprabasal cell layer (L2). The mitotic index (MI) was 0.17 +/- 0.04% for L1 and 0.08 +/- 0.03% for L2. Labelled nuclei were distributed throughout the viable epidermis, the majority (79.1 +/- 1.1%) were in L1 with 19.5 +/- 1.2% in L2. The labelling indices (LI) in layers L1 and L2 were 7.1 +/- 0.4% and 3.4 +/- 0.1%, respectively. After labelling with two injections of tritiated thymidine [3H]TdR separated by 90 min, the LI increased to 8.2 +/- 0.3% in L1 and to 4.0 +/- 0.2% in L2. This increased labelling confirmed that cell proliferation occurs in both layers, L1 and L2, of the epidermis. The cell production rate (K) in L1 and L2 had an upper limit of 10.7 +/- 1.0 and 6.2 +/- 1.8 cells per 1000 cells per hour respectively. The cell flow rate per hour (cell flux), into and out of the DNA synthesis phase (S), and the duration of DNA synthesis were determined from double-labelling studies with [3H]TdR and [14C]TdR. The cell flux into and out of S was identical and was calculated as 0.6 +/- 0.1%/hr (L1) and 0.5 +/- 0.1%/hr (L2). Values for tS varied from 8 to 10 hr. The cell turnover times (tT) were in the range 89-129 hr and 180-261 hr for L1 and L2, respectively. Log normal curves were fitted to the fraction labelled mitoses data for L1 and L2. Values for tS for cells in L1 and L2 were 9.8 hr and 11.9 hr, respectively. tG2 + 1/2tM was 7.2 hr in L1 and 9.1 hr in L2.  相似文献   

6.
The depth of the crypts in mouse descending colon varied diurnally, between twenty-six cells at 24.00 hours and thirty-eight cells at 12.00 hours. Cell loss from the colon was greatest immediately before the maximum faeces production, at the beginning of the dark period. The labelling index of the colon also changed, from 9% at 20.00 hours to 16% at 12.00 hours. The greatest variation in labelling index occurred at the top of the zone of proliferative cells, between the ninth and eighteenth cell position up the crypt. In this region a synchronized cohort of about forty cells apparently entered S phase once a day. Although the length of the proliferative zone doubled at 12.00 hours, that of the non-proliferative zone remained fairly constant all day. The number of cryptogenic cells per crypt was estimated by comparing single and split-dose X-ray survival curves. This gave a mean value of two cryptogenic cells per crypt. Crypts rarely regenerated from the base after irradiation. The cryptogenic cells probably lay between cell positions Nos 9 and 18 up the crypt and probably did not function as stem cells in the normal crypt.  相似文献   

7.
Circadian variation in the small bowel mucosa of male Balb/c mouse was studied. The labelling was studied at 2 hourly intervals throughout a 24 h period by using autoradiographic techniques with 3HTdR. A 12 h light-dark schedule was employed. Villus and crypt cell populations, together with the mitotic index, were studied using the micro-dissection technique. Growth fractions were determined from the labelling index distribution curves. The peaks in both villus and crypt cell population occurred during the day, with maximum villus population of 3,887 cells/villus at 13.00 h and maximum crypt population of 178 cells per crypt at 09.00 h. The peaks of labelling index (Is) and mitotic index (Im) occurred during the dark period. The peak value of Is 38% at 17.00 h-19.00 h, was about 6-8 h in advance of the peak value of Im (6%). The peak in growth fraction corresponded to that of the labelling index.  相似文献   

8.
Incorporation of 3H-thymidine during organ culture was studied in duodenal biopsies from 14 patients. Pulse-label at various intervals disclosed active incorporations during the first 2 h in culture. Labelling index declined to low levels at 3-4 h. Thereafter incorporation increased again and persisted throughout the rest of the culture period of 11 h. The DNA synthesis rate of crypt cells between 4 and 11 h in culture was calculated in 5 patients after pulse-label and continuous labelling of explants in parallel culture. The rate of entry into DNA synthesis was about 24 cells per 1,000 crypt cells per hour in flat, coeliac biopsies, versus 9-13 in controls, Gluten did not influence DNA synthesis rate, whereas wheat germ lectin inhibited DNA synthesis. Counting of the total number of mitoses and labelled fraction of mitoses disclosed active crypt cell renewal in flat, coeliac biopsies. In normal-appearing biopsies no mitoses were labelled, indicating delayed exit from S-phase or long duration of G2-phase in these explants.  相似文献   

