首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ascidian early embryonic cells undergo cell differentiation without cell cleavage, thus enabling mixture of cell fate determinants in single cells, which will not be possible in mammalian systems. Either cell in a two-cell embryo (2C cell) has multiple fates and develops into any cell types in a tadpole. To find the condition for controlled induction of a specific cell type, cleavage-arrested cell triplets were prepared in various combinations. They were 2C cells in contact with a pair of anterior neuroectoderm cells from eight-cell embryos (2C-aa triplet), with a pair of presumptive notochordal neural cells (2C-AA triplet), with a pair of presumptive posterior epidermal cells (2C-bb triplet), and with a pair of presumptive muscle cells (2C-BB triplet). The fate of the 2C cell was electrophysiologically identified. When two-cell embryos had been fertilized 3 h later than eight-cell embryos and triplets were formed, the 2C cells became either anterior-neuronal, posterior-neuronal or muscle cells, depending on the cell type of the contacting cell pair. When two-cell embryos had been fertilized earlier than eight-cell embryos, most 2C cells became epidermal. When two- and eight-cell embryos had been simultaneously fertilized, the 2C cells became any one of three cell types described above or the epidermal cell type. Differentiation of the ascidian 2C cell into major cell types was reproducibly induced by selecting the type of contacting cell pair and the developmental time difference between the contacting cell pair and 2C cell. We discuss similarities between cleavage-arrested 2C cells and vertebrate embryonic stem cells and propose the ascidian 2C cell as a simple model for toti-potent stem cells.  相似文献   

2.
Germ cell binding to rat Sertoli cells in vitro   总被引:2,自引:0,他引:2  
The interaction between male germ cells and Sertoli cells was studied in vitro by co-incubation experiments using isolated rat germ cells and primary cultures of Sertoli cells made germ cell-free by the differential sensitivity of germ cells to hypotonic shock. The germ cell/Sertoli cell interaction was examined morphologically with phase-contrast and scanning electron microscopy and then quantified by measuring radioactivity bound to Sertoli cell cultures after co-incubation with added [3H]leucine-labeled germ cells. Germ cell binding to Sertoli cell cultures was the result of specific adhesion between these two cell types, and several features of this specific adhesion were observed. First, germ cells adhered to Sertoli cell cultures under conditions during which spleen cells and red blood cells did not. Second, germ cells had a greater affinity for Sertoli cell cultures than they had for cultures of testicular peritubular cells or cerebellar astrocytes. Third, germ cells fixed with paraformaldehyde adhered to live Sertoli cultures while similarly fixed spleen cells adhered less tightly. Neither live nor paraformaldehyde-fixed germ cells adhered to fixed Sertoli cell cultures. Fourth, germ cell binding to Sertoli cell cultures was not immediate but increased steadily and approached a maximum at 4 h of co-incubation. Saturation of germ cell binding to Sertoli cell cultures occurred when more than 4200 germ cells were added per mm2 of Sertoli cell culture surface. Finally, germ cell binding to Sertoli cell cultures was eliminated when co-incubation was performed on ice. Based on these observations, we concluded that germ cell adhesion to Sertoli cells was specific, temperature-dependent, and required a viable Sertoli cell but not necessarily a viable germ cell. These results have important implications for understanding the complex interaction between Sertoli cells and germ cells within the seminiferous tubule and in the design of future experiments probing details of this interaction.  相似文献   

