首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Both N- and T-type calcium ion channels have been implicated in pain transmission and the N-type channel is a well-validated target for the treatment of neuropathic pain. An SAR investigation of a series of substituted aminobenzothiazoles identified a subset of five compounds with comparable activity to the positive control Z160 in a FLIPR-based intracellular calcium response assay measuring potency at both CaV2.2 and CaV3.2 channels. These compounds may form the basis for the development of drug leads and tool compounds for assessing in vivo effects of variable modulation of CaV2.2 and CaV3.2 channels.  相似文献   

2.
Aldosterone regulation of T-type calcium channels   总被引:1,自引:0,他引:1  
Voltage-operated calcium channels play a crucial role in signal transduction in many excitable and non-excitable cell types. While a rapid modulation of their activity by hormone-activated kinases and/or G proteins has been recognized for a long time, a sustained control of their expression level has been only recently demonstrated. In adrenal H295R cells, for example, aldosterone treatment selectively increased low threshold T-type calcium current density without affecting L-type currents. Antagonizing the mineralocorticoid receptor (MR) with spironolactone prevented aldosterone action on T-type currents. By RT-PCR, we detected in these cells the presence of two different isoforms of L-type channels, alpha(1)C and alpha(1)D, and one isoform of T channel, alpha(1)H. A second T channel isoform (alpha(1)G) was also observed under particular culture conditions. Quantification of the specific messenger RNA by real time RT-PCR allowed us to show a 40% increase of the alpha1H messenger levels upon aldosterone treatment (alpha(1)G was insensitive), a response that was also completely prevented by spironolactone. Because T-type, but not L-type channel activity is linked to steroidogenesis, this modulation represents a positive, intracrine feed back mechanism exerted by aldosterone on its own production.Aldosterone has been also implicated in the pathogenesis and progression of ventricular hypertrophy and heart failure independently of its action on arterial blood pressure. We have observed that, in rat neonatal cardiomyocytes, aldosterone increases (by two-fold) L-type calcium current amplitude in ventricular but not in atrial cells. No significant effect of aldosterone could be detected on T-type currents, that were much smaller than L-type currents in these cells. However, aldosterone exerted opposite effects on T channel isoform expression, increasing alpha(1)H and decreasing alpha(1)G. Although the functional role of T channels is still poorly defined in ventricular cardiomyocytes, an overexpression of alpha(1)H could be partially responsible for the arrhythmias linked to hyperaldosteronism.Finally, T channels also appear to be involved in the neuroendocrine differentiation of prostate epithelial cells, a poor prognosis in prostate cancer. We have shown that the only calcium channel expressed in the prostatic LNCaP cells is the alpha(1)H isoform and that induction of cell differentiation with cAMP leads to a concomitant increase in both T-type current and alpha(1)H mRNA. In spite of the presence of MR in these cells, aldosterone only modestly increased alpha(1)H mRNA levels. A functional role for these channels was suggested by the observation that low nickel concentrations prevent neuritic process outgrowth.In conclusion, it appears that T-type calcium channel expression vary in different patho-physiological conditions and that aldosterone, in several cell types, is able to modulate this expression.  相似文献   

3.
4.
A new series of aryls, including benzo[d]imidazole/isoxazole/pyrazole, conjugated to 3N-substituted-azabicyclo[3.1.0]hexane derivatives were designed and synthesized as inhibitors of T-type calcium channels. Among the synthesized compounds, 3N-R-substituted azabicyclo[3.1.0]hexane carboxamide derivatives containing 5-isobutyl-1-phenyl-pyrazole ring exhibited potent and selective T-channel inhibition and good metabolic stability without CYP450 inhibition. Compounds 10d and 10e contained hydrophobic substituents at the 3N-position and exhibited potent in vitro efficacy, as well as neuropathic pain alleviation in rats.  相似文献   

5.
L-type voltage gated Ca2+ channels are considered to be the primary source of calcium influx during the myogenic response. However, many vascular beds also express T-type voltage gated Ca2+ channels. Recent studies suggest that these channels may also play a role in autoregulation. At low pressures (40–80 mmHg) T-type channels affect myogenic responses in cerebral and mesenteric vascular beds. T-type channels also seem to be involved in skeletal muscle autoregulation. This review discusses the expression and role of T-type voltage gated Ca2+ channels in the autoregulation of several different vascular beds. Lack of specific pharmacological inhibitors has been a huge challenge in the field. Now the research has been strengthened by genetically modified models such as mice lacking expression of T-type voltage gated Ca2+ channels (CaV3.1 and CaV3.2). Hopefully, these new tools will help further elucidate the role of voltage gated T-type Ca2+ channels in autoregulation and vascular function.  相似文献   

