首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
De novo DNA methyltransferases, Dnmt3a and 3b, were purified by fractionation of S-100 extract from mouse lymphosarcoma cells through several chromatographic matrices followed by glycerol density gradient centrifugation. Dnmt3a was separated from Dnmt3b and Dnmt1 in the first column, Q-Sepharose whereas Dnmt3b co-purified with Dnmt1 after further fractionation through Mono-S and Mono-Q columns and glycerol density gradient centrifugation. Following purification, the majority of de novo DNA methyltransfearse activity was associated with Dnmt3b/Dnmt1 fractions. By contrast, the fractions containing Dnmt3a alone exhibited markedly reduced activity, which correlated with diminished expression of this isoform in these cells. Histone deacetylase 1(Hdac1) cofractionated with Dnmt3a throughout purification whereas Hdac1 was separated from Dnmt3b/Dnmt1 following chromatography on Mono-Q column. Dnmt3a purified through glycerol gradient centrifugation was also associated with a histone H3 methyltransferase (HMTase) activity whereas purified Dnmt3b/Dnmt1 was devoid of any HMTase activity. The activity of this HMTase was abolished when lysine 9 of N-terminal histone H3 peptide was replaced by leucine whereas mutation of lysine 4 to leucine inhibited this activity only partially. This is the first report on the identification of a few key co-repressors associated with endogenous Dnmt3a and of a complex containing Dnmt3b and a minor form of Dnmt1 following extensive biochemical fractionation.  相似文献   

2.
The preference of murine DNA (cytosine-5)-methyltransferase (Dnmt1) for single stranded DNA substrates is increased up to 50-fold by the presence of a proximal 5-methyl cytosine (5(me)C). This modulation is distance-dependent and is due to an enhanced binding affinity and minor changes in catalytic efficiency. No modulation was observed with double stranded DNA. Modulation requires that the 5(me)C moiety be attached to the DNA strand containing the CpG methylation target. Our results support a model in which 5(me)C binding by the enzyme occurs to at least one site outside the region involved in CpG recognition. No modulation in response to 5(me)C is observed with the bacterial enzyme M.SssI, which lacks the large N-terminal regulatory domain found in Dnmt1. We suggest that this allosteric modulation involves the N-terminal domain of Dnmt1.  相似文献   

3.
In mammalian cells, DNA methylation patterns are precisely maintained after DNA replication with defined changes occurring during development. The major DNA methyltransferase (Dnmt1) is associated with nuclear replication sites during S-phase, which is consistent with a role in maintenance methylation. The subcellular distribution of the recently discovered de novo DNA methyltransferases, Dnmt3a and Dnmt3b, was investigated by immunofluorescence and by epitope tagging. We now show that both Dnmt3a and Dnmt3b are distributed throughout the nucleoplasm but are not associated with nuclear DNA replication sites during S-phase. These results suggest that de novo methylation by Dnmt3a and Dnmt3b occurs independently of the replication process and might involve an alternative mechanism for accessing the target DNA. The different subcellular distribution of mammalian DNA methyltransferases might thus contribute to the regulation of DNA methylation.  相似文献   

4.
    
DNA methylation is a major epigenetic modification and plays a crucial role in the regulation of gene expression. Within the family of DNA methyltransferases (Dnmts), Dnmt3a and 3b establish methylation marks during early development, while Dnmt1 maintains methylation patterns after DNA replication. The maintenance function of Dnmt1 is regulated by its large regulatory N‐terminal domain that interacts with other chromatin factors and is essential for the recognition of hemi‐methylated DNA. Gelfiltration analysis showed that purified Dnmt1 elutes at an apparent molecular weight corresponding to the size of a dimer. With protein interaction assays we could show that Dnmt1 interacts with itself through its N‐terminal regulatory domain. By deletion analysis and co‐immunoprecipitations we mapped the dimerization domain to the targeting sequence TS that is located in the center of the N‐terminal domain (amino acids 310–629) and was previously shown to mediate replication independent association with heterochromatin at chromocenters. Further mutational analyses suggested that the dimeric complex has a bipartite interaction interface and is formed in a head‐to‐head orientation. Dnmt1 dimer formation could facilitate the discrimination of hemi‐methylated target sites as has been found for other palindromic DNA sequence recognizing enzymes. These results assign an additional function to the TS domain and raise the interesting question how these functions are spatially and temporarily co‐ordinated. J. Cell. Biochem. 106: 521–528, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
    
