首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
RNA沉默技术作为探索基因功能的实验手段应用于多种生物. 以编码酿酒酵母NADPH依赖型醛糖还原酶的GRE3基因为对象,检测酿酒酵母双链RNA介导的基因沉默效应. 以pESC-LEU为骨架,构建重组质粒psiLENT-GRE3并用于转化酿酒酵母YPH499. 用RT-PCR检测到诱导1 kb RNA双螺旋和136 bp loop结构引起的GRE3基因表达下调. 结果表明,双链RNA介导的基因沉默技术,能够用作降低酿酒酵母某一特定基因表达水平的工具. 并有助于理解芽殖酵母的RNA干扰现象.  相似文献   

2.
The gene encoding for amorpha-4,11-diene synthase from Artemisia annua was transformed into yeast Saccharomyces cerevisiae in two fundamentally different ways. First, the gene was subcloned into the galactose-inducible, high-copy number yeast expression vector pYeDP60 and used to transform the Saccharomyces cerevisiae strain CEN·PK113-5D. Secondly, amorpha-4,11-diene synthase gene, regulated by the same promoter, was introduced into the yeast genome by homologous recombination. In protein extracts from galactose-induced yeast cells, a higher activity was observed for yeast expressing the enzyme from the plasmid. The genome-transformed yeast grows at the same rate as wild-type yeast while plasmid-carrying yeast grows somewhat slower than the wild-type yeast. The plasmid and genome-transformed yeasts produced 600 and 100 μg/l of the artemisinin precursor amorpha-4,11-diene, respectively, during 16-days’ batch cultivation. Revisions requested 14 November 2005; Revisions received 17 January 2006  相似文献   

3.
Summary The nucleotide sequence of a 2.314 kb DNA segment containing a gene (cedl) expressing cellodextrinase activity from Butyrivibrio fibrisolvens H17c was determined. The B. fibrisolvens H17c gene was expressed from a weak internal promoter in Escherichia coli and a putative consensus promoter sequence was identified upstream of a ribosome binding site and a GTG start codon. The complete amino acid sequence (547 residues) was deduced and homology was demonstrated with the Clostridium thermocellum endoglucanase D (EGD), Pseudomonas fluorescens var. cellulose endoglucanase (EG), and a cellulase from the avocado fruit (Persea americana). The ced1 gene product Cedl showed cellodextrinase activity and rapidly hydrolysed short-chain cellodextrins to yield either cellobiose or cellobiose and glucose as end products. The Cedl enzyme released cellobiose from p-nitrophenyl--d-cellobioside and the enzyme was not inhibited by methylcellulose, an inhibitor of endoglucanase activity. Although the major activity of the Cedl enzyme was that of a cellodextrinase it also showed limited activity against endoglucanase specific substrates [carboxymethylcellulose (CMC), lichenan, laminarin and xylan]. Analysis by SDS-polyacrylamide gel electrophoresis with incorporated CMC showed a major activity band with an apparent M r of approximately 61000. The calculated M r of the ced1 gene product was 61023.Abbreviations Ap ampicillin - ced1 gene coding for Ced1 - Ced1 cellodextrinase from B. fibrisolvens - CMC carboxymethylcellulose - LB Luria Bertani - ORF open reading frame - pNPC p-nitrophenyl--d-cellobioside - PC phosphate citrate - HCA hydrophobic cluster analysis  相似文献   

4.
Summary This study presents the first evidence that the 5 promoter region of the Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase gene (G-3-PD) promoter will permit expression of an adjacent foreign gene. The S. cerevisiae G-3-PD promoter was linked to the herpes simplex virus — thymidine kinase (HSV-TK) gene in a shuttle plasmid capable of autonomous replication in both yeast and Escherichia coli. Since the HSV-TK gene promoter is not functional in yeast, yeast cells containing these plasmids will express the HSV-TK gene and synthesize thymidine kinase only if the yeast promoter fragment is fused to the HSV-TK gene in the proper orientation. The 5 flanking sequences necessary for the expression of heterologous eukaryotic genes in S. cerevisiae are discussed.  相似文献   