9.
Epithelial cell loss was induced in the descending colon of the rat by temporary ischaemia to investigate whether this would lead to an increase in crypt cell proliferation. Shortly after the temporary ischaemia the number of cells per crypt was markedly reduced, and it was shown that the cell loss occurred mainly from the non-proliferating upper half of the crypt. The number of cells per crypt reached control values again after 24-48 h. There was a marked increase in proliferative activity, as reflected by the labelling index after 3HTdR and by the mitotic index, with peak values at 16 and 24 h after ischaemia. After 48 h the proliferative indices were normal again. The increase in crypt cell proliferation was characterized by an increase in the labelling index as well as in the mitotic index per crypt cell position. No enlargement of the proliferative cell compartment in the crypt was observed. It is most likely then that the increase in crypt cell proliferation was brought about by a shortening of the cell cycle, since the growth fraction in the lower half of the crypt approaches 1.0. The possible implications of the present data for the control of colonic cell proliferation and colonic carcinogenesis are discussed.  相似文献   

10.
N Gunduz 《Cytometry》1985,6(6):597-601
A method is modified to determine the DNA synthesizing cells in primary human breast tumors and cells with idiopathic thrombocytopenic purpura (ITP) with FITC-conjugated monoclonal antibody against bromodeoxyuridine (FITC-M-anti-BrdUrd) and fluorescence microscopy. The DNA synthesizing cells were also determined from a portion of the same tissues by classical tritiated thymidine labeling (3HdThd) and autoradiography. The results from bromodeoxyuridine labeling index (BrdUrd-LI) and tritiated thymidine labeling index (3HdThd-LI) obtained from the same tissues were compared. The mean BrdUrd-LI for breast tumor was 5.4 +/- 1.0% and the mean 3HdThd-LI was 5.5 +/- 1.1%. Similarly, the labeling indexes obtained from mononuclear leukocytes of healthy donors had means of 0.5 +/- 0.1% and 0.6 +/- 0.1% for BrdUrd-LI and 3HdThd-LI, respectively. The change in the proliferation rate of mononuclear leukocyte population in the samples obtained from patients with ITP could be observed by both methods. The mean BrdUrd-LI of mononuclear leukocytes for this hematological disorder was 5.4 +/- 0.8%. These results suggest that was 6.1 +/- 0.8%. These results suggest that this relatively simple technique offers an alternative method for determining the DNA synthesizing cells in a given cell population.  相似文献   

11.
Smooth muscle cells (SMC) from various arterial origins have been successfully maintained in culture. The present study evaluates the proliferative activity of aortic and mesenteric SMC in culture. Aortic and mesenteric SMC were obtained from male Wistar rats by explant and enzyme digestion techniques, respectively. Vascular SMC obtained by either method exhibited a characteristic hill-and-valley growth pattern in culture after confluence and were positively labelled with either anti-smooth muscle actin or myosin by an indirect immunofluorescent method. The rate of incorporation of thymidine into DNA and cell number counting were used as indices of proliferation in vitro. Vascular SMC from passages 4-33 were first synchronized with either Dullbecco's Modified Eagle's Medium (DME) or Ham's F-12 medium, supplemented with insulin-transferring-selenium (ITS), for 72 hours. SMC were then stimulated with 10% bovine serum for either 24 or 72 hours with the former processed for scintillation counting, the latter for cell number determination. The incorporation of tritiated thymidine into DNA following a 2 hour incubation was determined by scintillation counting after perchloric acid extraction. In terms of cell numbers, proliferative responses to bovine serum were determined by Coulter counting. Autoradiography was also carried out in some cultures to determine both thymidine and mitotic labelling indices. The rate of thymidine incorporation in aortic cells was 2-3 fold higher than in mesenteric cells. Aortic and mesenteric SMC lines exhibited similar cell cycle intervals in terms of total duration and individuals cycle parameters. However, the total thymidine index was higher in the aortic than mesenteric SMC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Epithelial cell recruitment was examined in mouse ileum after external gamma-irradiation (50 cGy) or internal beta-irradiation (0.148 MBq/g of [3H]thymidine), using the per cent-labelled-mitoses method and by analysing the distribution of mitotic cells in the crypts. In the presumptive stem cell zone at the lower cell positions of the crypt, the slowly cycling cells decreased their cell cycle 6 or 12 hours after a dose of 50 cGy. In the higher cell positions, a slight shortening of the cell cycle was also observed. After administration of a high dose of [3H]thymidine, dormant (G0) cells also entered the cell cycle in the lower cell positions. The results suggest that stem cells in the crypt may react to irradiation in two ways: first, by shortening the cell cycle in cycling cells; secondly, by an entry into the cell cycle by other dormant cells. There was destruction of some cycling stem cells before any recruitment. The data support the idea that the stem cell population in the crypt is heterogeneous.  相似文献   

