首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yu Ye 《Analytical biochemistry》2010,401(1):168-1345
We have developed the first economical and rapid nonradioactive assay method that is suitable for high-throughput screening of the important pharmacological target human DNA (cytosine-5)-methyltransferase 1 (DNMT1). The method combines three key innovations: the use of a truncated form of the enzyme that is highly active on a 26-bp hemimethylated DNA duplex substrate, the introduction of the methylation site into the recognition sequence of a restriction endonuclease, and the use of a fluorogenic read-out method. The extent of DNMT1 methylation is reflected in the protection of the DNA substrate from endonuclease cleavage that would otherwise result in a large fluorescence increase. The assay has been validated in a high-throughput format, and trivial changes in the substrate sequence and endonuclease allow adaptation of the method to any bacterial or human DNA methyltransferase.  相似文献   

2.
De novo DNA methyltransferases, Dnmt3a and 3b, were purified by fractionation of S-100 extract from mouse lymphosarcoma cells through several chromatographic matrices followed by glycerol density gradient centrifugation. Dnmt3a was separated from Dnmt3b and Dnmt1 in the first column, Q-Sepharose whereas Dnmt3b co-purified with Dnmt1 after further fractionation through Mono-S and Mono-Q columns and glycerol density gradient centrifugation. Following purification, the majority of de novo DNA methyltransfearse activity was associated with Dnmt3b/Dnmt1 fractions. By contrast, the fractions containing Dnmt3a alone exhibited markedly reduced activity, which correlated with diminished expression of this isoform in these cells. Histone deacetylase 1(Hdac1) cofractionated with Dnmt3a throughout purification whereas Hdac1 was separated from Dnmt3b/Dnmt1 following chromatography on Mono-Q column. Dnmt3a purified through glycerol gradient centrifugation was also associated with a histone H3 methyltransferase (HMTase) activity whereas purified Dnmt3b/Dnmt1 was devoid of any HMTase activity. The activity of this HMTase was abolished when lysine 9 of N-terminal histone H3 peptide was replaced by leucine whereas mutation of lysine 4 to leucine inhibited this activity only partially. This is the first report on the identification of a few key co-repressors associated with endogenous Dnmt3a and of a complex containing Dnmt3b and a minor form of Dnmt1 following extensive biochemical fractionation.  相似文献   

3.
The preference of murine DNA (cytosine-5)-methyltransferase (Dnmt1) for single stranded DNA substrates is increased up to 50-fold by the presence of a proximal 5-methyl cytosine (5(me)C). This modulation is distance-dependent and is due to an enhanced binding affinity and minor changes in catalytic efficiency. No modulation was observed with double stranded DNA. Modulation requires that the 5(me)C moiety be attached to the DNA strand containing the CpG methylation target. Our results support a model in which 5(me)C binding by the enzyme occurs to at least one site outside the region involved in CpG recognition. No modulation in response to 5(me)C is observed with the bacterial enzyme M.SssI, which lacks the large N-terminal regulatory domain found in Dnmt1. We suggest that this allosteric modulation involves the N-terminal domain of Dnmt1.  相似文献   

4.
Purification of human DNA (cytosine-5-)-methyltransferase   总被引:7,自引:0,他引:7  
We have developed a facile procedure for the purification of DNA methyltransferase activity from human placenta. The procedure avoids the isolation of nuclei and the dialysis and chromatography of large volumes. A purification of 38,000-fold from the whole cell extract has been achieved. The procedure employs ion exchange, affinity, and hydrophobic interaction chromatography coupled with preparative glycerol gradient centrifugation. A protein of 126,000 daltons was found to copurify with the activity and was the major band seen in the most highly purified material after SDS gel electrophoresis. This observation, coupled with an observed sedimentation coefficient of 6.3S, suggests that the enzyme is composed of a single polypeptide chain of this molecular weight. Hemimethylated DNA was found to be the preferred substrate for the enzyme at each stage in the purification. The ratio of the activity of the purified product on hemimethylated to that on unmethylated M13 duplex DNA was about 12 to 1. Thus, the purified activity has the properties postulated for a maintenance methyltransferase. The availability of highly purified human DNA methyltransferase should facilitate many studies on the structure, function, and expression of these activities in both normal and transformed cells.  相似文献   

