首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1988,107(6):2631-2645
The formation of protrusions at the leading edge of the cell is an essential step in fibroblast locomotion. Using fluorescent analogue cytochemistry, ratio imaging, multiple parameter analysis, and fluorescence photobleaching recovery, the distribution of actin and myosin was examined in the same protrusions at the leading edge of live, locomoting cells during wound-healing in vitro. We have previously defined two temporal stages of the formation of protrusions: (a) initial protrusion and (b) established protrusion (Fisher et al., 1988). Actin was slightly concentrated in initial protrusions, while myosin was either totally absent or present at extremely low levels at the base of the initial protrusions. In contrast, established protrusions contained diffuse actin and actin microspikes, as well as myosin in both diffuse and structured forms. Actin and myosin were also localized along concave transverse fibers near the base of initial and established protrusions. The dynamics of myosin penetration into a relatively stable, established protrusion was demonstrated by recording sequential images over time. Myosin was shown to be absent from an initial protrusion, but diffuse and punctate myosin was detected in the same protrusion within 1-2 min. Fluorescence photobleaching recovery indicated that myosin was 100% immobile in the region behind the leading edge containing transverse fibers, in comparison to the 21% immobile fraction detected in the perinuclear region. Possible explanations of the delayed penetration of myosin into established protrusions and the implications on the mechanism of protrusion are discussed.  相似文献   

2.
A unique set of affinity-purified anti-profilin and anti-actin antibodies generated against a covalently coupled version of the profilin:actin complex was used to assess the distribution of profilin and non-filamentous actin in mouse melanoma cells. In agreement with the profilin:actin complex being the principal source of actin for filament formation, we observed extensive co-distribution of both antibody preparations with vasodilator-stimulated phosphoprotein (VASP) and the p34 subunit of the Arp2/3 complex, both of which are components of actin polymer-forming protein complexes in the cell. This suggests that the localization of profilin and actin revealed with these antibodies in fact reflects the distribution of the profilin:actin complex rather than the two proteins separately. Significantly, protruding lamellipodia and filopodia showed intensive labeling. The two antibody preparations were also used to stain HeLa cells infected with Listeria monocytogenes or vaccinia virus. In both cases, the pattern of antibody staining of the pathogen-induced microfilament arrangement differed, suggesting a varying accessibility for the antibody-binding epitopes.  相似文献   

3.
Cell migration is a highly controlled essential cellular process, often dysregulated in tumour cells, dynamically controlled by the architecture of the cell. Studies involving cellular fractionation and microarray profiling have previously identified functionally distinct mRNA populations specific to cellular organelles and architectural compartments. However, the interaction between the translational machinery itself and cellular structures is relatively unexplored. To help understand the role for the compartmentalization and localized protein synthesis in cell migration, we have used scanning confocal microscopy, immunofluorescence and a novel ribopuromycylation method to visualize translating ribosomes. In the present study we show that eIFs (eukaryotic initiation factors) localize to the leading edge of migrating MRC5 fibroblasts in a process dependent on TGN (trans-Golgi network) to plasma membrane vesicle transport. We show that eIF4E and eIF4GI are associated with the Golgi apparatus and membrane microdomains, and that a proportion of these proteins co-localize to sites of active translation at the leading edge of migrating cells.  相似文献   

4.
Intracellular signaling events at the leading edge of migrating cells   总被引:4,自引:0,他引:4  
Cell migration is an important facet of the life cycle of immune and other cell types. A complex set of events must take place at the leading edge of motile cells before these cells can migrate. Chemokines induce the motility of various cell types by activating multiple intracellular signaling pathways. These include the activation of chemokine receptors, which are coupled to the heterotrimeric G proteins. The release of G beta gamma subunits from chemokine receptors results in the recruitment to the plasma membrane, with subsequent activation of various down-stream signaling molecules. Among these molecules are the pleckstrin homology domain-containing proteins and the phosphoinositide 3-kinase gamma which phosphorylates phospholipids and activates members of the GTP exchange factors (GEFs). These GEFs facilitate the exchange of GTP for GDP in members of GTPases. The latter are important for reorganizing the cell cytoskeleton, and in inducing chemotaxis. Chemokines also induce the mobilization of intracellular calcium from intracellular stores. Second messengers such as inositol 1,4,5 trisphosphate, and cyclic adenosine diphosphate ribose are among those induced by chemokines. In addition, the G beta gamma subunits recruit members of the G protein-coupled receptor kinases, which phosphorylate chemokine receptors, resulting in desensitization and termination of the motility signals. This review will discuss the intracellular signaling pathways induced by chemokines, particularly those activated at the leading edge of migrating cells which lead to cell polarization, cytoskeleton reorganization and motility.  相似文献   