13.
Epithelial cell kinetics were studied in an ileal segment after transposition to proximal jejunum. The number of cells per villus column in the transposed ileum increased after 4-7 days to reach values normal for jejunum after 14-30 days. This increase was accompanied by a simultaneous increase in the number of cells per crypt column up to 130% of values in jejunum and ileum in situ. The percentage of labelled crypt cells, after labelling with 3H-thymidine, and the relative size of the proliferative cell compartment in the crypt in the transposed ileum did not differ from values in the ileum in situ at any time interval after surgery. The total proliferative activity per crypt, which was determined by scintillation counting of isolated crypts after 3H-thymidine labelling, increased two-fold from 7 days after surgery. Cell migration studies showed that the increase in the number of villus cells was probably not caused by a change in the life span of the epithelial cells. It seems that the increase in the number of villus cells in ileal epithelium after transposition to proximal jejunum is brought about by an enlargement of the crypt, while the relative size of the proliferative cell compartment in the crypt remains unchanged.  相似文献   

14.
We describe a double labelling method for estimating the duration of DNA synthesis (Ts) and the flux of cells into and from the S phase of the cell cycle, based on labelling with tritiated thymidine [( 3H]TdR) followed by bromodeoxyuridine (BrdU) and combining immunohistological detection of BrdU with conventional autoradiography. In practice, the change in size of a window of double labelled cells occurs as the time interval between the two labels increases. In mouse tongue epithelium there is a marked circadian variation in the number of cells in DNA synthesis. From 0900 to 1500 h this labelling index (LI) falls, but from 2100 to 0300 h it increases. Our results show that the circadian decrease in LI is associated with a short Ts (5.8 +/- 0.3 h), a high S phase efflux and an initially low influx of cells from G1 into S. Conversely, the rising circadian LI is associated with a longer Ts (9.4 +/- 0.1 h), an initially low efflux and a moderate to high influx. Two time-points exist on the circadian LI curve when influx and efflux rates change abruptly. At 0100 h the efflux rate rises from low (5 cells %/h) to high (15-16 cells %/h) and simultaneously the influx rate changes from high to low. Similarly at 1300-1400 h, efflux rate falls from high (19-20 cells %/h) to low (4-8 cells %/h) values and influx rates change from low to high. This double labelling method has revealed that the duration of DNA synthesis varies across the circadian cycle, as do influx and efflux values which generally fall within a discrete range of high or low values. The timing of the changes in flux suggests the presence of two 'control' points on the circadian LI cycle that were previously unrecognized.  相似文献   

15.
Mice (C57Bl) were placed for 35 days in a room with reversed light cycle; lights came on at 1800 hours and off at 0600 hours. At six hour intervals throughout the day three mice were injected with tritiated thymidine and sacrificed 30 minutes later. Crypts were dissected for radioautography and determination of disintegrations per minute per crypt, the number of cells in mitosis and the number of cells synthesizing DNA was determined. The results reported clearly demonstrate reversal of the circadian rhythm in the parameters tested.  相似文献   

16.
Jong-Chang  Tsai 《Journal of Zoology》1996,239(3):591-599
Cell kinetics of the epidermal cells of normal juvenile loach ( Misgurnus anguillicaudatus ) were studied with autoradiography. Fish were labelled with single tritiated thymidine injections and killed at regular time intervals. Three cell types are identified by light microscopy, namely the epithelial cells, the club cells and the mucous cells. Epithelial cells are the only cell type that is involved in cell proliferation and, like the epithelial cells in the epidermis of other teleosts, proliferation of these cells occurs at all epidermal layers. The club cells and the mucous cells seem to be differentiated from the epithelial cells. Based on the time-course study of the labelling index and the grain count halving method, the generation time of the epithelial cells is estimated to be 4 days. From the labelling index of double injections, the duration of the S phase is determined as 8.3 h. Significant cell loss from the outermost layer and cell translocation from the lower layer to the upper layer within 4 days are inferred from the fluctuations of the labelling index curve. The renewal of these cells in the tissue seems rapid in comparison to the epidermis of terrestrial vertebrates.  相似文献   

