首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of feeding the 'toxic' penicillin precursor, phenylacetic acid (PAA) at varying rates, upon the process of cellular autolysis, was assessed in batch bioreactor cultures of an industrial strain of Penicillium chrysogenum. Five processes were fed at rates which resulted in extracellular concentrations of PAA ranging from zero (the control) to approximately ten times levels said to be optimal for penicillin biosynthesis. The culture response was assessed chemically and morphologically, using computerised image analysis. High concentrations of PAA reduced biomass and penicillin production, and were associated with increased cellular autolysis. However, the values of classical morphological indices (branch length, main hyphal length and hyphal growth unit) varied little in cultures which showed extensive autolysis and biomass loss. Lower precursor concentrations (0.01 to 1.0 g l-1) had little effect on biomass, penicillin, or upon the levels of autolysis compared with the control process. Therefore, precursor concentration controlled within the optimal range for penicillin production, has little impact upon differentiation or degradation within an industrial culture of P. chrysogenum. By contrast, exploitation of the toxicity of PAA is proposed as a means to bring forward or enhance autolysis, providing a reliable method of 'induction' with which to study the phenomenon in P. chrysogenum.  相似文献   

2.
3.
The optimization of operating conditions for cellulose hydrolysis was systemically undertaken using an ultra-scaled down membrane bioreactor based on the parameter scanning ultrafiltration apparatus. The bioconversion of cellulose saccharification was carried out with freely suspended cellulase from Aspergillus niger as the biocatalyst. The polyethersulfone ultrafiltration membranes with a molecular weight cutoff of 10 kDa were used to construct the enzymatic membrane bioreactor, with the membrane showing a complete retaining of cellulase and cellobiase. The influence of solution pH, temperature, salt (NaCl) concentration, presence of cellobiase, cellulose-to-enzyme ratio and stirring speed on reducing sugar production was examined. The results showed that the addition of an appropriate amount of NaCl or cellobiase had a positive effect on reducing sugar formation. Under the identified optimal conditions, cellulose hydrolysis in the enzymatic membrane bioreactor was tested for a long period of time up to 75 h, and both enzymes and operation conditions demonstrated good stability. Also, the activation energy (E a) of the enzymatic hydrolysis, with a value of 34.11 ± 1.03 kJ mol−1, was estimated in this study. The operational and physicochemical conditions identified can help guide the design and operation of enzymatic membrane bioreactors at the industrial scale for cellulose hydrolysis.  相似文献   

4.
Projections on the profitability of the pharmaceutical industry predict a large amount of growth in the coming years. Stagnation over the last 20 years in product development has led to the search for new processing methods to improve profitability by reducing operating costs or improving process productivity. This work proposes a novel multifeed bioreactor system composed of independently controlled feeds for substrate(s) and media used that allows for the free manipulation of the bioreactor supply rate and substrate concentrations to maximize bioreactor productivity and substrate utilization while reducing operating costs. The optimal operation of the multiple feeds is determined a priori as the solution of a dynamic optimization problem using the kinetic models describing the time‐variant bioreactor concentrations as constraints. This new bioreactor paradigm is exemplified through the intracellular production of beta‐carotene using a three feed bioreactor consisting of separate glucose, ethanol and media feeds. The performance of a traditional bioreator with a single substrate feed is compared to that of a bioreactor with multiple feeds using glucose and/or ethanol as substrate options. Results show up to a 30% reduction in the productivity with the addition of multiple feeds, though all three systems show an improvement in productivity when compared to batch production. Additionally, the breakeven selling price of beta‐carotene is shown to decrease by at least 30% for the multifeed bioreactor when compared to the single feed counterpart, demonstrating the ability of the multifeed reactor to reduce operating costs in bioreactor systems. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:902–912, 2017  相似文献   

