首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Carrot is a vital supply of dietary fiber, vitamins, and carotenoids, and it is also rich in antioxidants and minerals. Soil salinity significantly reduces the yield and quality of carrots. Mycorrhiza inoculum (AMF) is known to improve morphological and biochemical traits of vegetables even under saline conditions. But the role of AMF in combating soil salinity effect in carrot is not studied in detail. Therefore here, in the first set, carrot seeds are inoculated with microbes in a pot experiment under polyhouse condition. In total, we applied 7 treatments with different combinations of Mycorrhiza inoculum (Glomus mosseae (Gm) and Gigaspora gigantea (Gg)) and phosphate solubilizing bacteria (Pseudomonas fluroscens (Pf)). In pot experiment study the best two treatments were the combination of Gm + Pf + GG and Pf + GG. Both of these treatments were selected for validation under the open field conditions. Primarily, there seems to be a promising opportunity for AMF application to carrots under pot culture as well as under field trials because of promising effect towards morphological parameters, especially root weight, and disparities in nutrients and metabolites. Overall, our study highlights mycorrhizal fungi and other microbes' efficacy in achieving a successful carrot production under salinity stress.  相似文献   

2.
Fungal is a physiological trail and its understanding in the assimilation with the transfer of carbon (C) cum nitrogen (N) or (C/N) to orchid-seedlings have not been determined. Labelled stable isotopes 13C and 15N were used to plan the flow of C and N between orchid plants and mycorrhizal connotations in-terms of bulk transfer for C/N. This study attends to comprehend the mechanism, supporting mycorrhizal fungi which influences on orchid-seedling growth. Determined integration and transfer of C/N from amino acids (AA), ammonium nitrate (NH4NO3) and sugar for orchid-plant may lead to understand these mechanisms. This current study tries to estimate the importance of organic compounds as a source for C/N over the inorganic-NH4NO3. Generally, after begging of germination and when it is found to be associated to the nutrient resource, organic compound enhance the biomass accumulation of two orchid species. AA significantly increase the mass of 13C assimilated by two species. With amino acids the concentration of 13C in two species was greater than with NH4NO3 and sugar. At another phase, amount of 15N content shoots was a higher value in Anacamptis laxiflora shoots assimilated substantially additional of 15N with NH4NO3 plus sugar compared with ammonium nitrate only. This study showed that two terrestrial orchids species are reliant on organic compounds as a source of carbon and nitrogen more than inorganic compounds.  相似文献   

3.
土壤呼吸是植物固定的碳由陆地生态系统进入大气的主要途径之一; 凋落物分解是养分循环的重要环节。陆地植物的90%以上可同菌根真菌形成共生关系, 菌根真菌对于植物获取环境中的养分具有重要的作用。然而, 其对土壤呼吸和凋落物分解的影响却经常在生态系统对环境变化的响应研究中被忽视。本文系统地综述了国内外相关研究进展, 对菌根真菌如何影响土壤呼吸和凋落物分解这两个过程及这种影响如何受到环境变化的制约做了全面的分析, 并对以往研究中存在的问题以及未来的研究方向提出了展望。  相似文献   

4.
柞树林下菌根真菌对碳、氮营养的利用   总被引:8,自引:5,他引:3  
研究了柞树林下菌根真菌对C、N营养的利用状况.结果表明,供试菌种对C源的利用较为广泛,葡萄糖、果糖为其最适碳源,平均生长量比对照高出4.4倍;供试菌种对有机氮的利用优于无机氮,平均生长量比无机氮源高出1.6倍,硝态无机氮源中平均生长量为对照的2.5倍,对铵态氮的利用较差,平均生长量仅为对照的2.2倍  相似文献   