17.
Bone marrow plasma cells from fifteen cases of multiple myeloma, immunologically typed, were incubated with different tritiated compounds. The labelling index with tritiated thymidine is generally low, while the mean grain count is fairly normal in the active cells. The labelling index of 3H-uridine and 3H-leucine was very high, while the mean grain count per cell lies within the normal range. The results obtained with 3H-phenylalanine-mustard (melphalan), which is a drug used in the treatment of the plasmacytoma, show also incorporation values roughly comparable to those of 3H-leucine. The present data seem to support the clinical use of melphalan as a compound that is actively incorporated into the plasma cells of plasmacytoma although inhibition of protein synthesis due to specific binding to protein was not demonstrated.  相似文献   

18.
The early effects of a single injection of cytosine arabinoside (ara-C) on cell population kinetics in the jejunal crypt of the mouse were studied using autoradiography with tritiated thymidine, and metaphase arrest with vincristine. Ara-C had three main effects on crypt cells: a block of cells near the transition from G1 to S, death of nearly all cells in S, and a temporary block of the survivors, which remained viable and were able to proceed through the cell cycle. Throughout the crypt there was a decrease in cell cycle time and an increase in growth fraction. Although changes in proliferative rate were highest in the lowest part of the crypt it was not possible to show that crypt repopulation originated only from basal crypt cells, and the data are consistent with repopulation from the faster cycling cells in the proliferative compartment.  相似文献   

19.
The question was investigated of whether for crypt epithelia of the jejunum of the mouse all cells labelled after a single injection of 3H-TdR subsequently divide or whether cells exist in the crypt which synthesize metabolic DNA and, therefore, do not undergo division after labelling.
A double labelling experiment was performed with a first injection of 3H-TdR followed 1 hr later by an injection of 14C-TdR. Then from double emulsion autoradiographs of isolated squashed crypts the number of 3H-only, 14C-only and double labelled cells and mitoses were counted.
The double labelling produced a narrow, 1 hr wide sub-population of 3H-only labelled cells. This subpopulation of S cells completed its division before labelled cells were lost from the crypts by migration onto the villi. The results showed that this subpopulation of 3H-only cells completely doubled within 3 hr and then remained constant through 6 hr. From this result it was concluded that every cell labelled after a single injection of 3H-TdR divides.
From the same autoradiographs the flow rate through the end of mitosis was measured. From the flow rate and the mitotic index a mitotic duration of 0·5 hr was determined. The agreement of this measured mitotic time with the value calculated from the labelling index, mitotic index and S duration is also strong evidence that every labelled cell divides.
Both experiments show that the intestinal crypt does not contain cells synthesizing metabolic DNA.  相似文献   

20.
Sulindac enhances cell proliferation in DMH-treated mouse colonic mucosa   总被引:2,自引:0,他引:2  
In a previous study we reported that the NSAID sulindac had a marked inhibitory effect on the development of colonic tumours in mice treated with the carcinogen 1,2-dimethylhydrazine (DMH). In this study we examined the effects of sulindac in respect of cell-kinetic changes in mouse colonic mucosa as determined by flash labelling with the thymidine analogue bromodeoxyuridine (BrdUrd) at varying intervals during the process of colonic carcinogenesis. We also investigated the possibility that these changes may be modulated by misoprostol a prostaglandin E1 analogue. Four groups of 36 mice each were treated for 18 weeks with the following drug/s respectively: (1) DMH; (2) DMH and sulindac; (3) DMH, sulindac and misoprostol; and (4) DMH and misoprostol. Three animals from each group were killed each week between the sixth week and the eighteenth week after the start of the experiment. A 1-h flash label technique was employed and paraffin sections of colonic mucosa were examined. For each animal a total of 50 perfect axially cut crypts were chosen and the following parameters determined: crypt length, labelling index and labelling index distribution: the data were analysed using the computer program GLIM. For each of the four groups, crypt lengths increased significantly with the duration of treatment with no significant difference between the groups. In sulindac-treated animals the labelling index for all positions increased with duration of treatment whereas for animals not treated with sulindac there was no significant difference in labelling index with respect to duration of treatment. The administration of misoprostol did not appear to significantly alter the effects of sulindac. It is postulated that the observed increase in cell proliferation could be a compensatory phenomenon occurring secondary to loss of crypt epithelial cells by apoptosis induced by sulindac. Also the finding of an increase in labelling index mediated by a chemopreventive agent indirectly questions the rationale behind the therapeutic manipulation of crypt cell proliferation in order to reduce the risk of colon cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号