首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. A method for obtaining lipopolysaccharide free from glycosaminopeptide from isolated cell walls of Pseudomonas alcaligenes is discussed. 2. About 70-75% of the lipopolysaccharide and 86-90% of the isolated lipid A have been accounted for in terms of identifiable components. 3. Hydrolysates of lipid A contain mainly inorganic phosphate, glucosamine, O-phosphorylglucosamine and fatty acids (dodecanoic acid, dodec-2-enoic acid, 3-hydroxydecanoic acid and 3-hydroxydodecanoic acid), of which the last is the main N-acylating acid of the glucosamine backbone. 4. Material corresponding to the polysaccharide moiety of the lipopolysaccharide is extensively degraded. 5. Solubilization of the lipopolysaccharide by using sodium deoxycholate appreciably affects the chemical composition of the material.  相似文献   

2.
The lipopolysaccharide (LPS) preparation isolated from the bacterial mass of Pseudomonas fluorescens IMV 2366 (biovar III) by Westphal's method and purified by repeated ultracentrifugation contained S- and R-forms of molecules. The structural components of the LPS molecule—lipid A, core oligosaccharide, and O-specific polysaccharide—were obtained in the individual state and characterized. The main components of the lipid A hydrophobic moiety were 3-hydoxydecanoic, 2-hydroxydodecanoic, 3-hydroxydodecanoic, dodecanoic, and hexadecanoic fatty acids. Glucosamine, phosphoethanolamine, and phosphorus were identified as the components of the lipid A hydrophilic moiety. Rhamnose, glucose, galactose, glucosamine, galactosamine, alanine, phosphoethanolamine, phosphorus, and 2-keto-3-deoxyoctulosonic acid (KDO), as well as 2-amino-2,6-dideoxygalactose (FucN) and 3-amino-3,6-dideoxyglucose (Qui3N), were revealed in the composition of the core oligosaccharide fractions. O-specific polysaccharide chains were composed of repeating trisaccharide units consisting of residues of L-rhamnose (L-Rha), 2-acetamido-2,6-dideoxy-D-galactose (D-FucNAc), and 3-acylamido-3,6-dideoxy-D-glucose (D-Qui3NAcyl), where Acyl = 3-hydroxy-2,3-dimethyl-5-hydroxyprolyl. Neither double immunodiffusion in agar not the immunoenzymatic assay revealed serological relations between the strain studied and the P. fluorescens strains studied earlier.  相似文献   

3.
Results of studies of the structurally unique O-chains of lipopolysaccharides, which were isolated from the dry biomass of Pseudomonas fluorescens IMB 2108 (biovar II) and IMB 2111 (biovar IV) by the Westphal technique and purified by repeated ultracentrifugation, are reported. The bulk of the lipopolysaccharide preparations contained S- and R-molecules at an average molar ratio of 1 : 2. The main components of the hydrophobic moiety of lipid A were 3-hydroxydecanoic, 2-hydroxydodecanoic, 3-hydroxydodecanoic, dodecanoic, hexadecanoic, and octadecanoic acids, as well as hexadecenoic and octadecenoic acids. Glucosamine and phosphoethanolamine were identified as components of the hydrophilic moiety of lipid A. The degree of lipid A phosphorylation amounted to 3–4%. Fractions of the core oligosaccharide contained glucose, galactose, mannose, rhamnose, arabinose, glucosamine (only in strain IMB 2108), alanine, phosphoethanolamine, phosphorus, and 2-keto-3-deoxyoctulosonic acid (KDO). Heptose was present in trace amounts. O-specific polysaccharide chains were represented by a linear polymer of D-glucose units, which were linked together via α-(1,4) glycoside bonds. The existence of P. fluorescens strains that have α-1,4-glucan as the O-chain of their lipopolysaccharides has not been described before.  相似文献   