3.
A panel of seven mouse splenic macrophage cell lines, derived from cloned progenitors, was compared for their ability to present antigen to Th1 or Th2 helper T cell lines and hybridomas, as well as to naive T cells, and to provide accessory cell function for the synthesis of antibody from primed B cells. One of the cell lines expressed MHC class II molecules and was the only line with constitutive antigen-presenting activity for Th1 cells. It may represent a subset of splenic macrophages responsible for the activation of naive Th1 helper cells in situ. The remaining six cell lines responded to INF-gamma by up-regulating their class II expression and acquiring Th1 antigen-presenting activity. They may represent cells which, in situ, lack constitutive antigen-presenting activity but are promoted to presenting status by Th1-derived INF-gamma. Five of the cell lines provided accessory cell function to Th2 cells, as indicated by antibody synthesis in suspensions of spleen cells from primed mice depleted of their antigen-presenting cells. One of the cell lines lacking accessory cell activity had constitutive antigen-presenting activity for Th1 cells. This reciprocal expression of antigen-presenting activity supports the idea that Th1 and Th2 helper cells are activated by different antigen-presenting cells. Finally, the cell lines differed in their ability to constitutively induce an allogeneic response; a response that was limited to CD8+ T cells occurred in a CD4+ helper cell-independent manner and was unaffected by the addition of INF-gamma. The alloantigen-presenting macrophage cell lines also possessed the most efficient accessory cell activity for antibody synthesis. These cell lines, which represent a spectrum of antigen-presenting activities in the spleen afford models for defining the roles of macrophages in the induction of immune responses and for resolving issues concerning their development.  相似文献   

4.
Knowledge of the exact number of viable cells in a given volume of a cell suspension is required for many routine tissue culture manipulations, such as plating cells for immunocytochemistry or for cell transfections. This protocol describes a straightforward and fast method for differentiating between live and dead cells and quantifying the cell concentration and total cell number using a hemacytometer. This procedure first requires detaching cells from a growth surface and resuspending them in media. Next, the cells are diluted in a solution of Trypan blue (ideally to a concentration that will give 20-50 cells per quadrant) and placed in the hemacytometer. Finally, averaging the counts of viable cells in several randomly selected quadrants, dividing the average by the volume of one 1 mm(2) quadrant (0.1 microl) and multiplying by the dilution factor gives the number of cells per l. Multiplying this cell concentration by the total volume in microl gives the total cell number. This protocol describes counting human neural stem/precursor cells (hNSPCs), but can also be used for many other cell types.  相似文献   

5.
种子细胞也是组织工程的核心研究内容,获得足够数量和质量的种子细胞是开展体外组织工程的必要基础。用于组织工程的种子细胞必须具有形成新组织结构的能力,主要来源于自体、同种异体或异种,在具体应用时各有利弊。一些成体干细胞由于不存在伦理争议以及发育分化条件相对简单等优势是重要的种子细胞,包括造血干细胞、骨髓干细胞、神经干细胞、脂肪干细胞、皮肤干细胞。人胚胎干细胞及其组织工程要真正在临床医学中得到应用,还有很长的一段路要走。其他一些细胞也可以作为组织工程种子细胞,包括内皮细胞、上皮细胞、成纤维细胞、骨细胞、成骨细胞、角质细胞、前脂肪细胞、脂肪细胞、肌腱细胞等。这些细胞已分化,分裂能力有限,但仍应用于组织工程。理想的种子细胞具有一定标准。  相似文献   

6.
Cell synchrony is a critical requirement for the study of eukaryotic cells. Although several chemical and genetic methods of cell cycle synchronization are currently available, they have certain limitations, such as unnecessary perturbations to cells. We developed a novel cell cycle synchronization method that is based on a cell chip platform. The budding yeast, Saccharomyces cerevisiae, is a simple but useful model system to study cell biology and shares many similar features with higher eukaryotic cells. Single yeast cells were individually captured in the wells of a specially designed cell chip platform. When released from the cell chip, the yeast cells were synchronized, with all cells in the G1 phase. This method is non-invasive and causes minimal chemical and biological damage to cells. The capture and release of cells using cells chips with microwells of specific dimensions allows for the isolation of cells of a particular size and shape; this enables the isolation of cells of a given phase, because the size and shape of yeast cells vary with the phase of the cell cycle. To test the viability of synchronized cells, the yeast cells captured in the cell chip platform were assessed for response to mating pheromone (α-factor). The synchronized cells isolated using the cell chip were capable of mediating the mating signaling response and exhibited a dynamic and robust response behavior. By changing the dimensions of the well of the cell chip, cells of other cell cycle phases can also be isolated.  相似文献   