5.
Previous observations indicated that the lamellipodium ("leading edge") of fibroblasts contains a dense meshwork, as well as numerous bundles (microspikes) of actin filaments. Most, if not all, of the filaments have a uniform polarity, with the "barbed" end associated with the membrane. I investigated whether and how actin subunits exchange in this region by microinjecting living gerbil fibroma cells (IMR-33) with actin that had been labeled with iodoacetamidotetramethylrhodamine. After incorporation of the labeled actin into the lamellipodium, I used a laser microbeam to photobleach a 3-4-micron region at and surrounding a microspike, without disrupting the integrity of the structure. I then recorded the pattern of fluorescence recovery and analyzed it using a combination of TV image intensification and digital image processing techniques. Fluorescence recovery was first detected near the edge of the cell and then moved toward the cell's center at a constant rate of 0.79 +/- 0.31 micron/min. When only part of the lamellipodium near the edge of the cell was photobleached, the bleached spot also moved toward the cell's center and through an area unbleached by the laser beam. These results indicated that steady state incorporation of actin subunits occurred predominantly at the membrane-associated end of actin filaments, and that actin subunits in the lamellipodium underwent a constant movement toward the center of the cell. I suggest that treadmilling, possibly in combination with other molecular interactions, may provide an effective mechanism for the movement of actin subunits and the protrusion of cytoplasm in the lamellipodium of fibroblasts.  相似文献   

6.
《The Journal of cell biology》1993,120(6):1381-1391
Myosin I is present in Swiss 3T3 fibroblasts and its localization reflects a possible involvement in the extension and/or retraction of protrusions at the leading edge of locomoting cells and the transport of vesicles, but not in the contraction of stress fibers or transverse fibers. An affinity-purified polyclonal antibody to brush border myosin I colocalizes with a polypeptide of 120 kD in fibroblast extracts. Within initial protrusions of polarized, migrating fibroblasts, myosin I exhibits a punctate distribution, whereas actin is diffuse and myosin II is absent. Myosin I also exists in linear arrays parallel to the direction of migration in filopodia and microspikes, established protrusions, and within the leading lamellae of migrating cells. Myosin II and actin colocalize along transverse fibers in the lamellae of migrating cells, while myosin I displays no definitive organization along these fibers. During contractions of actin-based fibers, myosin II is concentrated in the center of the cell, while the distribution of myosin I does not change. Thus, myosin I is found at the correct location and time to be involved in the extension and/or retraction of protrusions and the transport of vesicles. Myosin II-based contractions in more posterior cellular regions could generate forces to separate cells, maintain a polarized cell shape, maintain the direction of locomotion, maximize the rate of locomotion, and/or aid in the delivery of cytoskeletal/contractile subunits to the leading edge.  相似文献   

7.
Two fundamental parameters of the highly dynamic, ultrathin lamellipodia of migrating fibroblasts have been determined-its thickness in living cells (176 +/- 14 nm), by standing-wave fluorescence microscopy, and its F-actin density (1580 +/- 613 microm of F-actin/microm(3)), via image-based photometry. In combination with data from previous studies, we have computed the density of growing actin filament ends at the lamellipodium margin (241 +/- 100/microm) and the maximum force (1.86 +/- 0.83 nN/microm) and pressure (10.5 +/- 4.8 kPa) obtainable via actin assembly. We have used cell deformability measurements (. J. Cell Sci. 44:187-200;. Proc. Natl. Acad. Sci. USA. 79:5327-5331) and an estimate of the force required to stall the polymerization of a single filament (. Proc. Natl. Acad. Sci. USA. 78:5613-5617;. Biophys. J. 65:316-324) to argue that actin assembly alone could drive lamellipodial extension directly.  相似文献   