5.
The ATF2 gene, which encodes alcohol acetyltransferase II (AATase II), was cloned from Saccharomyces cerevisiae Kyokai No. 7 (sake yeast). The ATF2 gene coded for a protein of 535 amino acid residues with a calculated molecular mass of 61,909 daltons. The deduced amino acid sequences of the ATF2 showed 36.9% similarity with that of ATF1, which encodes AATase I. The hydrophobicity profiles for the Atf2 protein and Atf1 protein were similar. A transformant carrying multiple copies of the ATF2 gene had 2.5-fold greater AATase activity than the control, and this activity was not significantly inhibited by linoleic acid. A Southern analysis of the yeast genomes in which the ATF2 gene was used as a probe showed that S. cerevisiae and brewery lager yeast have one ATF2 gene, while S. bayanus has no similar gene.  相似文献   

6.
Actinidin is a protease found abundantly in the fruit of Actinidia chinensis or Kiwi fruit. The overproduction of this protein in microorganisms, especially using the yeast Saccharomyces cerevisiae, would be economically valuable as it would simplify the extraction and purification of the protein. It was observed, however, that the yeast growth rate was reduced by the presence of externally supplied actinidin in the growth medium. It was also observed that actinidin present in the yeast growth medium was partially degraded. Several actinidin-encoding gene variants have been cloned in a yeast expression and secretion vector. It was observed that different actinidin gene constructions influenced the growth rate of S. cerevisiae in complete media. Recombinant plasmids carrying only the mature actinidin-encoding DNA sequences reduced yeast transformability significantly and had the least stability. The results thus suggest that the presence of a recombinant plasmid carrying a gene of a potentially toxic protein may result in a deleterious effect on the host cell.  相似文献   

7.
CRISPR/Cas9基因编辑技术已经被广泛应用于工程酿酒酵母的基因插入、基因替换和基因敲除,通过使用选择标记进行基因编辑具有简单高效的特点。前期利用CRISPR/Cas9系统敲除青蒿酸生产菌株酿酒酵母(Saccharomyces cerevisiae) 1211半乳糖代谢负调控基因GAL80,获得菌株S. cerevisiae 1211-2,在不添加半乳糖诱导的情况下,青蒿酸摇瓶发酵产量达到了740 mg/L。但在50 L中试发酵实验中,S. cerevisiae 1211-2很难利用对青蒿酸积累起到决定性作用的碳源-乙醇,青蒿酸的产量仅为亲本菌株S.cerevisiae 1211的20%–25%。我们推测因遗传操作所需的筛选标记URA3突变,影响了其生长及青蒿酸产量。随后我们使用重组质粒pML104-KanMx4-u连同90 bp供体DNA成功恢复了URA3基因,获得了工程菌株S. cerevisiae 1211-3。S. cerevisiae 1211-3能够在葡萄糖和乙醇分批补料的发酵罐中正常生长,其青蒿酸产量超过20g/L,与亲本菌株产量相当。研究不但获得了不加半乳糖诱导的青...  相似文献   

8.
The bop gene codes for the membrane protein bacterio-opsin (BO), which on binding all-trans-retinal, constitutes the light-driven proton pump bacteriorhodopsin (BR) in the archaebacterium Halobacterium salinarium . This gene was cloned in a yeast multi-copy vector and expressed in Saccharomyces cerevisiae under the control of the constitutive ADH1 promoter. Both the authentic gene and a modified form lacking the precursor sequence were expressed in yeast. Both proteins are incorporated into the membrane in S. cerevisiae. The presequence is thus not required for membrane targeting and insertion of the archaebacterial protein in budding yeast, or in the fission yeast Schizosaccharomyces pombe, as has been shown previously. However, in contrast to S. pombe transformants, which take on a reddish colour when all-trans-retinal is added to the culture medium as a result of the in vivo regeneration of the pigment, S. cerevisiae cells expressing BO do not take on a red colour. The precursor of BO is processed to a protein identical in size to the mature BO found in the purple membrane of Halobacterium. The efficiency of processing in S. cerevisiae is dependent on growth phase, as well as on the composition of the medium and on the strain used. The efficiency of processing of BR is reduced in S. pombe and in a retinal-deficient strain of H. salinarium, when retinal is present in the medium.
  相似文献   