4.
The results of the study of thePseudomonas fluorescens IMV 247 (biovar II) lipopolysaccharide (LPS) isolated from the dry bacterial mass by Westphal’s method and purified by repeated ultracentrifugation are presented. The macromolecular organization of the LPS is characterized by the presence of S and R forms of LPS molecules in a 1 : 1 ratio. The structural components of the LPS molecule-lipid A, the core oligosaccharide, and the 0-specific polysaccharide-were isolated and characterized. 3-Hydroxydecanoic, 2-hydroxydodecanoic, 3-hydroxydodecanoic, and dodecanoic acids proved to be the main lipid A fatty acids. Glucosamine, phosphoethanolamine, and phosphorus were identified as the components of the lipid A hydrophilic portion. Glucose, galactose, arabinose, rhamnose, glucosamine, galactosamine alanine, phosphoethanolamine, phosphorus, and 2-keto-3-deoxyoctulonate (KDO) were revealed in the heterogeneous fraction of the core oligosaccharide. The 0-specific polysaccharide chain was composed of repeating tetrasaccharide units consisting of L-rhamnose (L-Rha), 3,6-dideoxy-3-[(S)-3-hydroxybutyramido]-D-glucose (D-Qui3NHb), 2-acetamido-2,4,6-trideoxy4 [(S)-3-hydroxybutyramido]-D-glucose (D-QuiNAc4NHb), and 2-acetamido-2-deoxy-D-galacturonic acid (D-GalNAcA) residues. A peculiarity of the 0-specific polysaccharide was that it released, upon partial acid hydrolysis, the nonreducing disaccharide GalNAcA→ QuiNAc4NHb with a 3-hydroxybutyryl group glycosylated intramolecularly with a QuiN4N residue. Double immunodiffusion in agar and lipopolysaccharide precipitation reactions revealed no serological interrelationship between the strain studied and theP. fluorescens strains studied earlier.  相似文献   

5.
The results of the study of the Pseudomonas fluorescens IMV 247 (biovar II) lipopolysaccharide (LPS) isolated from the dry bacterial mass by Westphal's method and purified by repeated ultracentrifugation are presented. The macromolecular organization of the LPS is characterized by the presence of S and R forms of LPS molecules in a 1:1 ratio. The structural components of the LPS molecule--lipid A, the core oligosaccharide, and the O-specific polysaccharide--were isolated and characterized. 3-Hydroxydecanoic, 2-hydroxydodecanoic, 3-hydroxydodecanoic, and dodecanoic acids proved to be the main lipid A fatty acids. Glucosamine, phosphoethanolamine, and phosphorus were identified as the components of the lipid A hydrophilic portion. Glucose, galactose, arabinose, rhamnose, glucosamine, alanine, phosphoethanolamine, phosphorus, and 2-keto-3-deoxyoctulonate (KDO) were revealed in the heterogeneous fraction of the core oligosaccharide. The O-specific polysaccharide chain was composed of repeating tetrasaccharide units consisting of L-rhamnose (L-Rha), 3,6-dideoxy-3-[(S)-3-hydroxybutyramido]-D-glucose (D-Qui3NHb), 2-acetamido-2,4,6-trideoxy-4[(S)-3-hydroxybutyramido-D-glucose (D-QuiNAc4NHb), and 2-acetamido-2-deoxy-D-galacturonic acid (D-GalNAcA) residues. A peculiarity of the O-specific polysaccharide was that it released, upon partial acid hydrolysis, the nonreducing disaccharide GalNAcA-->QuiNAc4NHb with a 3-hydroxybutyryl group glycosylated intramolecularly with a QuiN4N residue. Double immunodiffusion in agar and lipopolysaccharide precipitation reactions revealed no serological interrelationship between the strain studied and the P. fluorescens strains studied earlier.  相似文献   

6.
Results of studies of the structurally unique O-chains of lipopolysaccharides, which were isolated from the dry biomass of Pseudomonas fluorescens IMB 2108 (biovar II) and IMB 2111 (biovar IV) by the Westphal technique and purified by repeated ultracentrifugation, are reported. The bulk of the lipopolysaccharide preparations contained S- and R-molecules at an average molar ratio of 1: 2. The main components of the hydrophobic moiety of lipid A were 3-hydroxydecanoic, 2-hydroxydodecanoic, 3-hydroxydodecanoic, dodecanoic, hexadecanoic, and octadecanoic acids, as well as hexadecenoic and octadecenoic acids. Glucosamine and phosphoethanolamine were identified as components of the hydrophilic moiety of lipid A. The degree of lipid A phosphorylation amounted to 3-4%. Fractions of the core oligosaccharide contained glucose, galactose, mannose, rhamnose, arabinose, glucosamine (only in strain IMB 2108), alanine, phosphoethanolamine, phosphorus, and 2-keto-3-deoxyoctulosonic acid (KDO). Heptose was present in trace amounts. O-specific polysaccharide chains were represented by a linear polymer of D-glucose units, which were linked together via alpha-(1,4) glycoside bonds. The existence of P. fluorescens strains that have alpha-1,4-glucan as the O-chain of their lipopolysaccharides has not been described before.  相似文献   