5.
Studies were carried out on B-group vitamins production by mycorrhizal fungi grown in vitro at different pH values. It was found that not all the fungi investigated produced all the B-group vitamins studied. Production of the vitamins varied between species and was influenced by the pH of the medium. Out of seven fungal species studied three did not produce biotin. Suillus bovinus synthesized this vitamin both in the acidic and neutral medium. Thiamin was produced by the fungi in minute amounts mainly in the acidic medium. The greatest amounts of nicotinic acid were produced by Hebeloma crustuliniforme (No 5392). Pantothenic acid was not detected only in the culture of Cenococcum graniforme.  相似文献   

6.
Sesame (Sesamum indicum L.) is an important staple crop of the family Pedaliaceae. The commercial production of sesame is still dependent on the applications of chemical fertilizers. Mycorrhiza inoculum resulted in better morphological and biochemical traits in vegetables. Thus, here the outcome of arbuscular mycorrhizal fungi (AMF) and Pseudomonas fluorescence (ATCC-17400) inoculation was studied in the pot culture experiment. Primarily, there seems to be a promising opportunity of AMF in sesame under pot and field trials because of enhanced morphological parameters, especially root weight, and disparities in nutrients and metabolites. The AMF appears to be an option to boost plant growth, mineral content, and sesame yield. The AMF treatment with Pseudomonas fluorescence strain (ATCC-17400) determined the maximum values for the morphological traits and mineral content. Overall, our study highlights mycorrhizal fungi and other microbes efficacy in achieving a successful sesame production.  相似文献   

7.
Summary Studies were carried out on synthesis of B-group vitamins by mycorrhizal fungi and actinomycetes (Streptomyces sp.) derived from soil, rhizosphere and mycorrhizosphere of pine.None of the fungal isolates produced biotin. The vitamin produced in largest amounts by the mycorrhizal fungi was thiamin.In general more actinomycetes isolated from the rhizosphere than from the root free soil produced B-group vitamins. This was particularly true for thiamin.The amount of vitamins produced was higher in actinomycetes than the amounts produced by the mycorrhizal fungi.This research was carried out under problem MR.II. 16 coordinated by the Institute of Dendrology, Polish Academy of Sciences.  相似文献   

8.
Summary The effect of soil acidity on spore germination, germ tube growth and root colonization of vesicular-arbuscular mycorrhizal (VAM) fungi was examined using a Florida Ultisol. Soil samples were treated with 0, 4, 8 and 12 meq Ca/MgCO3/100 g soil and each lime level received 0, 240, and 720 ppm P as superphosphate. Corn (Zea mays L.) was planted in the soil treatments, inoculated with eitherGlomus mosseae orGigaspora margarita spores and grown for 31 days. Acid soil inhibits mycorrhizal formation byG. mosseae through its strong fungistatic effect against the spores. The dolomitic lime increased mycorrhizal formation by both fungal species.G. margarita is much less sensitive to acidic conditions thanG. mosseae. Al ions are a very important component of the fungistatic property against the VAM symbiosis. VAM fungus adaptation may be important for plants growing on infertile acid soils if soil inoculation with these fungi is to contribute significantly to low-input technology for tropical agricultural systems.  相似文献   

9.
菌根真菌的碳氮循环功能研究进展   总被引:3,自引:0,他引:3  
菌根(Mycorrhiza)是土壤真菌与植物根系形成的共生体(Symbiont),真菌一方面从植物获取碳水化合物,同时帮助植物吸收氮等矿质养分,因此,菌根真菌在生态系统的碳氮循环过程中发挥重要的作用.研究结果表明,菌根真菌可利用约4%-26%的植物净光合固定的碳水化合物,而其生物量和分泌物(如球囊霉素)具有重要的土壤碳汇功能;同时菌根真菌可参与土壤复杂有机质的降解过程.在菌根共生体系中,氮从根外菌丝到根内菌丝的传输经历了一个“无机-有机-无机”的转变过程.本文重点总结分析了菌根真菌在碳氮代谢功能与机理等方面的国内外最新研究进展,以及目前存在的主要问题与未来的研究重点.  相似文献   