5.
To contribute towards designing more cost-efficient, robust and flexible downstream processes for the manufacture of monoclonal antibodies (mAbs), a framework consisting of an evolutionary multiobjective optimization algorithm (EMOA) linked to a biomanufacturing process economics model is presented. The EMOA is tuned to discover sequences of chromatographic purification steps and column sizing strategies that provide the best trade-off with respect to multiple objectives including cost of goods per gram (COG/g), robustness in COG/g, and impurity removal capabilities. Additional complexities accounted for by the framework include uncertainties and constraints. The framework is validated on industrially relevant case studies varying in upstream and downstream processing train ratios, annual demands, and impurity loads. Results obtained by the framework are presented using a range of visualization tools, and indicate that the performance impact of uncertainty is a function of both the level of uncertainty and the objective being optimized, and that uncertainty can cause otherwise optimal processes to become suboptimal. The optimal purification processes discovered outperform the industrial standard with, e.g. savings in COG/g of up to 10%. Guidelines are provided for choosing an optimal purification process as a function of the objectives being optimized and impurity levels present.  相似文献   

6.
The production of semi-synthetic beta-lactam antibiotics such as Amoxicillin may be performed enzymatically using penicillin acylase under mild conditions. However, the thermodynamically favored hydrolysis of the antibiotic product and the acyl donor substrate needs to be minimized to use the kinetically controlled route. The addition of cosolvents such as ethylene glycol and methanol (the two best solvents identified so far for semi-synthetic beta-lactam antibiotics) can achieve this to some degree, but these additives also produce enzyme inhibition and deactivation. In this study, we compared ethylene glycol and methanol under various substrate conditions. Methanol gave a better synthesis to hydrolysis ratio, although its deactivating effects adversely affected production at lower cosolvent concentrations than ethylene glycol. This effect and its dependence on substrate concentration was further modeled and optimized. A few targets of optimization such as Amoxicllin level, the synthesis to hydrolysis ratio, or a combination, were employed. While maximum levels of Amoxicillin synthesis were achievable only at high substrate concentrations, improvements derived from cosolvents were most significant at low substrate concentrations.  相似文献   

7.
The concept of design space has been taking root as a foundation of in‐process control strategies for biopharmaceutical manufacturing processes. During mapping of the process design space, the multidimensional combination of operational variables is studied to quantify the impact on process performance in terms of productivity and product quality. An efficient methodology to map the design space for a monoclonal antibody cell culture process is described. A failure modes and effects analysis (FMEA) was used as the basis for the process characterization exercise. This was followed by an integrated study of the inoculum stage of the process which includes progressive shake flask and seed bioreactor steps. The operating conditions for the seed bioreactor were studied in an integrated fashion with the production bioreactor using a two stage design of experiments (DOE) methodology to enable optimization of operating conditions. A two level Resolution IV design was followed by a central composite design (CCD). These experiments enabled identification of the edge of failure and classification of the operational parameters as non‐key, key or critical. In addition, the models generated from the data provide further insight into balancing productivity of the cell culture process with product quality considerations. Finally, process and product‐related impurity clearance was evaluated by studies linking the upstream process with downstream purification. Production bioreactor parameters that directly influence antibody charge variants and glycosylation in CHO systems were identified. Biotechnol. Bioeng. 2010;106: 894–905. © 2010 Wiley Periodicals, Inc.  相似文献   

8.
The dynamic analysis of a continuous, aerobic, fixed-film bioreactor has been performed. Rigorous mathematical models have been developed for a fluidized-bed fermentor with biofilm growth. The transient performance of the reactor is appraised in terms of outlet penicillin concentration for constant, as well as variable carbon substrate feed rates. The effect of the reactor oxygen transfer capacity is elucidated for those cases employing substrate feeding strategies. The results show that penicillin production in a continuous, fixed-film bioreactor reaches a maximum with processing time, but subsequently decreases as cell mass accumulates and substrate deficiencies occur. The maximum production level can be maintained for increased operating times if the substrate supply is continuously increased. The duration of this prolonged production is a direct function of the rate of increase and the operating time at which the increase is initiated. The oxygen transfer capacity of the reactor was found to be important to the effectiveness of a feeding strategy.  相似文献   