8.
9.
cAMP-dependent protein kinase A (PKA) is important in processes requiring localized cell protrusion, such as cell migration and axonal path finding. Here, we used a membrane-targeted PKA biosensor to reveal activation of PKA at the leading edge of migrating cells. Previous studies show that PKA activity promotes protrusion and efficient cell migration. In live migrating cells, membrane-associated PKA activity was highest at the leading edge and required ligation of integrins such as α4β1 or α5β1 and an intact actin cytoskeleton. α4 integrins are type I PKA-specific A-kinase anchoring proteins, and we now find that type I PKA is important for localization of α4β1 integrin-mediated PKA activation at the leading edge. Accumulation of 3′ phosphorylated phosphoinositides [PtdIns(3,4,5)P3] products of phosphatidylinositol 3-kinase (PI3-kinase) is an early event in establishing the directionality of migration; however, polarized PKA activation did not require PI3-kinase activity. Conversely, inhibition of PKA blocked accumulation of a PtdIns(3,4,5)P3-binding protein, the AKT-pleckstrin homology (PH) domain, at the leading edge; hence, PKA is involved in maintaining cell polarity during migration. In sum, we have visualized compartment-specific PKA activation in migrating cells and used it to reveal that adhesion-mediated localized activation of PKA is an early step in directional cell migration.  相似文献   

10.
The effect of the suppression of expression of the actin-binding protein caldesmon on the motility of nonmuscle cells has been studied. A more than a fivefold decrease in the content of this protein in cells by RNA interference led to the disturbance of the formation of actin stress fibers and acceleration of cell migration to the zone of injury of the monolayer. A stimulation of stationary cells by serum induced more than 1,5-fold accumulation of stress fibers only in control cells, but not in caldesmon-deficient cells. Similarly, the accumulation of actin filaments was observed in actively migrating cells of only wild type, but not in the cells with low caldesmon content. These changes occurred mainly at the leading edge of the migrating cell where the distinct structure of actin filaments was not seen in the absence of caldesmon. It was assumed that caldesmon inhibits cell migration due to the stabilization of actin in filaments and a decrease in the dynamics of monomeric actin at the leading edge of the migrating cell.  相似文献   

11.
Certain types of cells show a dramatic change in cell morphology cultured in the presence of transforming growth factor beta (TGF-beta). To identify cellular components or factors leading to morphological changes, we investigated if any members of cytoskeletal proteins and cell-adhesion molecules were redistributed in TGF-beta-treated Swiss 3T3 fibroblasts by indirect immunofluorescence and Western-blot analysis. Changes in cell morphology became apparent within 12 h of the addition of TGF-beta and new RNA and protein synthesis was necessitated by the changes. While TGF-beta induced reorganization of microfilaments as reported in earlier studies, one of the actin isoforms, alpha actin of smooth muscle, was induced to form stress fibers in Swiss 3T3 cells. It was observed that myosin light chain was relocated from cell periphery to cytoplasmic filamentous structures by TGF-beta treatment, with an increased amount. In addition, the cell-shape change was accompanied by an increase in the level of vinculin and tyrosine phosphorylation at focal adhesions. These results suggest that new protein synthesis is required for the cell-shape change, and acto-myosin filaments and focal adhesion proteins are involved in the alteration of cell morphology induced by TGF-beta in Swiss 3T3 fibroblasts.  相似文献   

12.
13.
β-actin mRNA localizes to the leading edge of a living chicken embryo fibroblast. Recently we proposed that the mRNA maintains its localization at the leading edge by utilizing the heterogeneity of cytoplasmic microstructure (Yamagishi et al., 2009 [10]). In this study, we observed the intracellular distribution of β-actin mRNA variants to elucidate the mechanism of mRNA localization at the leading edge. We found that the degree of localization correlated positively with the molecular mass of the mRNA variants. We further demonstrated that the molecular mass-dependent localization was found even with dextrans, which have no biological function. The dependency of localization on molecular mass suggested that the barrier effect caused by the physical obstruction of the cytoplasmic microstructure is one of the major factors controlling mRNA localization in motile fibroblasts.  相似文献   