10.
Summary Production of auxins and gibberellin-like substances by mycorrhizal fungi, bacteria and actinomycetes isolated from the mycorrhizosphere of Scots pine was studied. Chromatography and biossays were used.Most of the organisms required tryptophan for auxins production. The highest biological activity exhibited substances located at Rf 0.2–0.4.The organisms produced minute amounts of gibberellin-like substances which appeared at different Rf values. It was stated that auxins production is much more common among the root zone organisms of pine than the production of gibberellin-like substances.This research was carried out under problem MR.II.16 coordinated by the Institute of Dendrology, Polish Academy of Sciences.  相似文献   

11.
《Mycoscience》2020,61(5):219-225
Improved understanding of mycorrhizal diversity in mycoheterotrophic (MH) plants is a key element of studies that investigate their evolution. MH plants are completely dependent on their mycorrhizal fungi for carbon. Mycorrhizal fungi of the MH genus Yoania (Orchidaceae), which is distributed in East Asia, have yet to be identified. We identified the mycobionts of three Japanese Yoania species, Y. amagiensis, Y. flava, and Y. japonica, by sequencing the internal transcribed spacer regions of nuclear ribosomal DNA. The sequences obtained were assigned to five operational taxonomic units (OTUs), among which four belonged to the genus Physisporinus (Meripilaceae, Polyporales) and one to Thelephoraceae. Yoania flava and Y. japonica were specifically associated with a single OTU of Physisporinus, while Y. amagiensis was associated with four Physisporinus OTUs. A phylogenetic analysis showed that fungal sequences from species of two other MH orchid genera, Cyrtosia and Galeola, also belonged to Physisporinus and were closely related to the Yoania mycobionts. This is the first study to report that (i) wood-rotting Physisporinus fungi form mycorrhizae with plant species, and (ii) have an important role in orchid mycoheterotrophy.  相似文献   

12.
Summary Soil cores collected under a birch tree (Betula pubescens) on an experimental plot showed a progressive change in types of sheathing mycorrhiza with distance from the tree base. Seedlings grown in cores in a glasshouse also developed different mycorrhizal types depending on distance from the tree at which the cores were taken, but the types on seedlings were often different from those in the parent cores. When cores were taken directly beneath fruitbodies and sown to birch in a glasshouse, seedlings developed mycorrhizas of Laccaria, Inocybe and Hebeloma in cores from beneath these fruitbodies, but they seldom developed Lactarius mycorrhizas and never developed Leccinum mycorrhizas in cores taken beneath these fruitbodies. Similarly, when seedlings were grown in soils supplemented with vermiculite-peat inocula in a glasshouse, Laccaria and Hebeloma readily formed mycorrhizas, butLactarius pubescens seldom did so and Leccinum andAmanita muscaria never dit so. Yet all these fungi form mycorrhizas on birch seedlings in aseptic conditions.The results suggest a distinction between early stage and late stage mycorrhizal fungi of birch. Early stage fungi readily infect seedlings from resident or introduced inoculum in normal, unsterile soil, whereas late stage fungi do not readily form mycorrhizas in these conditions.  相似文献   

13.
14.
Five different species of known ecto-mycorrhizal fungi: Cenococcum geophilum, Amanita muscaria, Tricholoma aurantium, Rhizopogon luteolus and Rhizopogon roseolus were studied for their ability to metabolize the major components of plant cell walls. All strains were able to decompose 14C-labelled plant lignin, 14C-lignocellulose and 14C-DHP-lignin at a rate which was lower than the one observed for the known white rot fungi Heterobasidion annosum and Sporotrichum pulverulentum. Also 14C-(U)-holocellulose was relatively less degradable for the mycorrhizal fungi than for the white rotters. On the other hand, aromatic monomers like 14C-vanillic acid were decomposed to a much higher extent by two species of mycorrhizal fungi compared to the activity observed for Heterobasidion annosum. The results of the experiments reveal that these stains of mycorrhizal fungi are well able to utilize the major components of plant material and thus can contribute to litter decomposition in the forest floor.  相似文献   