9.
10.
Aims: Isoprene (2‐methyl‐1,3‐butadiene; C5H8) is naturally produced by photosynthesis and emitted in the atmosphere by the leaves of many herbaceous, deciduous and woody plants. Fermentative yeast and fungi (Ascomycota) are not genetically endowed with the isoprene production process. The work investigated whether Ascomycota can be genetically modified and endowed with the property of constitutive isoprene production. Methods and Results: Two different strategies for expression of the IspS gene in Saccharomyces cerevisiae were employed: (i) optimization of codon usage of the IspS gene for specific expression in S. cerevisiae and (ii) multiple independent integrations of the IspS gene in the rDNA loci of the yeast genome. Copy number analysis showed that IspS transgenes were on the average incorporated within about 25% of the endogenous rDNA. Codon use optimization of the Pueraria montana (kudzu vine) IspS gene (SckIspS) for S. cerevisiae showed fivefold greater expression of the IspS protein compared with that of nonoptimized IspS (kIspS). With the strategies mentioned earlier, heterologous expression of the kudzu isoprene synthase gene (kIspS) in S. cerevisiae was tested for stability and as a potential platform of fermentative isoprene production. The multi‐copy IspS transgenes were stably integrated and expressed for over 100 generations of yeast cell growth and constitutively produced volatile isoprene hydrocarbons. Secondary chemical modification of isoprene to a number of hydroxylated isoprene derivatives in the sealed reactor was also observed. Conclusion: Transformation of S. cerevisiae with the Pueraria montana var. lobata (kudzu vine) isoprene synthase gene (IspS) conferred to the yeast cells constitutive isoprene hydrocarbons production in the absence of adverse or toxic effects. Significance and Impact of the Study: First‐time demonstration of constitutive isoprene hydrocarbons production in a fermentative eukaryote operated through the mevalonic acid pathway. The work provides concept validation for the utilization of S. cerevisiae, as a platform for the production of volatile hydrocarbon biofuels and chemicals.  相似文献   

11.
A DNA segment encoding a signal peptide from yeast invertase was fused in frame to. hglH. gene encoding 87-kD- β-1,3-glucanase from Bacillus circulans IAM1165 and was expressed in the yeast Saccharomyces cerevisiae under the control of the GAL1 gene promoter. Yeast cells contain.ng this fused gene produced active β -1,3-glucanase in the medium after a long period of incu ation at low temperature. The enzyme produced by yeast was heterogeneous in size, and larger than the enzyme produced by Escherichia coli.  相似文献   

12.
Aims: To determine the chromosomal location and entire sequence of Lg-FLO1, the expression of which causes the flocculation of bottom-fermenting yeast. Methods and Results: Two cosmid clones carrying DNA from a bottom-fermenting yeast chromosome VIII right-arm end were selected by colony hybridization. Sequencing revealed that the clones contained DNA derived from a Saccharomyces cerevisiae type chromosome VIII and a Saccharomyces bayanus type chromosome VIII, both from bottom-fermenting yeast. Conclusions: Lg-FLO1 is located on the S. cerevisiae type chromosome VIII at the same position as the FLO5 gene of the laboratory yeast S. cerevisiae S288c. The unique chromosome VIII structure of bottom-fermenting yeast is conserved among other related strains. FLO5 and Lg-FLO1 promoter sequences are identical except for the presence of three 42 bp repeats in the latter, which are associated with gene activity. Flocculin genes might have been generated by chromosomal recombination at these repeats. Significance and Impact of the Study: This is the first report of the exact chromosomal location and entire sequence of Lg-FLO1. This information will be useful in the brewing industry for the identification of normal bottom-fermenting yeast. Moreover, variations in the FLO5 locus among strains are thought to reflect yeast evolution.  相似文献   