7.
Lipopolysaccharides of eight wild-type strains of the phototrophic bacterium Rhodospirillum tenue have been analyzed. All of the lipopolysaccharides are highly lipophilic. The compositions of preparations obtained by the phenol-water or by the phenol-chloroform-petroleum ether procedure are very similar. The polysaccharide moiety, obtained by mild acid hydrolysis of lipopolysaccharide, consists mainly of aldoheptoses: L-glycero-D-mannoheptose is present in all strains, whereas D-glycero-D-mannoheptose is an additional constituent in some strains. Galactosaminuronic acid and two unknown ninhydrin-positive components were detected in the lipopolysaccharides of six strains. Spermidine and putrescine are present in large amounts in a salt-like linkage in the lipopolysaccharides from three strains. 2-Keto-3-deoxyoctonate forms the linkage between the polysaccharide moiety and lipid A. The lipid A fraction contains all the glucosamine and all the D-arabinose present in the lipopolysaccharide. D-Arabinose is an invariable constituent of the lipid A from the Rhodopseudomonas tenue lipopolysaccharides investigated. The principal fatty acids are beta-hydroxycapric, myristic, and palmitic acids. The isolated R. tenue lipopolysaccharides (O-antigens) react with rabbit antisera prepared against homologous cells. The titers in passive hemagglutination are low, similar to those found with enterobacterial R-lipopolysaccharides. R. tenue O-antigens containing only L-glycero-D-mannoheptose and those containing both the L- and D-epimers of glycero-D-mannoheptose could not be differentiated by serological means.  相似文献   

8.
A lipopolysaccharide (LPS) has been isolated from the gram-negative photosynthetic bacterium Rhodopseudomonas capsulata. Chemical analysis revealed the presence of d-glucose, d-galactose, l-rhamnose, 3-O-methyl-l-rhamnose (l-acofriose), d-glucosamine, 2-keto-3-deoxyoctonate, and neuraminic acid. The LPS does not contain l-glycero-d-mannoheptose, a typical component of the LPS of enteric bacteria. Fatty acid analysis showed that, apart from lauric acid, two hydroxy fatty acids (hydroxycaproic and hydroxymyristic acids) are the main components. By hydrolysis in weak acid, the LPS has been separated into a polysaccharide part (degraded polysaccharide) and a lipid part (lipid A). Presumably the lipid A contains a glucosamine backbone. Whereas the OH-groups of glucosamine are esterified with lauric and hydroxycaproic acids, hydroxymyristic acid is linked to the amino group of the sugar. By separation of the degraded polysaccharide by gel filtration, a fraction has been isolated which inhibited hemagglutination in a system containing antiserum, obtained by immunization of rabbits with whole cells, and isolated LPS. This fraction, which includes the determinant group, contains the sugars glucose, rhamnose, and acofriose. A second fraction obtained in this way was found to be serologically inactive and is composed of glucose, galactose, neuraminic acid, and phosphate.  相似文献   

9.
Lipopolysaccharides were isolated from the cell walls of Vibrio cholerae 569 B (Inaba) and El-tor (Inaba). Chemical analysis revealed the presence of glucose, fructose, mannose, heptose, rhamnose, ethanolamine, fatty acids and glucosamine. The lipopolysaccharides do not contain 2-keto-3-deoxyoctonate, the typical linking sugar of polysaccharide and lipid moieties of enterobacterial lipopolysaccharides. Galactose, a typical core polysaccharide component of many gram-negative bacteria was also absent from lipopolysaccharides of these organisms. By hydrolysis in 1% acetic acid, the lipopolysaccharides have been separated into a polysaccharide part (degraded polysaccharide) and a lipid part (lipid A). Components of degraded polysaccharide and lipid A moiety were identified and determined. The lipid A fractions contained fatty acids, phosphorus and glucosamine. All the neutral sugars detected in lipopolysaccharides were shown to be the constituents of its polysaccharide moiety. The fatty acid analysis of lipopolysaccharide and lipid A showed the presence of both hydroxy and non hydroxy acids. They were different from those of lipids extracted from cell walls before the extraction of lipopolysaccharides. 3-Hydroxylauric and 3-hydroxymyristic acids predominated in lipopolysaccharide and lipid A of Vibrio cholerae and El-tor (Inaba).  相似文献   