14.
Directional sensing, a process in which cells convert an external chemical gradient into internal signaling events, is essential in chemotaxis. We previously showed that a Rho GTPase, RacE, regulates gradient sensing in Dictyostelium cells. Here, using affinity purification and mass spectrometry, we identify a novel RacE-binding protein, GflB, which contains a Ras GEF domain and a Rho GAP domain. Using biochemical and gene knockout approaches, we show that GflB balances the activation of Ras and Rho GTPases, which enables cells to precisely orient signaling events toward higher concentrations of chemoattractants. Furthermore, we find that GflB is located at the leading edge of migrating cells, and this localization is regulated by the actin cytoskeleton and phosphatidylserine. Our findings provide a new molecular mechanism that connects directional sensing and morphological polarization.  相似文献   

15.
The spatial organization of microtubules is crucial for different cellular processes. It is traditionally supposed that fibroblasts have radial microtubule arrays consisting of long microtubules that run from the centrosome. However, a detailed analysis of the microtubule array in the internal cytoplasm has never been performed. In the current study, we used laser photobleaching to analyze the spatial organization of microtubules in the internal cytoplasm of cultured 3T3 fibroblasts. Cells were injected with Cy-3-labeled tubulin, after which the growth of microtubules in the centrosome region and peripheral parts of cytoplasm was assayed in the bleached zone. In most cases, microtubule growth in the bleached zone occurred rectilinearly; at distances of up to 5 μm, microtubules seldom bend more than 10°–15°. We considered a growing fragment of the microtubule as a vector with the beginning at the point of occurrence and the end at the point where the growth terminated (or the end point after 30 s if microtubule persistent growth proceeded for longer). We defined the direction of microtubule growth in different parts of the cell using these vectors and measured the angle of their deviation from the vector of comparison. In the area of the centrosome, we directed a comparison vector inside the bleached zone from the centrosome to the beginning of the growing microtubule segment; in the lamella and trailing part of the fibroblast, we used the vector of comparison directed along the long axis of the cell from its geometrical center to periphery. The microtubules growing straight away from the centrosome grew along the cell radius. However, at a distance of 10 μm from the centrosome, radially growing microtubules comprised 40% of the overall number, while at a distance of 20 μm, they made up only 25%. The rest of the microtubules grew in different directions, with the preferred angle between their growth direction and cell radius equaling around 90 °. In the lamella and trailing part of the fibroblast, 80% of all microtubules grew along the long axis of the cell or at an angle of no more than 20 °; 10–15% of microtubules grew along axis of the cell but towards the centrosome. Thus, in 3T3 fibroblasts, the radial system of microtubules is perturbed starting at a distance of several microns from the centrosome. In the internal cytoplasm, the microtubule system is completely disordered and, in the stretched parts of the polarized cell (lamella, trailing edge), the microtubule system again becomes well organized; microtubules are preferentially oriented along the long axis of the cell. From the results obtained, we conclude that the orderliness of microtubules at the periphery of the fibroblast is not a consequence of their growth from the centrosome; rather, their orientation is preset by local factors.  相似文献   

16.
Actin assembly at the cell front drives membrane protrusion and initiates the cell migration cycle. Microtubules (MTs) extend within forward protrusions to sustain cell polarity and promote adhesion site turnover. Memo is an effector of the ErbB2 receptor tyrosine kinase involved in breast carcinoma cell migration. However, its mechanism of action remained unknown. We report in this study that Memo controls ErbB2-regulated MT dynamics by altering the transition frequency between MT growth and shortening phases. Moreover, although Memo-depleted cells can assemble the Rac1-dependent actin meshwork and form lamellipodia, they show defective localization of lamellipodial markers such as α-actinin-1 and a reduced number of short-lived adhesion sites underlying the advancing edge of migrating cells. Finally, we demonstrate that Memo is required for the localization of the RhoA guanosine triphosphatase and its effector mDia1 to the plasma membrane and that Memo–RhoA–mDia1 signaling coordinates the organization of the lamellipodial actin network, adhesion site formation, and MT outgrowth within the cell leading edge to sustain cell motility.  相似文献   