7.
Differentiation of the adult Leydig cell population in the postnatal testis   总被引:8,自引:0,他引:8  
Five main cell types are present in the Leydig cell lineage, namely the mesenchymal precursor cells, progenitor cells, newly formed adult Leydig cells, immature Leydig cells, and mature Leydig cells. Peritubular mesenchymal cells are the precursors to Leydig cells at the onset of Leydig cell differentiation in the prepubertal rat as well as in the adult rat during repopulation of the testis interstitium after ethane dimethane sulfonate (EDS) treatment. Leydig cell differentiation cannot be viewed as a simple process with two distinct phases as previously reported, simply because precursor cell differentiation and Leydig cell mitosis occur concurrently. During development, mesenchymal and Leydig cell numbers increase linearly with an approximate ratio of 1:2, respectively. The onset of precursor cell differentiation into progenitor cells is independent of LH; however, LH is essential for the later stages in the Leydig cell lineage to induce cell proliferation, hypertrophy, and establish the full organelle complement required for the steroidogenic function. Testosterone and estrogen are inhibitory to the onset of precursor cell differentiation, and these hormones produced by the mature Leydig cells may be of importance to inhibit further differentiation of precursor cells to Leydig cells in the adult testis to maintain a constant number of Leydig cells. Once the progenitor cells are formed, androgens are essential for the progenitor cells to differentiate into mature adult Leydig cells. Although early studies have suggested that FSH is required for the differentiation of Leydig cells, more recent studies have shown that FSH is not required in this process. Anti-Müllerian hormone has been suggested as a negative regulator in Leydig cell differentiation, and this concept needs to be further explored to confirm its validity. Insulin-like growth factor I (IGF-I) induces proliferation of immature Leydig cells and is associated with the promotion of the maturation of the immature Leydig cells into mature adult Leydig cells. Transforming growth factor alpha (TGFalpha) is a mitogen for mesenchymal precursor cells. Moreover, both TGFalpha and TGFbeta (to a lesser extent than TGFalpha) stimulate mitosis in Leydig cells in the presence of LH (or hCG). Platelet-derived growth factor-A is an essential factor for the differentiation of adult Leydig cells; however, details of its participation are still not known. Some cytokines secreted by the testicular macrophages are mitogenic to Leydig cells. Moreover, retarded or absence of Leydig cell development has been observed in experimental models with impaired macrophage function. Thyroid hormone is critical to trigger the onset of mesenchymal precursor cell differentiation into Leydig progenitor cells, proliferation of mesenchymal precursors, acceleration of the differentiation of mesenchymal cells into Leydig cell progenitors, and enhance the proliferation of newly formed Leydig cells in the neonatal and EDS-treated adult rat testes.  相似文献   