10.
The lipopolysaccharide (LPS) preparation isolated from the bacterial mass of Pseudomonas fluorescens IMV 2366 (biovar III) by Westphal's method and purified by repeated ultracentrifugation was characterized by the presence of the S- and R-forms of molecules. The following structural portions of the LPS molecule were obtained in the individual state and characterized: lipid A, core oligosaccharide, and O-specific polysaccharide. The main components of the lipid A hydrophobic moiety were 3-hydoxydecanoic, 2-hydroxydodecanoic, 3-hydroxydodecanoic, dodecanoic, and hexadecanoic fatty acids. Glucosamine, phosphoethanolamine, and phosphorus were identified as the components of the lipid A hydrophilic moiety. Rhamnose, glucose, galactose, glucosamine, galactosamine, alanine, phosphoethanolamine, phosphorus, 2-keto-3-desoxyoctulosonic acid (KDO), as well as 2-amino-2,6-didesoxygalactose (FucN) and 3-amino-3,6-didesoxyglucose (Qui3N), were revealed in the composition of the core oligosaccharide fractions. O-specific polysaccharide chains were established to be composed of repeating trisaccharide units consisting of residues of L-rhamnose (L-Rha), 2-acetamido-2,6-didesoxy-D-galactose (D-FucNAc), and 3-acylamido-3,6-didesoxy-D-glucose (D-Qui3NAcyl), where Acyl = 3-hydroxy-2,3-dimethyl-5-hydroxyprolyl. Neither double immunodiffusion in agar not the immunoenzyme assay revealed serological relations between the strain studied and the P. fluorescens strains studied earlier.  相似文献   

11.
The lipids and fatty acids of Bordetella pertussis (phases I to IV) were analyzed by thin-layer chromatography, gas-liquid chromatography, and mass spectrometry and compared with those of B. parapertussis and B. bronchiseptica. The major lipid components of the three species were phosphatidylethanolamine, cardiolipin, phosphatidylglycerol, lysophosphatidylethanolamine, and an ornithine-containing lipid. The ornithine-containing lipid was characteristic of the genus Bordetella. The fatty acid composition of the total extractable cellular lipids of B. pertussis was mostly hexadecanoic and hexadecenoic acids (90%) in a ratio of about 1:1. The hexadecenoic acid of B. pertussis was in the cis-9 form. The fatty acid composition of the residual bound lipids was distinctly different from that of the extractable lipids, and residual bound lipids being mainly 3-hydroxytetradecanoic, tetradecanoic, and 3-hydroxydecanoic acids, with 3-hydroxydodecanoic acid occurring in some strains. It was determined that the 3-hydroxy fatty acids were derived from lipid A. The fatty acid composition of the total extractable cellular lipids of B. parapertussis and B. bronchiseptica, mainly composed of hexadecanoic and heptadecacyclopropanoic acid, differed from that of B. pertussis. Although the fatty acid composition of the residual bound lipids of B. parapertussis was similar to that of the residual bound lipids of B. pertussis, 2-hydroxydodecanoic acid was detected only in the bound lipids of B. bronchiseptica.  相似文献   

12.
The chemical structure of the polysaccharide moiety of the lipopolysaccharide Rhodopseudomonas sphaeroides ATCC 17023 was established. Mild acetic acid hydrolysis of isolated lipopolysaccharide, followed by preparative high-voltage paper electrophoresis afforded three oligosaccharides. They were characterized by chemical and physicochemical studies to be: GlcA(alpha 1----4)dOclA8P, Thr(6') GlcA(alpha 1----4)GlcA and GlcA(alpha 1----4)dOclA, where GlcA is D-glucuronic acid and dOc1A is 3-deoxy-D-manno-octulosonic acid. Carboxyl-reduction of the lipopolysaccharide followed by acid hydrolysis gave a trisaccharide: GlcA(alpha 1----4)Glc(alpha 1----4)Glc, showing the presence of three residues of glucuronic acids in the O-specific chain and indicating that only two of them are reducible by NaBH4. The linkage between the polysaccharide and lipid A was shown to be through a single 1,4-linked residue of dOc1A attached by a 2,6'-linkage to the lipid A moiety.  相似文献   