5.
DNA methyltransferase1o (Dnmt1o), which is specific to oocyte and preimplantation embryo, plays a role in maintaining DNA methylation in mammalian cells. Here, we investigated the methylation status of CpGs sites in the Dnmt1o 5′‐flanking region in germ cells at different stages of oogenesis or spermatogenesis. The methylation levels of the CpG sites at the 5′‐flanking regions were hypermethylated in growing oocytes of all follicular stages, while the oocytes in meiotic metaphase II (MII) were demethylated. The methylation pattern within the CpGs sites in the 5′‐flanking region, however, was dramatically changed during spermatogenesis. We observed that there was significant non‐CpG methylation both in MII oocytes and spermatocytes. Although a low methylation level in non‐CpG sites was observed in primary and secondary oocytes, the CpA site of position 25 and CpT site of position 29 within the no‐CpG region in the 5′‐flanking region of Dnmt1o was highly methylated in MII oocytes. During spermatogenesis, the low degree of methylation at CpG sites in spermatocytes increased to a higher degree in sperm, while the high ratio of methylation in non‐CpG sites in spermatocytes decreased. Together, germ cells showed inverted methylation patterns between CpG and non‐CpG sites in the Dnmt1o 5′‐upstream region, and the methylation pattern during oogenesis did not drastically change, remaining generally hypomethylated at the MII stage. Mol. Reprod. Dev. 80: 212–222, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
DNA methylation is a major epigenetic modification and plays a crucial role in the regulation of gene expression. Within the family of DNA methyltransferases (Dnmts), Dnmt3a and 3b establish methylation marks during early development, while Dnmt1 maintains methylation patterns after DNA replication. The maintenance function of Dnmt1 is regulated by its large regulatory N‐terminal domain that interacts with other chromatin factors and is essential for the recognition of hemi‐methylated DNA. Gelfiltration analysis showed that purified Dnmt1 elutes at an apparent molecular weight corresponding to the size of a dimer. With protein interaction assays we could show that Dnmt1 interacts with itself through its N‐terminal regulatory domain. By deletion analysis and co‐immunoprecipitations we mapped the dimerization domain to the targeting sequence TS that is located in the center of the N‐terminal domain (amino acids 310–629) and was previously shown to mediate replication independent association with heterochromatin at chromocenters. Further mutational analyses suggested that the dimeric complex has a bipartite interaction interface and is formed in a head‐to‐head orientation. Dnmt1 dimer formation could facilitate the discrimination of hemi‐methylated target sites as has been found for other palindromic DNA sequence recognizing enzymes. These results assign an additional function to the TS domain and raise the interesting question how these functions are spatially and temporarily co‐ordinated. J. Cell. Biochem. 106: 521–528, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
8.
DNA methylation is one of the key mechanisms underlying the epigenetic regulation of gene expression. During DNA replication, the methylation pattern of the parent strand is maintained on the replicated strand through the action of Dnmt1 (DNA Methyltransferase 1). In mammals, Dnmt1 is recruited to hemimethylated replication foci by Uhrf1 (Ubiquitin-like, Containing PHD and RING Finger Domains 1). Here we show that Uhrf1 is required for DNA methylation in vivo during zebrafish embryogenesis. Due in part to the early embryonic lethality of Dnmt1 and Uhrf1 knockout mice, roles for these proteins during lens development have yet to be reported. We show that zebrafish mutants in uhrf1 and dnmt1 have defects in lens development and maintenance. uhrf1 and dnmt1 are expressed in the lens epithelium, and in the absence of Uhrf1 or of catalytically active Dnmt1, lens epithelial cells have altered gene expression and reduced proliferation in both mutant backgrounds. This is correlated with a wave of apoptosis in the epithelial layer, which is followed by apoptosis and unraveling of secondary lens fibers. Despite these disruptions in the lens fiber region, lens fibers express appropriate differentiation markers. The results of lens transplant experiments demonstrate that Uhrf1 and Dnmt1 functions are required lens-autonomously, but perhaps not cell-autonomously, during lens development in zebrafish. These data provide the first evidence that Uhrf1 and Dnmt1 function is required for vertebrate lens development and maintenance.  相似文献   