8.
The mechanism of help for resting B cell growth in MHC-restricted T-B collaboration was investigated using an in vitro polyclonal model for these T cell-B cell interactions. In the presence of rabbit anti-mouse Ig, small, size-selected B cells elicit help from syngeneic Ia-restricted Th2 cell lines specific for F(ab')2 rabbit globulin. Both Ag-presenting and bystander B cells receive signals from stimulated Th cells that lead to B cell proliferation. The results suggest that the direct activation of resting Ag-presenting and bystander B cells by Th2 cells is mediated by a similar effector mechanism. Although proliferative responses by Ag-presenting B cells are of greater magnitude, help for both Ag-presenting and bystander B cell populations is characterized by the lack of a requirement for membrane Ig cross-linking, by identical kinetics, and by the necessity for direct cell contact or close proximity with Th cells. B cell proliferation is not induced by exposure to the sequence of diffusable mediators released from a synchronized Ag-specific T-B interaction. The T cell-dependent proliferation by both B cell populations can be inhibited by excess mitomycin C-treated syngeneic "cold target" B cells, demonstrating a requirement for a short-range T cell-B cell interaction. mAb inhibition experiments fail to identify a role for class II, LFA-1, or CD4 membrane molecules in the delivery of help to bystander B cells. Antibody against H2d bystander class II molecules has no effect on bystander B cell proliferation at concentrations that completely block Ag presentation by H2d B cells to an H2d-restricted Th cell line. Antibodies against the cell adhesion molecule LFA-1 or the Th cell molecule CD4 do inhibit bystander B cell proliferation, but only to the extent that they block T cell activation and the induction of help. The inductive stimulus leading to resting B cell growth results from an early, short-range interaction with Th cells. B cell proliferation is supported by T cell soluble mediators as a consequence of this interaction, which is required for at least 8 hr after T cell recognition of Ag/Ia on the surface of Ag-presenting B cells.  相似文献   

9.
ORGANIZATION OF HAEMOPOIETIC STEM CELLS: THE GENERATION-AGE HYPOTHESIS   总被引:2,自引:0,他引:2  
This paper proposes that the previous division history of each stem cell is one determinant of the functional organization of the haemopoietic stem cell population. Stem cells from a lineage of stem cells which have generated many stem cells (older stem cells) are used in the animal to form blood before stem cells which have generated few stem cells (younger stem cells). The stem cell generating capacity of a lineage of stem cells is finite. After a given number of generations a stem cell is lost to the stem cell compartment by forming two committed precursors of the cell lines. Its part in blood formation is taken by the next oldest stem cell. We have called this proposal the generation-age hypothesis. Experimental evidence in support of the proposal is presented. We stripped away older stem cells from normal bone marrow and 12 day foetal liver with phase-specific drugs and revealed a younger population of stem cells whose capacity for stem cell generation was three- to four-fold greater than that of the average normal, untreated population. We aged normal stem cells by continuous irradiation and serial retransplantation and found that their stem cell generative capacity had declined eight-fold. We measured the stem cell generative capacity of stem cells in the bloodstream. It was a half, to a quarter that of normal bone marrow stem cells and we found a subpopulation of circulating stem cells whose capacity for stem cell generation was an eighth to a fortieth that of normal femoral stem cells. This subpopulation was identified by its failure to express the brain-associated antigen which was present on 75% of normal femoral stem cells but was not found on their progeny, the committed precursors of granulocytes.  相似文献   

10.
Human pluripotent stem (hPS) cells are capable of differentiation into derivatives of all three primary embryonic germ layers and can self-renew indefinitely. They therefore offer a potentially scalable source of replacement cells to treat a variety of degenerative diseases. The ability to reprogram adult cells to induced pluripotent stem (iPS) cells has now enabled the possibility of patient-specific hPS cells as a source of cells for disease modeling, drug discovery, and potentially, cell replacement therapies. While reprogramming technology has dramatically increased the availability of normal and diseased hPS cell lines for basic research, a major bottleneck is the critical unmet need for more efficient methods of deriving well-defined cell populations from hPS cells. Phage display is a powerful method for selecting affinity ligands that could be used for identifying and potentially purifying a variety of cell types derived from hPS cells. However, identification of specific progenitor cell-binding peptides using phage display may be hindered by the large cellular heterogeneity present in differentiating hPS cell populations. We therefore tested the hypothesis that peptides selected for their ability to bind a clonal cell line derived from hPS cells would bind early progenitor cell types emerging from differentiating hPS cells. The human embryonic stem (hES) cell-derived embryonic progenitor cell line, W10, was used and cell-targeting peptides were identified. Competition studies demonstrated specificity of peptide binding to the target cell surface. Efficient peptide targeted cell labeling was accomplished using multivalent peptide-quantum dot complexes as detected by fluorescence microscopy and flow cytometry. The cell-binding peptides were selective for differentiated hPS cells, had little or no binding on pluripotent cells, but preferential binding to certain embryonic progenitor cell lines and early endodermal hPS cell derivatives. Taken together these data suggest that selection of phage display libraries against a clonal progenitor stem cell population can be used to identify progenitor stem cell targeting peptides. The peptides may be useful for monitoring hPS cell differentiation and for the development of cell enrichment procedures to improve the efficiency of directed differentiation toward clinically relevant human cell types.  相似文献   