9.
For industrial bioreactor design, operation, control and optimization, the scale-down approach is often advocated to efficiently generate data on a small scale, and effectively apply suggested improvements to the industrial scale. In all cases it is important to ensure that the scale-down conditions are representative of the real large-scale bioprocess. Progress is hampered by limited detailed and local information from large-scale bioprocesses. Complementary to real fermentation studies, physical aspects of model fluids such as air-water in large bioreactors provide useful information with limited effort and cost. Still, in industrial practice, investments of time, capital and resources often prohibit systematic work, although, in the end, savings obtained in this way are trivial compared to the expenses that result from real process disturbances, batch failures, and non-flyers with loss of business opportunity. Here we try to highlight what can be learned from real large-scale bioprocess in combination with model fluid studies, and to provide suitable computation tools to overcome data restrictions. Focus is on a specific well-documented case for a 30-m(3) bioreactor. Areas for further research from an industrial perspective are also indicated.  相似文献   

10.
Many biochemical processes consist of a sequence of operations for which optimal operating conditions (setpoints) have to be determined. If such optimization is performed for each operation separately with respect to objectives defined for each operation individually, overall process performance is likely to be suboptimal. Interactions between unit operations have to be considered, and a unique objective has to be defined for the whole process. This paper shows how a suitable optimization problem can be formulated and solved to obtain the best overall set of operating conditions for a process. A typical enzyme production process has been chosen as an example. In order to arrive at a demonstrative model for the entire sequence of unit operations, it is shown how interaction effects may be accommodated in the models. Optimal operating conditions are then determined subject to a global process objective and are shown to be different from those resulting from optimization of each separate operation. As this strategy may result in an economic benefit, it merits further research into interaction modeling and performance optimization.  相似文献   

11.
The complexity of biological processes often makes impractical the development of detailed, structured phenomenological models of the cultivation of microorganisms in bioreactors. In this context, data pre-treatment techniques are useful for bioprocess control and fault detection. Among them, principal component analysis (PCA) plays an important role. This work presents a case study of the application of this technique during real experiments, where the enzyme penicillin G acylase (PGA) was produced by Bacillus megaterium ATCC 14945. PGA hydrolyzes penicillin G to yield 6-aminopenicilanic acid (6-APA) and phenyl acetic acid. 6-APA is used to produce semi-synthetic β-lactam antibiotics. A static PCA algorithm was implemented for on-line detection of deviations from the desired process behavior. The experiments were carried out in a 2-L bioreactor. Hotteling’s T 2 was the discrimination criterion employed in this multivariable problem and the method showed a high sensibility for fault detection in all real cases that were studied.  相似文献   

12.
The bottleneck of the application of manganese peroxidase (MnP) on an industrial scale in pulp biobleaching or in degradation of hazardous compounds is the lack of an efficient production system. Three main problems arise for the continuous production of MnP during secondary metabolism of Phanerochaete chrysosporium: enzyme production occurs only under specific physiological conditions corresponding to C or N limitation, high O(2) tension, and adequate Mn(+2) concentration; the enzyme that is produced is destabilized by extracellular proteases; and excessive growth of the mycelium blocks effective oxygen transfer. To overcome these drawbacks, continuous production of MnP was optimized by selecting a suitable bioreactor configuration and the environmental and operating conditions affecting both enzyme production and stability. The combination between a proper feed rate and the application of a pulsation in a packed-bed bioreactor permitted the maintenance of continuous secretion of MnP while limiting mycelial growth and avoiding bed clogging. Environmental factors as an Mn(+2) concentration of 5000 muM and high oxygen tension enhanced MnP production. The hydraulics of the bioreactor corresponding to a plug flow model with partial mixing and an operating hydraulic rentention time of 24 h were optimal to achieve stable operating conditions. This policy allowed long operation periods, obtaining higher productivities than the best reported in the literature. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 130-137, 1997.  相似文献   