15.
BACKGROUND AND AIMS: The aim of this study was to investigate the effects of the interactions between the microbial symbionts, Rhizobium and arbuscular mycorrhizal fungi (AMF) on N and P accumulation by broad bean (Vicia faba) and how increased N and P content influence biomass production, leaf area and net photosynthetic rate. METHODS: A multi-factorial experiment consisting of four different legume-microbial symbiotic associations and two nitrogen treatments was used to investigate the influence of the different microbial symbiotic associations on P accumulation, total N accumulation, biomass, leaf area and net photosynthesis in broad bean grown under low P conditions. KEY RESULTS: AMF promoted biomass production and photosynthetic rates by increasing the ratio of P to N accumulation. An increase in P was consistently associated with an increase in N accumulation and N productivity, expressed in terms of biomass and leaf area. Photosynthetic N use efficiency, irrespective of the inorganic source of N (e.g. NO3- or N2), was enhanced by increased P supply due to AMF. The presence of Rhizobium resulted in a significant decline in AMF colonization levels irrespective of N supply. Without Rhizobium, AMF colonization levels were higher in low N treatments. Presence or absence of AMF did not have a significant effect on nodule mass but high N with or without AMF led to a significant decline in nodule biomass. Plants with the Rhizobium and AMF symbiotic associations had higher photosynthetic rates per unit leaf area. CONCLUSIONS: The results indicated that the synergistic or additive interactions among the components of the tripartite symbiotic association (Rhizobium-AMF-broad bean) increased plant productivity.  相似文献   

16.
 We determined the effects of phosphorus (P) concentration and mycorrhizal colonization on ethylene production by flowers of snapdragons (Antirrhinum majus L.). Mycorrhizal colonization in a soil-less medium did not significantly affect the total number of flowers per spike or flower P concentration, but it significantly increased flower vase-life and significantly decreased flower ethylene production. This demonstrates for the first time that mycorrhizal colonization can have a non-localized effect on host ethylene production. The reduction in ethylene production caused by mycorrhizal colonization was as large as the variation in ethylene production among snapdragon cultivars. Thus, mycorrhizal colonization may be a viable alternative to toxic ethylene inhibitors such as silver thiosulfate. Increased fertilizer P concentration (15 versus 3 μg P ml–1) significantly increased plant fresh weight and the total number of flowers per spike. In contrast to mycorrhizal colonization, increased fertilizer P concentration resulted in an increase in ethylene production. There was no significant effect of fertilizer P concentration on vase-life. This suggests that factors other than ethylene have at least partial control over vase-life. Postharvest amendment of individual flowers with phosphate also significantly increased flower ethylene production. Phosphorus apparently does not mediate the mycorrhizal effect because mycorrhizal colonization decreased ethylene production without significantly influencing flower P concentration. Moreover, treatment with phosphate increased flower ethylene production. Mycorrhizal colonization did not significantly influence response to exogenous ethylene. Accepted: 14 June 1999  相似文献   

17.
Zhang Y  Guo LD 《Mycorrhiza》2007,17(4):319-325
We investigated the colonization and diversity of arbuscular mycorrhizal (AM) fungi associated with 24 moss species belonging to 16 families in China. AM fungal structures, i.e. spores, vesicles, hyphal coils (including intracellular hyphae), or intercellular nonseptate hyphae, were found in 21 moss species. AM fungal structures (vesicles, hyphal coils, and intercellular nonseptate hyphae) were present in tissues of 14 moss species, and spores and nonseptate hyphae on the surface of gametophytes occurred in 15 species. AM fungal structures were present in 11 of the 12 saxicolous moss species and in six of the ten terricolous moss species, but absent in two epixylous moss species. AM fungal structures were only observed in moss stem and leaf tissues, but not in rhizoids. A total of 15 AM fungal taxa were isolated based on trap culture with clover, using 13 moss species as inocula. Of these AM fungi, 11 belonged to Glomus, two to Acaulospora, one to Gigaspora, and one to Paraglomus. Our results suggest that AM fungal structures commonly occur in most mosses and that diverse AM fungi, particularly Glomus species, are associated with mosses.  相似文献   