11.
12.
Testicular peritubular myoid cells secrete a paracrine factor that is a potent modulator of Sertoli cell functions involved in the maintenance of spermatogenesis. These cells also play an integral role in maintaining the structural integrity of the seminiferous tubule. To better understand this important testicular cell type, studies were initiated to characterize cultured peritubular cells using biochemical and histochemical techniques. The electrophoretic pattern of radiolabeled secreted proteins was similar for primary and subcultured peritubular cells and was unique from that of Sertoli cells. Morphologic differences between Sertoli cells and peritubular cells were noted and extended with histochemical staining techniques. Desmin cytoskeletal filaments were demonstrated immunocytochemically in peritubular cells, both in culture and in tissue sections, but were not detected in Sertoli cells. Desmin is proposed to be a marker for peritubular cell differentiation as well as a marker for peritubular cell contamination in Sertoli cell cultures. Peritubular cells and Sertoli cells were also stained histochemically for the presence of alkaline phosphatase. Staining for the alkaline phosphatase enzyme was associated with peritubular cells but not with Sertoli cells. Alkaline phosphatase is therefore an additional histochemical marker for peritubular cells. Biochemical characterization of peritubular cells relied on cell-specific enzymatic activities. Creatine phosphokinase activity, a marker for contractile cells, was found to be associated with peritubular cells, while negligible activity was associated with Sertoli cells. Alkaline phosphatase activity assayed spectrophotometrically was found to be a useful biochemical marker for peritubular cell function and was utilized to determine the responsiveness of primary and subcultured cells to regulatory agents. Testosterone stimulated alkaline phosphatase activity associated with primary cultures of peritubular cells, thus supporting the observation that peritubular cells provide a site of androgen action in the testis. Retinol increased alkaline phosphatase activity in subcultured peritubular cells. Alkaline phosphatase activity increased in response to dibutyryl cyclic adenosine monophosphate (AMP) in both primary and subcultured peritubular cell cultures. Observations indicate that the ability of androgens and retinoids to regulate testicular function may be mediated, in part, through their effects on peritubular cells. This provides additional support for the proposal that the mesenchymal-epithelial cell interactions between peritubular cells and Sertoli cells are important for the maintenance and control of testicular function. Results imply that the endocrine regulation of tissue function may be mediated in part through alterations in mesenchymal-epithelial cell interactions.  相似文献   

13.
Abelson virus potentiates long-term growth of mature B lymphocytes.   总被引:5,自引:3,他引:2       下载免费PDF全文
Abelson murine leukemia virus (A-MuLV) infection of mouse bone marrow cells usually leads to transformation of pre-B cells. However, when the environment is modified by the continuous presence of lipopolysaccharide (LPS), two novel types of membrane immunoglobulin (mIg)-positive B cell lines are generated. Because the cells which give rise to these cell lines copurify with mIg-positive bone marrow cells, the cell lines arise as a result of A-MuLV interaction with a new type of in vitro target cell. The cell lines generated fall into two groups which differ in several phenotypic characteristics. Group 1 cells are more differentiated than the typical pre-B cell transformant in that they synthesize mIgM and appear to resemble virgin B cells. The group 1 cells do not secrete immunoglobulin and are independent of LPS for growth. In addition, these cell lines synthesize the Abelson P160 protein, contain integrated abl proviral DNA, and are highly tumorigenic in syngeneic animals. The group 2 cell lines differ markedly from both the group 1 cells and from typical, pre-B cell A-MuLV transformants. These cells are mIgG positive and secrete large amounts of immunoglobulin into the culture medium. The cell lines are comprised of both adherent and nonadherent cells and do not synthesize P160 or contain integrated v-abl sequences. The group 2 cells are nontumorigenic in syngeneic animals and require LPS for growth and viability. Both types of cells have remained in culture for over 2 years with no changes in their phenotypic characteristics. This A-MuLV infection system and the novel mIg-positive cell lines may serve as useful models for studying biochemical and molecular properties of mature B cells.  相似文献   