9.
In mammalian cells, DNA methylation patterns are precisely maintained after DNA replication with defined changes occurring during development. The major DNA methyltransferase (Dnmt1) is associated with nuclear replication sites during S-phase, which is consistent with a role in maintenance methylation. The subcellular distribution of the recently discovered de novo DNA methyltransferases, Dnmt3a and Dnmt3b, was investigated by immunofluorescence and by epitope tagging. We now show that both Dnmt3a and Dnmt3b are distributed throughout the nucleoplasm but are not associated with nuclear DNA replication sites during S-phase. These results suggest that de novo methylation by Dnmt3a and Dnmt3b occurs independently of the replication process and might involve an alternative mechanism for accessing the target DNA. The different subcellular distribution of mammalian DNA methyltransferases might thus contribute to the regulation of DNA methylation.  相似文献   

10.
Several second-generation inhibitors of DNA (cytosine-5) methyltransferases based on studies of modified synthetic oligodeoxynucleoides have been described. As an aid to studies of these inhibitors, we present an electronic structure-based algorithm that can be used as a method for predicting the nature of the expected inhibition by any noncytosine nucleotide target. Targeting by the major human enzyme (hDnmt1) is governed by the presence of a three-nucleotide motif. In hemimethylated DNA, this motif consists of a 5-methylcytosine targeting signal that causes the enzyme to probe the opposite strand for a normally paired guanosine or inosine residue and attempt to methylate the residue 5' to that site. As a demonstration of the method, we apply these rules to the design and characterization of a novel oligodeoxynucleotide inhibitor of hDnmt1. This inhibitor takes advantage of the three-nucleotide recognition motif characteristic of hDnmt1 and shows that the enzyme is inhibited in vitro by non-CG methylation which targets the enzyme to normally basepaired but unproductive nucleotides such as dG, dA, and dT. Kinetic analysis at constant S-adenosyl-L-methionine concentration shows that representative inhibitory oligodeoxynucleotides are best viewed as weakly productive components of systems containing two DNA substrates. This model suggests that the most effective inhibitors are those with very low apparent Vmax and very low Km values. Oligodeoxynucleotides containing mispaired and unproductive targets such as dG, dA, dT, and dU are also inhibitory as secondary substrates for the human enzyme. Biologically, fail-safe mechanisms identified by the ab initio approach appear to be active in preventing potentially mutagenic deamination of dihydrocytosine and enzymatic methylation of dU.  相似文献   

11.
12.
DNA cytosine-5 methyltransferase (DNMT) catalyzes methylation at the C5 position of cytosine in the CpG sequence in double stranded DNA to give 5-methylCpG (mCpG) in the epigenetic regulation step in human cells. The entire reaction mechanism of DNMT is divided into six steps, which are scanning, recognition, flipping, loop locking, methylation, and releasing. The methylation and releasing mechanism are well-investigated; however, few reports are known about other reaction steps. To obtain insight into the reaction mechanism, we planned the incorporation of acyclic nucleosides, which make it easy to flip out the target nucleobase, into oligodeoxynucleotides (ODNs) and investigated the interaction between the ODN and DNMT. Here, we describe the design and synthesis of ODNs containing new acyclic 5-fluorocytosine nucleosides and their physiological and biological properties, including their interactions with DNMT. We found that the ODNs containing the acyclic 5-fluorocytosine nucleoside showed higher flexibility than those that contain 5-fluoro-2′-deoxycytidine. The observed flexibility of ODNs is expected to influence the scanning and recognition steps due to the decrease in helicity of the B-form.  相似文献   

13.
We cloned and sequenced the DNA adenine-N(6) methyltransferase gene of the human pathogen Actinobacillus actinomycetemcomitans (M.AacDAM). Restriction digestion shows that the enzyme methylates adenine in the sequence GATC. Expression of the enzyme in a DAM(-) background shows in vivo activity. A PSI-BLAST search revealed that M.AacDAM is most related to M.HindIV, M.EcoDAM, M.StyDAM, and M.SmaII. The ClustalW alignment shows highly conserved regions in the enzyme characteristic for type a MTases. Phylogenetic tree analysis shows a cluster of enzymes recognizing the sequence GATC, within a branch of orphan MTases harboring M.AacDAM. The cloning and sequencing of this first methyltransferase gene described for A. actinomycetemcomitans open the path for studies on the potential regulatory impact of DNA methylation on gene regulation and virulence in this organism.  相似文献   