DNA methyltransferase1o (Dnmt1o), which is specific to oocyte and preimplantation embryo, plays a role in maintaining DNA methylation in mammalian cells. Here, we investigated the methylation status of CpGs sites in the Dnmt1o 5′‐flanking region in germ cells at different stages of oogenesis or spermatogenesis. The methylation levels of the CpG sites at the 5′‐flanking regions were hypermethylated in growing oocytes of all follicular stages, while the oocytes in meiotic metaphase II (MII) were demethylated. The methylation pattern within the CpGs sites in the 5′‐flanking region, however, was dramatically changed during spermatogenesis. We observed that there was significant non‐CpG methylation both in MII oocytes and spermatocytes. Although a low methylation level in non‐CpG sites was observed in primary and secondary oocytes, the CpA site of position 25 and CpT site of position 29 within the no‐CpG region in the 5′‐flanking region of Dnmt1o was highly methylated in MII oocytes. During spermatogenesis, the low degree of methylation at CpG sites in spermatocytes increased to a higher degree in sperm, while the high ratio of methylation in non‐CpG sites in spermatocytes decreased. Together, germ cells showed inverted methylation patterns between CpG and non‐CpG sites in the Dnmt1o 5′‐upstream region, and the methylation pattern during oogenesis did not drastically change, remaining generally hypomethylated at the MII stage. Mol. Reprod. Dev. 80: 212–222, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
    
Crystals of the (cytosine‐5)‐DNA methyltransferase NlaX from Neisseria lactamica (molecular weight 36.5 kDa) have been grown at 291 K using 2.5 M NaCl as precipitant. The crystals diffract to 3.0 Å resolution at 100 K. The crystals belong to space group P321, with unit‐cell parameters a = 121.98, b = 121.98, c = 56.71 Å. There is one molecule in the asymmetric unit and the solvent content is estimated to be 62.1% by volume.  相似文献   

7.
The DNMT1 cytosine methyltransferase enzyme contains a large ∼300-aa intrinsically disordered domain (IDD) that we previously showed regulated DNA methylation patterns in mouse ES cells. Here we generated seven mouse lines with different mutations in the IDD. Homozygous mutant mice of five lines developed normally, with normal levels of methylation on both imprinted and nonimprinted DNA sequences. The other two lines, however, had alterations in imprinted and/or nonimprinted (global) DNA methylation appearing during embryonic development. Embryos of one line expressing a DNMT1 variant containing a 6-aa rat orthologous sequence in the IDD maintained imprinted methylation, showed very reduced levels of global methylation and occasionally completed fetal development. These in vivo studies demonstrate that at least two DNMT1-dependent methylation processes can be distinguished during fetal development. One process maintains the bulk of genomic methylation on nonimprinted sequences. The other process maintains methylation on a much smaller class of sequences including but not limited to gametic differentially methylated domains (gDMDs) that transmit essential imprinted parent-specific methylation for embryonic development.  相似文献   

8.
植物表观遗传与DNA甲基化   总被引:1,自引:0,他引:1  
表观遗传在植物生长发育过程中起着极其重要的作用。甲基化是基因组DNA的一种主要表观遗传修饰形式,是调节基因功能的重要手段。介绍了植物体中胞嘧啶甲基化现象,RNA指导的DNA甲基化的信号分子、作用机制,以及与RNA介导的基因沉默机制之间的区别和RNA对转座子的表观控制。  相似文献   

9.
10.
The Dnmt2 enzyme utilizes the catalytic mechanism of eukaryotic DNA methyltransferases to methylate several tRNAs at cytosine 38. Dnmt2 mutant mice, flies, and plants were reported to be viable and fertile, and the biological function of Dnmt2 has remained elusive. Here, we show that endochondral ossification is delayed in newborn Dnmt2‐deficient mice, which is accompanied by a reduction of the haematopoietic stem and progenitor cell population and a cell‐autonomous defect in their differentiation. RNA bisulfite sequencing revealed that Dnmt2 methylates C38 of tRNA AspGTC, GlyGCC, and ValAAC, thus preventing tRNA fragmentation. Proteomic analyses from primary bone marrow cells uncovered systematic differences in protein expression that are due to specific codon mistranslation by tRNAs lacking Dnmt2‐dependent methylation. Our observations demonstrate that Dnmt2 plays an important role in haematopoiesis and define a novel function of C38 tRNA methylation in the discrimination of near‐cognate codons, thereby ensuring accurate polypeptide synthesis.  相似文献   