14.
The large capillary mass of the newborn lung demands the presence of endothelial cell precursors in lung tissue before development of the pulmonary capillary bed. The objective of this investigation was to isolate and characterize putative endothelial cell precursors from developing human lung. CD34, a cell surface marker for hematopoietic progenitor cells, endothelial precursor cells, and small vessel endothelial cells, was employed as an immunological "handle" for the selection of the desired cells. When CD34+ cells were isolated from midtrimester human fetal lung tissue, then maintained in culture, the isolated cells expressed immunoreactivity for the endothelial cell marker von Willebrand factor and the vascular endothelial growth factor receptors KDR and Flt-1. However, only 5% or fewer of the cells expressed PECAM, an important factor in cell-cell interactions and a marker for endothelial cells associated with vessels. The CD34+ cells endocytosed acetylated low-density lipoprotein and formed capillary-like structures when incubated in a cushion of Matrigel. RT-PCR analysis of mRNA for endothelial cell-related proteins Flt-1, Tie-2, and endothelial nitric oxide synthase demonstrated expression of these mRNAs by the isolated cells for at least 16 cell passages. These observations demonstrate that capillary endothelial cell precursors can be isolated from developing human lung and maintained in cell culture. These cells represent a potentially important tool for investigating the regulation of mechanisms governing development of the air-blood barrier in the human lung.  相似文献   

15.
This work describes mathematically the dynamics of expansion of cell populations from the initial division of single cells to colonies of several hundred cells. This stage of population growth is strongly influenced by stochastic (random) elements including, among others, cell death and quiescence. This results in a wide distribution of colony sizes. Experimental observations of the NIH3T3 cell line as well as for the NIH3T3 cell line transformed with the ras oncogene were obtained for this study. They include the number of cells in 4-day-old colonies initiated from single cells and measurements of sizes of sister cells after division, recorded in the 4-day-old colonies. The sister cell sizes were recorded in a way which enabled investigation of their interdependence. We developed a mathematical model which includes cell growth and unequal cell division, with three possible outcomes of each cell division: continued cell growth and division, quiescence, and cell death. The model is successful in reproducing experimental observations. It provides good fits to colony size distributions for both NIH3T3 mouse fibroblast cells and the same cells transformed with the rasEJ human cancer gene. The difference in colony size distributions could be fitted by assuming similar cell lifetimes (12-13 hr) and similar probabilities of cell death (q = 0.15), but using different probabilities of quiescence, r = 0 for the ras oncogene transformed cells and r = 0.1 for the non-transformed cells. The model also reproduces the evolution of distributions of sizes of cells in colonies, from a single founder cell of any specified size to the stable limit distribution after eight to ten cell divisions. Application of the model explains in what way both random events and deterministic control mechanisms strongly influence cell proliferation at early stages in the expansion of colonies.  相似文献   