13.
A new methodology based on a metabolic control analysis (MCA) approach is developed for the optimization of continuous cascade bioreactor system. A general framework for representation of a cascade bioreactor system consisting of a large number of reactors as a single network is proposed. The kinetic and transport processes occurring in the system are represented as a reaction network with appropriate stoichiometry. Such representation of the bioreactor systems makes it amenable to the direct application of the MCA approach. The process sensitivity information is extracted using MCA methodology in the form of flux and concentration control coefficients. The process sensitivity information is shown to be a useful guide for determining the choice of decision variables for the purpose of optimization. A generalized problem of optimization of the bioreactor is formulated in which the decision variables are the operating conditions and kinetic parameters. The gradient of the objective function to be maximized with respect to all decision variables is obtained in the form of response coefficients. This gradient information can be used in any gradient-based optimization algorithm. The efficiency of the proposed technique is demonstrated with two examples taken from literature: biotransformation of crotonobetaine and alcohol fermentation in cascade bioreactor system.  相似文献   

14.
The microbial production of polyhydroxybutyrate (PHB) is a complex process in which the final quantity and quality of the PHB depend on a large number of process operating variables. Consequently, the design and optimal dynamic operation of a microbial process for the efficient production of PHB with tailor-made molecular properties is an extremely interesting problem. The present study investigates how key process operating variables (i.e., nutritional and aeration conditions) affect the biomass production rate and the PHB accumulation in the cells and its associated molecular weight distribution. A combined metabolic/polymerization/macroscopic modelling approach, relating the process performance and product quality with the process variables, was developed and validated using an extensive series of experiments and measurements. The model predicts the dynamic evolution of the biomass growth, the polymer accumulation, the consumption of carbon and nitrogen sources and the average molecular weights of the PHB in a bioreactor, under batch and fed-batch operating conditions. The proposed integrated model was used for the model-based optimization of the production of PHB with tailor-made molecular properties in Azohydromonas lata bacteria. The process optimization led to a high intracellular PHB accumulation (up to 95% g of PHB per g of DCW) and the production of different grades (i.e., different molecular weight distributions) of PHB.  相似文献   

15.
The dilution rate of an ultrafiltration membrane bioreactor in the enzymatic hydrolysis of cellulose was optimized using the kinetic model developed by Fan and Lee.(4) The sequence of optimal dilution rates was found to generally consist of an initial period of a minimal value (batch period), a subsequent period of maximum dilution rate, a period of a second batch, and a final period of a singular dilution rate. The effects of operating conditions, such as beta-glucosidase activity, operating time, maximum dilution rate, substrate feeding rate, and enzyme-to-substrate ratio on both the conversion yield and the sequence of optimal dilution rates were investigated. To evaluate the validity of kinetic model employed in this work, enzymatic hydrolysis was carried out using alpha-cellulose as a substrate in the ultrafiltration membrane bioreactor. The experimental data were well consistent with the simulation results. (c) 1993 John Wiley & Sons, Inc.  相似文献   

16.
A novel method for the immobilization of penicillin G acylase (penicillin amidohydrolase, E.C. 3.5.1.11) is reported. It involves the physical aggregation of the enzyme, followed by chemical cross-linking to form insoluble cross-linked enzyme aggregates (CLEAs). Compared with conventionally immobilized penicillin G acylases, these CLEAs possess a high specific activity as well as a high productivity and synthesis/hydrolysis (S/H) ratio in the synthesis of semi-synthetic antibiotics in aqueous media. Moreover, they are active in a broad range of polar and apolar organic solvents.  相似文献   

17.
A review of over 15 years of research, development and commercialization of plant cell suspension culture as a bioproduction platform is presented. Plant cell suspension culture production of recombinant products offers a number of advantages over traditional microbial and/or mammalian host systems such as their intrinsic safety, cost-effective bioprocessing, and the capacity for protein post-translational modifications. Recently significant progress has been made in understanding the bottlenecks in recombinant protein expression using plant cells, including advances in plant genetic engineering for efficient transgene expression and minimizing proteolytic degradation or loss of functionality of the product in cell culture medium. In this review article, the aspects of bioreactor design engineering to enable plant cell growth and production of valuable recombinant proteins is discussed, including unique characteristics and requirements of suspended plant cells, properties of recombinant proteins in a heterologous plant expression environment, bioreactor types, design criteria, and optimization strategies that have been successfully used, and examples of industrial applications.  相似文献   