13.
The upstream region of the isocitrate lyase gene (UPR-ICL, 1530bp) of an n-alkane-utilizable yeast, Candida tropicalis, induced gene expression in another yeast, Saccharomyces cerevisiae, when the yeasts were grown on acetate. Surprisingly, UPR-ICL displayed the same regulatory function in the bacterium Escherichia coli when grown on acetate. We determined the interesting nucleotide sequence of UPR-ICL. The deletion analysis of UPR-ICL in both cells revealed the presence of two distinct promoters: one was localized at-394 to-379 and regulated gene expression in S. cerevisiae; the other was tocated near the initiation codon and regulated gene expression in E. coli. The two promoter sequences were similar, but not identical to regulatory elements that have been previously reported in S. cerevisiae and E. coli, respectively. Accordingly, the possibility of novel regulatory mechanisms could not be excluded. This is an interesting example of the presence of distinct cis-acting regulatory elements responsible for the induction of gene expression in one gene by acetate in both S. cerevisiae and E. coli. Preservation of such promoters through evolution is also discussed.Abbreviations ICL Isocitrate lyase - UPR-ICL Upstream region of the Candida tropicalis isocitrate lyase gene  相似文献   

14.
[目的] 利用酿酒酵母表达系统,通过乙醇脱氢酶启动子异源表达细菌源的铁载体合成蛋白PchE,并与来源于枯草芽孢杆菌的泛酰化酶Sfp同宿主共表达,探索真核表达体系表达具有生化活性的细菌源蛋白。[方法] 从大肠杆菌BAP 1染色体上扩增sfp基因,将pchE基因及串联的pchEsfp基因分别构建到酵母-大肠杆菌穿梭质粒pXW55中,各自转化酿酒酵母BJ5464-npgA表达,经过亲和层析和离子交换层析纯化蛋白,利用HPLC检测细菌源与酵母源表达的PchE在体外重构生化反应中的催化活性。[结果] 利用酿酒酵母表达系统可以获得高纯度的原核蛋白PchE。真菌源的泛酰化基因NpgA和细菌源的Sfp,均可泛酰化修饰PchE,合成中间产物HPT-Cys。[结论] 在酿酒酵母Saccharomyces cerevisiae BJ5464-npgA表达系统中,首次证明真菌源的泛酰化基因NpgA和细菌源的Sfp,均可泛酰化修饰细菌源的非核糖体肽合酶。比较酵母和细菌宿主的目标蛋白表达,证明酵母表达的巨大蛋白PchE的纯度更高,非特异性条带减少,推测酵母宿主可能更适合表达纯化功能性的巨型蛋白质。  相似文献   

15.
In order to analyze the response of Saccharomyces cerevisiae to starvation on a gene expression level, microarray experiments were performed using a yeast whole genome array. It is well known that under stress conditions like heat, high salt concentrations, pressure or the presence of toxins, special stress response genes are induced in Saccharomyces cerevisiae. This includes the genes encoding the typical heat shock proteins as well as numerous genes concerning cell membrane composition, central carbon metabolism or cell cycle. In this contribution, the Saccharomyces cerevisiae starvation‐stress response is analyzed. Starvation is a living condition often experienced by yeast in natural surroundings. As Saccharomyces cerevisiae is an eukaryote, many results from the gene expression analysis are valid for mammalians as well. The understanding of response of the yeast to the absence of a nutrient is also important for the development of feeding strategies in cultivations. Therefore, knowledge about the gene expression during starvation is important for both research and industrial applications. The regulation of 233 genes, which are involved in the stress response according to the literature, was examined via microarray experiments. In addition, a screening was carried out identifying 115 genes, which are hitherto not known to be comprised in the stress response, but which were significantly up‐regulated during starvation.  相似文献   