13.
A lipopolysaccharide was isolated by extraction ofAspergillus flavus conidia with 45 % phenol at 68–70 °C. Quantitative analysis revealed 7 % nucleic acids, 5.5 % proteins, 46 % polysaccharides and 49 % lipids, of which 12 % were covalently bound. Glucose, mannose, galactose and fucose were detected as monosaccharide components of the polysaccharide moiety by gas chromatography; palmitic acid, stearic acid, oleic acid, linoleic acid and myristic acid were mainly present in the lipidic fraction. This material differs from the bacterial lipopolysaccharides, both in composition of the polysaccharide moiety and representation of fatty acids in the lipidic fraction.  相似文献   

14.
Abstract A lipopolysaccharide (LPS) fraction was isolated from Prochlorothrix hollandica by hot phenol/water extraction. Negatively stained preparations of an aqueous LPS dispersion showed the triple-layered appearance of the LPS aggregates. Glucose (main sugar), rhamnose, fucose, galactose, mannose, xylose, and 3- O -methyl-xylose were found as the constituents of the polysaccharide moiety. Glucosamine and the 3-hydroxy fatty acids, 3-OH-16:0, 3-OH-14:0, and the rarely detected iso-3-OH-15:0, constitute the lipid A of the LPS. l -glycero- d -manno-heptose and 3-deoxy- d -manno-2-octulosonic acid (dOclA), typical components of inner core oligosaccharides from enterobacterial LPS, were lacking in the isolated LPS fraction from Prochlorothrix hollandica .  相似文献   

15.
1. Qualitative and quantitative analytical results for the lipopolysaccharide from acetone-dried cells of Pseudomonas aeruginosa (N.C.T.C. 1999) are presented and possible contamination of the material with nucleic acid was further examined. 2. Additional sugars detected (only in large-scale hydrolysates) were mannose and arabinose; traces of spermidine and putrescine were also found. 3. The heptose component is l-glycero-d-mannoheptose. 4. The thiobarbituric acid-positive component is a 3-deoxy-2-octulonic acid, of which only 35-40% links lipid A to the polysaccharide. This linkage is not broken by hydrolysis with acetic acid up to 0.08m. 5. Liberation of lipid A required hydrolysis with 0.1m-hydrochloric acid, which substantially degraded the polysaccharide moiety. 6. Fractions obtained from the degraded polysaccharide by high-voltage electrophoresis were examined; in these, the alanine/galactosamine molar ratio is approx. 1. 7. Hydrazinolysis of whole lipopolysaccharide showed that at least 40% of the alanine is in amide linkage, possibly with galactosamine. 8. Lipid A, solubilized by alkaline methanolysis was fractionated; most of the phosphorus of the higher-molecular-weight fractions was released as P(i) by a phosphomonoesterase. 9. Hydrazinolysis of lipid A destroyed approx. 80% of the glucosamine, and glycosidically linked glucosamine oligosaccharides could not be isolated.  相似文献   

16.
1. The insoluble residue and material present in the aqueous layers resulting from treatment of cell walls of Pseudomonas aeruginosa with aqueous phenol were examined. 2. The products (fractions AqI and AqII) isolated from the aqueous layers from the first and second extractions respectively account for approx. 25% and 12% of the cell wall and consist of both lipopolysaccharide and muropeptide. 3. The lipid part of the lipopolysaccharide is qualitatively similar to the corresponding material (lipid A) from other Gram-negative organisms, as is the polysaccharide part. 4. The insoluble residue (fraction R) contains sacculi, which also occur in fraction AqII. On hydrolysis, the sacculi yield glucosamine, muramic acid, alanine, glutamic acid and 2,6-diaminopimelic acid, together with small amounts of lysine, and they are therefore similar to the murein sacculi of other Gram-negative organisms. Fraction R also contains substantial amounts of protein, which differs from that obtained from the phenol layer. 5. The possible association or aggregation of lipopolysaccharide, murein and murein sacculi is discussed.  相似文献   