16.
Adult reserve stem cells and their potential for tissue engineering   总被引:6,自引:0,他引:6  
Tissue restoration is the process whereby multiple damaged cell types are replaced to restore the histoarchitecture and function to the tissue. Several theories, have been proposed to explain the phenomenon of tissue restoration in amphibians and in animals belonging to higher order. These theories include dedifferentiation of damaged tissues, transdifferentiation of lineage-committed progenitor cells, and activation of reserve, precursor cells. Studies by Young et al. and others demonstrated that connective tissue compartments throughout postnatal individuals contain reserve precursor cells. Subsequent repetitive single cell-cloning and cell-sorting studies revealed that these reserve precursor cells consisted of multiple populations of cells, including, tissue-specific progenitor cells, germ-layer lineage stem cells, and pluripotent stem cells. Tissue-specific progenitor cells display various capacities for differentiation, ranging from unipotency (forming a single cell type) to multipotency (forming multiple cell types). However, all progenitor cells demonstrate a finite life span of 50 to 70 population doublings before programmed cell senescence and cell death occurs. Germ-layer lineage stem cells can form a wider range of cell types than a progenitor cell. An individual germ-layer lineage stem cell can form all cells types within its respective germ-layer lineage (i.e., ectoderm, mesoderm, or endoderm). Pluripotent stem cells can form a wider range of cell types than a single germ-layer lineage stem cell. A single pluripotent stem cell can form cells belonging to all three germ layer lineages. Both germ-layer lineage stem cells and pluripotent stem cells exhibit extended capabilities for self-renewal, far surpassing the limited life span of progenitor cells (50–70 population doublings). The authors propose that the activation of quiescent tissue-specific progenitor cells, germ-layer lineage stem cells, and/or pluripotent stem cells may be a potential explanation, along with dedifferentiation and transdifferentiation, for the process of tissue restoration. Several model systems are currently being investigated to determine the possibilities of using these adult quiescent reserve precursor cells for tissue engineering.  相似文献   

17.
It has been reported that when ovarian carcinoma cell lines are exposed to various concentrations of celecoxib, a COX-2 inhibitor, cell growth is decreased in a dose dependant manner. To examine further the effect of celecoxib, different cell densities of two carcinoma cell lines were exposed to various concentrations of celecoxib. LNCAP prostate and CAOV3 ovarian carcinoma cells were obtained from the American Type Culture Collection and maintained in Rosewell Park Memorial Institute 1640 and Dulbeceo's modified Eagle's medium, respectively. Each cell line was supplemented with 10% fetal bovine serum, 2 mM L-glutamine, and antibiotic-antimycotic solution, and placed in a humidified atmosphere containing 5% CO2 at 37 degrees C. After each cell line reached a confluency of 70-80%, 1,000, 2,000, 3,000, 5,000, 7,000 and 10,000 cells/well were seeded in 96 well plates in 100 microl medium/per well for 24 h. Each cell line was exposed to the same concentrations of celecoxib (10-100 microM) at each cell density for 72 h. Cell growth was assessed using a tetrazolium conversion assay. A significant decrease compared to controls was observed in cell growth at each cell density of LNCAP and CAOV3 cells plated with >or=30 microM and >or=50 microM celecoxib, respectively. When the cell growth curves were compared for each cell density at the same concentration of celecoxib, a significant decrease in cell growth was observed when LNCAP cells were plated at 10,000 cells/well and exposed to 10-100 microM celecoxib. At a cell density >or= 5,000 LNCAP cells/well, the inhibitory effect of celecoxib was less. Similarly, a significant decrease in cell growth was observed in CAOV3 cells plated at 1,000 cells/well compared to other cell numbers plated at the same drug concentrations. At a cell density of > 5,000 CAOV3 cells/well, the inhibitory effect of celecoxib was significantly less compared to other cell densities at the same concentration. We observed a more sensitive decrease in cell growth in both carcinoma lines studied at a cell density of 1,000 cells/well with exposure to 10-100 microM celecoxib. Both carcinoma cell lines were less sensitive at a cell density of 5,000 cells/well. Our results suggest that the inhibitory effect of celecoxib may be affected by cell density. Therefore, careful attention must be paid to determining the appropriate cell density for cytotoxicity studies.  相似文献   