16.
An ethionine-resistance gene cloned from Saccharomyces cerevisiae DKD-5D-H was able to enhance S-adenosyl-l-methionine (AdoMet) accumulation when it was introduced into the yeast cells on multi-copy plasmid YEp13. In order to increase the AdoMet accumulation, the gene was integrated into the yeast chromosome by using a yeast transposon Ty element. When the YEp plasmid was used for the integration, the ethionine-resistance gene was efficiently inserted into the yeast chromosomes with a substantial increase in AdoMet productivity (about twofold) in comparison with that by the yeast cells carrying the gene on an extrachromosomal multi-copy plasmid.  相似文献   

17.
Summary The POL1 gene of the fission yeast, Schizosaccharomyces pombe, was isolated using a POL1 gene probe from the budding yeast Saccharomyces cerevisiae, cloned and sequenced. This gene is unique and located on chromosome II. It includes a single 91 by intron and is transcribed into a mRNA of about 4500 nucleotides. The predicted protein coded for by the S. pombe POL1 gene is 1405 amino acid long and its calculated molecular weight is about 160000 daltons. This peptide contains seven amino acid blocks conserved among several DNA polymerases from different organisms and shares overall 37% and 34% identity with DNA polymerases alpha from S. cerevisiae and human cells, respectively. These results indicate that this gene codes for the S. pombe catalytic subunit of DNA polymerase alpha. The comparisons with human DNA polymerase alpha and with the budding yeast DNA polymerases alpha, delta and epsilon reveal conserved blocks of amino acids which are structurally and/or functionally specific only for eukaryotic alpha-type DNA polymerases.  相似文献   

18.
Chen Z  Li Z  Yu N  Yan L 《Biotechnology letters》2011,33(4):721-725
The sweet protein monellin gene was expressed in Saccharomyces cerevisiae under the control of the GAL1 promoter and α-factor signal peptide sequence of S. cerevisiae. The gene, which was obtained through mutation of the synthesized single-chain monellin gene, was cloned into an E. coli-yeast shuttle vector pYES2.0 which carries the galactose-inducible promoter GAL1. Then the α-factor signal peptide of S. cerevisiae was linked also, resulting in the secreting expression vector pYESMTA. The recombinant plasmid was subsequently transformed into strain S. cerevisiae INVsc1. The peptide efficiently directed the secretion of monellin from the recombinant yeast cell. A maximum yield of active monellin was 0.41 g l−1 of the supernatant from INVsc1 harboring pYESMTA.  相似文献   

19.
Saccharomyces cerevisiae is sensitive to d-amino acids: those corresponding to almost all proteinous l-amino acids inhibit the growth of yeast even at low concentrations (e.g. 0.1 mM). We have determined that d-amino acid-N-acetyltransferase (DNT) of the yeast is involved in the detoxification of d-amino acids on the basis of the following findings. When the DNT gene was disrupted, the resulting mutant was far less tolerant to d-amino acids than the wild type. However, when the gene was overexpressed with a vector plasmid p426Gal1 in the wild type or the mutant S. cerevisiae as a host, the recombinant yeast, which was found to show more than 100 times higher DNT activity than the wild type, was much more tolerant to d-amino acids than the wild type. We further confirmed that, upon cultivation with d-phenylalanine, N-acetyl-d-phenylalanine was accumulated in the culture but not in the wild type and hpa3Δ cells overproducing DNT cells. Thus, d-amino acids are toxic to S. cerevisiae but are detoxified with DNT by N-acetylation preceding removal from yeast cells.  相似文献   

20.
Cloning, sequencing, and expression of the gene for soluble lysozyme of bacteriophage FMV from Gram-negative Pseudomonas aeruginosa bacteria were conducted in yeast cells. Comparable efficiency of two lysozyme expression variants (as intracellular or secreted proteins) was estimated in cells of Saccharomyces cerevisiae and Pichia pastoris. Under laboratory conditions, yeast S. cerevisiae proved to be more effective producer of phage lysozyme than P. pastoris, the yield of the enzyme in the secreted form being significantly higher than that produced in the intracellular form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号