17.
In a series of our earlier studies, the O3 antigen isolated from culture supernatant of Klebsiella pneumoniae strain Kasuya (O3:K1) (KO3) was shown to exhibit very strong adjuvant activity in mice. KO3 obtained was homogeneous in analyses by either gel filtration or ultracentrifugation. Its molecular weight determined by ultracentrifugal analysis was greater than 2 X 10(6). It contained 37.9% C, 6.20% H, 0.24% N, and less than 0.1% P. KO3 was degraded into the polysaccharide moiety and lipid moiety (about 20%) by hydrolysis with 1% acetic acid at 100 C for 1 hr. The molecular weight of the polysaccharide moiety obtained by the hydrolysis was 16,200 as determined by the Somogyi-Nelson method. Chemical analyses using methylation analysis and Smith degradation as the principal methods indicated that the polysaccharide moiety consisted of a mannan which has a pentasaccharide repeating unit of alpha-mannosyl-1,3-alpha-mannosyl-1,2-alpha-mannosyl-1,2-alpha-mannosyl-1, 2-alpha-mannose joined through alpha-1,3-mannosyl linkages. The number of repetitions was less than 20. The fact that minor components such as 2-keto-3-deoxyoctonate and glucose were detected suggests the presence of a core oligosaccharide, but its precise structure is unknown.  相似文献   

18.
A heptose-deficient mutant of Escherichia coli has been isolated and from it a glycolipid, consisting of lipid A and 2-keto-3-deoxyoctonate (KDO), has been extracted with diisobutylketone-acetic acid-water. Based on beta-hydroxymyristic acid, the extractable glycolipid accounts for a major portion of the total lipid A in this mutant. A glycolipid, purified from the lipid extract by a combination of silicic acid and Sephadex LH-60 chromatography, contains glucosamine, phosphate, KDO, acetyl groups, and fatty acids in the following molar ratios: 1:2:2:1.7:5. These components account for over 80% of the lipid by weight. The fatty acid pattern of the glycolipid is typical of lipid A, the major component being beta-hydroxymyristic acid. The lipid also contains an amino sugar which appears to be 4-amino-4-deoxyarabinose. With the use of an ion-exchange paper chromatographic technique, gram-negative bacteria can be rapidly screened for the presence of this glycolipid. The mutant is believed to have a leaky defect in either biosynthesis of heptose or its incorporation into lipopolysaccharide. The lipopolysaccharide from the mutant contains only about a third as much heptose, glucose, and galactose as the parent CR34, a K-12 derivative. Chemical analysis and phage typing suggest that CR34 contains an incomplete core polysaccharide devoid of glucosamine.  相似文献   

19.
Lipid A and polysaccharide moieties obtained by mild acid hydrolysis of the lipopolysaccharides from Vibrio cholerae 569 B (Inaba) and Vibrio el-tor (Inaba) were characterized. Heterogeneity of lipid A fractions was indicated by t.l.c. and by gel filtration of the de-O-acylated products from mild alkaline methanolysis of the lipids. Presumably lipid A contains a glucosamine backbone, and the fatty acids are probably bound to the hydroxyl and amino groups of glucosamine residues. Approximately equal amounts of fatty acids C16:0, C18:1 and 3-hydroxylauric acid were involved in ester linkages, but 3-hydroxymyristic acid was the only amide-linked fatty acid. Sephadex chromatography of the polysaccharide moiety showed the presence of a high-molecular-weight heptose-free fraction and a low-molecular-weight heptose-containing fraction. Haemagglutination-inhibition assays of these fractions showed the heptose-free fraction to be an O-specific side-chain polysaccharide, whereas the heptose-containing fraction was the core polysaccharide region of the lipopolysaccharides. Identical results were obtained for both organisms.  相似文献   

20.
A lipopolysaccharide was isolated from Neisseria meningitidis group B by phenol/water extraction and purified by differential ultracentrifugation. This preparation exhibited endotoxic properties as shown by the limulus-lysate assay. Mild acid hydrolysis of the lipopolysaccharides yielded a lipid A fraction and a polysaccharide fraction. The lipid A fraction contained fatty acids, phosphorus and glucosamine. Analysis of the polysaccharide fraction revealed the presence of glucose, galactose, glucosamine, 2-keto-3-deoxyoctonic acid and phosphorus. There was no heptose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号