17.
In migrating fibroblasts actomyosin II bundles are graded polarity (GP) bundles, a distinct organization to stress fibers. GP bundles are important for powering cell migration, yet have an unknown mechanism of formation. Electron microscopy and the fate of photobleached marks show actin filaments undergoing retrograde flow in filopodia, and the lamellipodium are structurally and dynamically linked with stationary GP bundles within the lamella. An individual filopodium initially protrudes, but then becomes separated from the tip of the lamellipodium and seeds the formation of a new GP bundle within the lamella. In individual live cells expressing both GFP-myosin II and RFP-actin, myosin II puncta localize to the base of an individual filopodium an average 28 s before the filopodium seeds the formation of a new GP bundle. Associated myosin II is stationary with respect to the substratum in new GP bundles. Inhibition of myosin II motor activity in live cells blocks appearance of new GP bundles in the lamella, without inhibition of cell protrusion in the same timescale. We conclude retrograde F-actin flow and myosin II activity within the leading cell edge delivers F-actin to the lamella to seed the formation of new GP bundles.  相似文献   

18.
Mechanical interactions between cell and substrate are involved in vital cellular functions from migration to signal transduction. A newly developed technique, traction force microscopy, makes it possible to visualize the dynamic characteristics of mechanical forces exerted by fibroblasts, including the magnitude, direction, and shear. In the present study such analysis is applied to migrating normal and transformed 3T3 cells. For normal cells, the lamellipodium provides almost all the forces for forward locomotion. A zone of high shear separates the lamellipodium from the cell body, suggesting that they are mechanically distinct entities. Timing and distribution of tractions at the leading edge bear no apparent relationship to local protrusive activities. However, changes in the pattern of traction forces often precede changes in the direction of migration. These observations suggest a frontal towing mechanism for cell migration, where dynamic traction forces at the leading edge actively pull the cell body forward. For H-ras transformed cells, pockets of weak, transient traction scatter among small pseudopods and appear to act against one another. The shear pattern suggests multiple disorganized mechanical domains. The weak, poorly coordinated traction forces, coupled with weak cell-substrate adhesions, are likely responsible for the abnormal motile behavior of H-ras transformed cells.  相似文献   

19.
Lamellipodium extension, incorporating actin filament dynamics and the cell membrane, is simulated in three dimensions. The actin filament network topology and the role of actin-associated proteins such as Arp2/3 are examined. We find that the orientational pattern of the filaments is in accord with the experimental data only if the spatial orientation of the Arp2/3 complex is restricted during each branching event. We hypothesize that branching occurs when Arp2/3 is bound to Wiskott-Aldrich syndrome protein (WASP), which is in turn bound to Cdc42 signaling complex; Arp2/3 binding geometry is restricted by the membrane-bound complex. Using mechanical and energetic arguments, we show that any membrane protein that is conical or trapezoidal in shape preferentially resides at the curved regions of the plasma membrane. We hypothesize that the transmembrane receptors involved in the recruitment of Cdc42/WASP complex has this property and concentrate at the leading edge. These features, combined with the mechanical properties of the cell membrane, explain why lamellipodium is a flat organelle.  相似文献   

20.
The small guanosine triphosphatase Rab13 functions in exocytic vesicle trafficking in epithelial cells. Alterations in Rab13 activity have been observed in human cancers, yet the mechanism of Rab13 activation and its role in cancer progression remain unclear. In this paper, we identify the DENN domain protein DENND2B as the guanine nucleotide exchange factor for Rab13 and develop a novel Förster resonance energy transfer–based Rab biosensor to reveal activation of Rab13 by DENND2B at the leading edge of migrating cells. DENND2B interacts with the Rab13 effector MICAL-L2 at the cell periphery, and this interaction is required for the dynamic remodeling of the cell’s leading edge. Disruption of Rab13-mediated trafficking dramatically limits the invasive behavior of epithelial cells in vitro and the growth and migration of highly invasive cancer cells in vivo. Thus, blocking Rab13 activation by DENND2B may provide a novel target to limit the spread of epithelial cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号