11.
A procedure for fractional determination of soybean sterols is presented. Sterols in lipid extracts were fractionated into four classes, fatty acid esters, the free form, acylated glucosides and non-acylated glucosides, by Florisil column chromatography. Sterol contents in the four classes were determined colorimetrically with ferric chloride-perchloric acid reagent. Before the colorimetry, the fatty acid ester fraction was hydrolyzed with ethanolic KOH, and the sterol was isolated as tomatinide. The free sterol fraction was directly treated with tomatine solution. The tomatinides were dissociated with dimethyl sulfoxide. To avoid the contamination of pigments from the acylated glucoside fraction, the second Florisil column was rinsed with diethyl ether between the elution with the first solvent (0 to 50% diethyl ether in n-heхane) and that with the second solvent (0 to 30% methanol in diethyl ether).  相似文献   

12.
13.
14.
15.
DNA methylation is one of the key mechanisms underlying the epigenetic regulation of gene expression. During DNA replication, the methylation pattern of the parent strand is maintained on the replicated strand through the action of Dnmt1 (DNA Methyltransferase 1). In mammals, Dnmt1 is recruited to hemimethylated replication foci by Uhrf1 (Ubiquitin-like, Containing PHD and RING Finger Domains 1). Here we show that Uhrf1 is required for DNA methylation in vivo during zebrafish embryogenesis. Due in part to the early embryonic lethality of Dnmt1 and Uhrf1 knockout mice, roles for these proteins during lens development have yet to be reported. We show that zebrafish mutants in uhrf1 and dnmt1 have defects in lens development and maintenance. uhrf1 and dnmt1 are expressed in the lens epithelium, and in the absence of Uhrf1 or of catalytically active Dnmt1, lens epithelial cells have altered gene expression and reduced proliferation in both mutant backgrounds. This is correlated with a wave of apoptosis in the epithelial layer, which is followed by apoptosis and unraveling of secondary lens fibers. Despite these disruptions in the lens fiber region, lens fibers express appropriate differentiation markers. The results of lens transplant experiments demonstrate that Uhrf1 and Dnmt1 functions are required lens-autonomously, but perhaps not cell-autonomously, during lens development in zebrafish. These data provide the first evidence that Uhrf1 and Dnmt1 function is required for vertebrate lens development and maintenance.  相似文献   

16.
17.
Cytosine bases of the nuclear genome in higher plants are often extensively methylated.Cytosine methylation has been implicated in the silencing of both transposable elements (TEs) and endogenous genes,and loss of methylation may have severe functional consequences.The recent methylation profiling of the entire Arabidopsis genome has provided novel insights into the extent and pattern of cytosine methylation and its relationships with gene activity.In addition,the fresh studies also revealed the more dynami...  相似文献   

18.
DNA甲基化与脊椎动物胚胎发育   总被引:1,自引:0,他引:1  
杨晓丹  韩威  刘峰 《遗传》2012,34(9):1108-1113
DNA甲基化是指DNA甲基转移酶(DNMT)将DNA序列中的5′胞嘧啶转变为5′甲基胞嘧啶的化学修饰, 可以调控基因的时空特异性表达, 从而影响细胞命运决定和分化等生物学过程。近年来研究发现, DNA甲基化在脊椎动物胚胎早期发育中有重要作用, Dnmt基因的缺失会影响胚胎早期发育和多个器官的形成及分化, 如胚胎早期致死、内脏器官和神经系统终末分化缺陷以及血液发生紊乱等。文章总结了DNA甲基化转移酶在小鼠和斑马鱼发育过程中的动态变化, 并系统阐述了DNA甲基化在胚胎早期发育和器官发生中的作用, 重点揭示DNA 甲基化转移酶与组蛋白甲基化转移酶如何协同调控DNA甲基化从而影响基因转录的分子机理。DNA甲基化作为一种关键的表观遗传学因素, 全面系统地理解其在胚胎发育过程中的作用机制对靶向治疗人类相关疾病有一定的理论指导意义。  相似文献   

19.
  总被引:15,自引:0,他引:15  
Summary Several chimeric pBR322/328 derivatives containing genes for cytosine-specific DNA methyltransferases (Mtases) can be transformed into the Escherichia coli K12/E. coli B hybrid strains HB101 and RR1 but not into other commonly used E. coli K12 strains. In vitro methylation of cytosine residues in pBR328 and other unrelated plasmids also reduces their potential to transform such methylation sensitive strains, albeit to a lesser degree than observed with plasmids containing Mtase genes. The extent of reduced transformability depends on the target specificity of the enzyme used for in vitro modification. The role of a host function in the discrimination against methylated plasmids was verified by the isolation of K12 mutants which tolerate cytosine methylated DNA. The mutations map in the vicinity of the serB locus. This and other data indicate that the host rglB function is involved in the discrimination against modified DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号