18.
We examined 12 non-small cell lung carcinoma cell lines for expression of airway goblet, serous, and mucous cell characteristics. The cells expressed some ultrastructural traits of secretory epithelial cells but none contained secretory granules typical of the airway secretory cells. Using immunocytochemistry and cell-specific monoclonal antibodies, we identified heterogeneous expression of goblet, mucous, and serous cell markers among the cell lines. After metabolic radiolabeling, cells incorporated isotope into high molecular weight material. Incubation of pulse-radiolabeled cells with a number of known mucus secretogogues revealed that 5 of the 12 cell lines released radiolabeled material in response to the agonists. However, in each cell line only one of the receptor-activated pathways tested was intact. Although we did not identify a single cell line expressing a phenotype similar to normal airway secretory cells, particular functions retained by some of these cell lines may make them useful for specific studies of mucus production or secretion.  相似文献   

19.
Organization of haemopoietic stem cells: the generation-age hypothesis.   总被引:3,自引:0,他引:3  
This paper proposes that the previous division history of each stem cell is one determinant of the functional organization of the haemopoietic stem cell population. Stem cells from a lineage of stem cells which have generated many stem cells (older stem cells) are used in the animal to form blood before stem cells which have generated few stem cells (younger stem cells). The stem cell generating capacity of a lineage of stem cells is finite. After a given number of generations a stem cell is lost to the stem cell compartment by forming two committed precursors of the cell lines. Its part in blood formation is taken by the next oldest stem cell. We have called this proposal the generation-age hypothesis. Experimental evidence in support of the proposal is presented. We stripped away older stem cells from normal bone marrow and 13 day foetal liver with phase-specific drugs and revealed a younger population of stem cells whose capacity for stem cell generation was three- to four-fold greater than that of the average normal, untreated population. We aged normal stem cells by continuous irradiation and serial retransplantation and found that their stem cell generative capacity had declined eight-fold. We measured the stem cell generative capacity of stem cells in the bloodstream. It was a half to a quarter that of normal bone marrow stem cells and we found a subpopulation of circulating stem cells whose capacity for stem cell generation was an eighth to a fortieth that of normal femoral stem cells. This subpopulation was identified by its failure to express the brain-associated antigen which was present on 75% of normal femoral stem cells but was not found on their progeny, the committed precursors of granulocytes.  相似文献   

20.
Tumor cells stimulate natural killer (NK) cell effector functions, but the regulation of cytokine secretion and cytolysis is incompletely understood. We tested whether oral and pharyngeal squamous cell carcinoma cell lines differentially stimulated NK cell interferon-gamma (IFN-gamma) secretion and cytolysis using a clone of the NK-92-transformed human NK cell line, NK92.35. SCC-4 and SCC-25 cells, but not FaDu or Cal 27 cells, stimulated robust NK92.35 IFN-gamma secretion. All four carcinoma cell lines were lysed by NK92.35 cells. These findings indicate that carcinoma cells differentially stimulate NK cell IFN-gamma secretion and cytolysis. In Transwell experiments, a combination of SCC-4 or SCC-25 cell soluble factors and contact with FaDu cells synergistically stimulated NK92.35 cell IFN-gamma secretion. Stimulatory SCC-4 cells constitutively secreted IL-18, a cytokine that potently augments IFN-gamma secretion by T cells and NK cells. In contrast, poorly stimulatory FaDu cells produced little or no IL-18, but synergized with recombinant IL-18 to stimulate NK92.35 IFN-gamma secretion. mAb to IL-18 or IL-18 receptor diminished SCC-4-stimulated IFN-gamma secretion by NK92.35 cells and by nontransformed NK cells. Thus, IL-18 was necessary for optimal carcinoma stimulation of NK cell IFN-gamma secretion. In vivo, oral and upper aerodigestive tract epithelia and carcinomas produced IL-18, but one squamous cell carcinoma had heterogeneous IL-18 expression. Thus IL-18 production can account for squamous cell carcinoma differential stimulation of NK cell effector functions in vitro and may be important for stimulation of NK cells in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号