18.
J. Dighton 《Plant and Soil》1983,71(1-3):455-462
Summary Sheathing mycorrhizal fungi have been shown to possess phosphatase enzymes which can hydrolyse inositol hexaphosphate. In a range of mycorrhizal fungi, this activity was often greater than in two common decomposer basidiomycetes. Mycorrhizal birch and pine roots both produce phosphatases. In birch production is inversely related to the inorganic phosphorus concentration in the growth medium. Mycorrhizas reduce phosphatase activity compared with non-mycorrhizal plants.Phosphatase production by basidiomycete fungi in liquid culture is independent of P in the medium. Saprophytic basidiomycetes tend to incorporate hydrolysed phosphate into their biomass. In contrast mycorrhizal fungi release more into solution than they absorb. The significance of this difference in relation to the supply of nutrients to plants is discussed.  相似文献   

19.
 Seedlings of papaya (Carica papaya L. var. Solo) were transplanted to pots with or without an arbuscular mycorrhizal (AM) fungus (Gigaspora margarita Becker and Hall). After 3 months, half the plants were subjected to water stress by withdrawing irrigation. The leaf water potential (LWP) was measured during 20 days of water-stress treatment and then the plants were harvested. Root ethylene and 1-aminocyclopropane-1-carboxylic acid (ACC) concentrations were measured and plant fresh weight determined. The LWP decreased during the water-stress treatment and this decrease was more severe in the non-AM plants. Plant fresh weight was higher for AM than non-AM plants under both conditions. Under well-irrigated conditions, the ethylene concentration in the roots was increased by the presence of AM, although there was no significant difference between AM and non-AM roots in ACC levels. ACC increased in both AM and non-AM roots under water-stress conditions. The water-stress treatment resulted in a marked increase in ethylene concentration in non-AM roots but the concentration in AM roots was slightly lower than under normal conditions. Accepted: 7 July 2000  相似文献   

20.
G. Ganade  V. K. Brown 《Oecologia》1997,109(3):374-381
 The effects of, and interactions between, insect root feeders, vesicular-arbuscular mycorrhizal fungi and soil fertility on the establishment, growth and reproduction of Vicia sativa and V. hirsuta (Fabaceae) were investigated in an early-successional grassland community. Seeds of both species were sown into plots where soil insecticide (Dursban 5G), soil fungicide (Rovral) and soil fertiliser (NPK) were applied in a factorial randomised block design. Fertiliser addition reduced growth, longevity and reproduction of both Vicia species, due to the commonly recorded increase in the competitive advantage of the non-nitrogen-fixing species when nitrogen is added to the plant community. However, in plots where fertiliser was not applied, a reduction in root feeders and mycorrhizal infection led to an increase in seedling establishment and fruit production of V. sativa, and to an increase in flower production for both Vicia species. The interaction between all three soil treatments explained much of the variation in growth and longevity of V. sativa. Plants grew larger and survived longer in plots where natural levels of mycorrhizal infection and root feeders were low compared with plots where all the treatments were applied. This suggests that, although soil nutrient availability was a strong determinant of the performance of these two leguminous species, at natural levels of soil fertility biotic factors acting in the soil, such as mycorrhizal fungi and soil-dwelling insects, were important in shaping the competitive interactions between the two Vicia species and the plant community. Our results indicate that non-additive interactions between ecological factors in the soil environment may strongly affect plant performance. Received: 18 July 1995 / Accepted: 14 August 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号