18.
It is of great importance to study the physiological roles of enzymes in nature; however, in some cases, it is not easily apparent. Penicillin acylases are pharmaceutically important enzymes that cleave the acyl side chains of penicillins, thus paving the way for production of newer semi-synthetic antibiotics. They are classified according to the type of penicillin (G or V) that they preferentially hydrolyze. Penicillin acylases are also used in the resolution of racemic mixtures and peptide synthesis. However, it is rather unfortunate that the focus on the use of penicillin acylases for industrial applications has stolen the spotlight from the study of the importance of these enzymes in natural metabolism. The penicillin acylases, so far characterized from different organisms, show differences in their structural nature and substrate spectrum. These enzymes are also closely related to the bacterial signalling phenomenon, quorum sensing, as detailed in this review. This review details studies on biochemical and structural characteristics of recently discovered penicillin acylases. We also attempt to organize the available insights into the possible in vivo role of penicillin acylases and related enzymes and emphasize the need to refocus research efforts in this direction.  相似文献   

19.
AIMS: In the present study, two different optimization techniques were used to determine the suitable operating parameters for exo-biopolymer production in submerged mycelial cultures of two entomopathogenic fungi Paecilomyces japonica and Paecilomyces tenuipes. METHODS AND RESULTS: First, the rotating simplex method, a nonstatistical optimization technique, was employed to obtain the best combination of physical parameters (viz. pH, agitation intensity, aeration rate) for maximum exo-biopolymer production by P. japonica in a batch bioreactor. The optimal combination was determined to be a pH of 8.06, an aeration of 3 vvm, without any impeller agitation, producing a 17-time increase in exopolymer production (34.5 g l(-1)) when compared with that achieved in unoptimized flask cultures. Second, the uniform design method, a statistical optimization technique, was employed to determine the best operating parameters for submerged culture of P. tenuipes. The optimal combination for mycelial growth was determined to be a pH of 4.88, an aeration of 2 vvm and an agitation of 350 rpm, while a pH of 4, an aeration of 2 vvm and an agitation of 150 rpm was best for exo-biopolymer production. CONCLUSIONS: The exo-biopolymer production in P. japonica optimized by the rotating simplex method was strikingly improved (max. 34.5 g l(-1)), and the exo-biopolymer production in P. tenuipes optimized by the uniform design method was also significantly increased (max. 3.4 g l(-1)). SIGNIFICANCE AND IMPACT OF THE STUDY: The successful application of these two different optimization techniques in this study implies that these methods are worthy of applying to other fermentation systems for the production of bioactive mycelial biomass and exo-biopolymers in liquid culture of higher fungi.  相似文献   

20.
This work aimed to investigate the effects of the bioreactor configurations and their design variables on the cultivation of vegetative cells Haematococcus pluvialis to achieve sustainable high cell density. The addition of vitamin B to F1 growth medium could appreciably enhance the final cell density. Employing this medium, the cultivation in the airlift bioreactor was demonstrated to outperform the bubble column at the same operating conditions. Aeration was crucial for a proper growth of the alga in the airlift bioreactor, but it must be maintained at low level to minimize shear stress. The most appropriate aeration velocity (superficial velocity) was at the lower limit of the pump, i.e. 0.4 cm s(-1) and a smaller riser was shown to have positive influence on the cell growth. A 1% CO(2) supplement to the air supply considerably enhanced the growth rate of H. pluvialis and the most suitable light intensity for the growth was at 20 micromol photon m(-2) s(-1). The semi-continuous culture was successfully implemented with the optimal airlift bioreactor design and under optimal conditions the harvest could be performed every four days with the specific growth rate of 0.31 d(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号