14.
Cadmium is a human carcinogen that likely acts via epigenetic mechanisms. Since DNA methylation alterations represent an important epigenetic event linked to cancer, the effect of cadmium on DNA methyltransferase (MeTase) activity was examined using in vitro (TRL1215 rat liver cells) and ex vivo (M.SssI DNA MeTase) systems. Cadmium effectively inhibited DNA MeTases in a manner that was noncompetitive with respect to substrate (DNA), indicating an interaction with the DNA binding domain rather than the active site. Based on these results, the effects of prolonged cadmium exposure on DNA MeTase and genomic DNA methylation in TRL1215 cells were studied. After 1 week of exposure to 0-2.5 microM cadmium, DNA MeTase activity was reduced (up to 40%) in a concentration-dependent fashion, while genomic DNA methylation showed slight but significant reductions at the two highest concentrations. After 10 weeks of exposure, the cells exhibited indications of transformation, including hyperproliferation, increased invasiveness, and decreased serum dependence. Unexpectedly, these cadmium-transformed cells exhibited significant increases in DNA methylation and DNA MeTase activity. These results indicate that, while cadmium is an effective inhibitor of DNA MeTase and initially induces DNA hypomethylation, prolonged exposure results in DNA hypermethylation and enhanced DNA MeTase activity.  相似文献   

15.
The nucleotide sequence of a DNA adenine methyltransferase gene (dam) from Treponema pallidum has been determined. Southern blot analysis of T. pallidum chromosomal DNA indicated that this gene is present as a single copy. The dam gene encodes a 303 amino acid protein whose deduced sequence has significant homology with DNA (N6-adenine) methyltransferases. T. pallidum Dam can be assigned to group α DNA amino methyltransferases based on the order of nine conserved motifs that are present in the protein. Digests of T. pallidum chromosomal DNA performed with isoschizomer restriction endonucleases (Sau3AI, DpnI, and MboI) confirmed the presence of methylated adenine residues in GATC sequences (Dam+ phenotype).  相似文献   

16.
The presence of 5-azacytosine (ZCyt) residues in DNA leads to potent inhibition of DNA (cytosine-C5) methyltranferases (C5-MTases) in vivo and in vitro. Enzymatic methylation of cytosine in mammalian DNA is an epigenetic modification that can alter gene activity and chromosomal stability, influencing both differentiation and tumorigenesis. Thus, it is important to understand the critical mechanistic determinants of ZCyt's inhibitory action. Although several DNA C5-MTases have been reported to undergo essentially irreversible binding to ZCyt in DNA, there is little agreement as to the role of AdoMet and/or methyl transfer in stabilizing enzyme interactions with ZCyt. Our results demonstrate that formation of stable complexes between HhaI methyltransferase (M.HhaI) and oligodeoxyribonucleotides containing ZCyt at the target position for methylation (ZCyt-ODNs) occurs in both the absence and presence of co-factors, AdoMet and AdoHcy. Both binary and ternary complexes survive SDS-PAGE under reducing conditions and take on a compact conformation that increases their electrophoretic mobility in comparison to free M.HhaI. Since methyl transfer can occur only in the presence of AdoMet, these results suggest (1) that the inhibitory capacity of ZCyt in DNA is based on its ability to induce a stable, tightly closed conformation of M.HhaI that prevents DNA and co-factor release and (2) that methylation of ZCyt in DNA is not required for inhibition of M.HhaI.  相似文献   

17.
18.
Although dedifferentiation, transformation of differentiated cells into progenitor cells, is a critical step in the regeneration of amphibians and fish, the molecular mechanisms underlying this process, including epigenetic changes, remain unclear. Dot blot assays and immunohistochemical analyses revealed that, during regeneration of zebrafish fin, the levels of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are transiently reduced in blastema cells and cells adjacent to the amputation plane at 30 h post-amputation (hpa), and the level of 5mC, but not 5hmC, is almost restored by 72 hpa. We observed that the dedifferentiated cells showed reduced levels of 5mC and 5hmC independent of cell proliferation by 24 hpa. Furthermore, expressions of the proposed demethylation- and DNA repair-related genes were detected during fin regeneration. Taken together, our findings illustrate that the transient reduction of 5mC and 5hmC in dedifferentiated cells is associated with active demethylation during regeneration of zebrafish fin.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号