6.
To obtain selective and potent inhibitor for T-type calcium channel by ligand based drug design, 4-piperidinecarboxylate and 4-piperidinecyanide derivatives were prepared and evaluated for in vitro and in vivo activity against α(1G) calcium channel. Among them, several compounds showed good T-type calcium channel inhibitory activity and minimal off-target activity over hERG channel (% inhibition at 10 μM=61.85-71.99, hERG channel IC(50)=1.57 ± 0.14-4.98 ± 0.36 μM). Selected compound 31a was evaluated on SNL model of neuropathic pain and showed inhibitory effect on mechanical allodynia.  相似文献   

7.
To obtain an optimized T-type calcium channel blocker with reduced off-target hERG toxicity, we modified the structure of the original compound by introducing a zwitterion and reducing the basicity of the nitrogen. Among the structurally modified compounds we designed, compounds 5 and 6, which incorporate amides in place of the original compound’s amines, most appreciably alleviated hERG toxicity while maintaining T-type calcium channel blocking activity. Notably, the benzimidazole amide 5 selectively blocked T-type calcium channels without inhibiting hERG (hERG/T-type  220) and L-type channels (L-type/T-type = 96), and exhibited an excellent pharmacokinetic profile in rats.  相似文献   

8.
The treatment of neuropathic pain is one of the urgent unmet medical needs and T-type calcium channels are promising therapeutic targets for neuropathic pain. Several potent T-type channel inhibitors showed promising in vivo efficacy in neuropathic pain animal models and are being investigated in clinical trials. Herein we report development of novel pyrrolidine-based T-type calcium channel inhibitors by pharmacophore mapping and structural hybridisation followed by evaluation of their Cav3.1 and Cav3.2 channel inhibitory activities. Among potent inhibitors against both Cav3.1 and Cav3.2 channels, a promising compound 20n based on in vitro ADME properties displayed satisfactory plasma and brain exposure in rats according to in vivo pharmacokinetic studies. We further demonstrated that 20n effectively improved the symptoms of neuropathic pain in both SNL and STZ neuropathic pain animal models, suggesting modulation of T-type calcium channels can be a promising therapeutic strategy for the treatment of neuropathic pain.  相似文献   

9.
We have synthesized and evaluated α,α′-disubstituted phenylacetate derivatives that were designed as T-type calcium channel blockers. Among them, compound 10e (IC50 = 8.17 ± 0.48 nM) showed the most potent T-type calcium current blocking activity and higher potency than Mibefradil (IC50 = 1.34 ± 0.49 μM). The PK profile and subtype selectivity over L-type calcium channel were satisfied for further animal assay using disease model.  相似文献   

10.
Modulation of native T-type calcium channels by omega-3 fatty acids   总被引:3,自引:0,他引:3  
Low voltage-activated, rapidly inactivating T-type Ca(2+) channels are found in a variety of cells where they regulate electrical activity and Ca(2+) entry. In whole-cell patch clamp recordings from bovine adrenal zona fasciculata cells, cis-polyunsaturated omega-3 fatty acids including docosahexaenoic acid (DHA), eicosapentaenoic acid, and alpha-linolenic acid inhibited T-type Ca(2+) current (I(T-Ca)) with IC(50)s of 2.4, 6.1, and 14.4microM, respectively. Inhibition of I(T-Ca) by DHA was partially use-dependent. In the absence of stimulation, DHA (5microM) inhibited I(T-Ca) by 59.7+/-8.1% (n=5). When voltage steps to -10mV were applied at 12s intervals, block increased to 80.5+/-7.2%. Inhibition of I(T-Ca) by DHA was accompanied by a shift of -11.7mV in the voltage dependence of steady-state inactivation, and a smaller -3.3mV shift in the voltage dependence of activation. omega-3 fatty acids also selectively altered the gating kinetics of T-type Ca(2+) channels. DHA accelerated T channel recovery from inactivation by approximately 3-fold, but did not affect the kinetics of T channel activation or deactivation. Arachidonic acid, an omega-6 polyunsaturated fatty acid, also inhibited T-type Ca(2+) current at micromolar concentrations, while the trans polyunsaturated fatty acid linolelaidic acid was ineffective. These results identify cis polyunsaturated fatty acids as relatively potent, new T-type Ca(2+) channel antagonists. omega-3 fatty acids are essential dietary components that have been shown to possess remarkable neuroprotective and cardioprotective properties that are likely mediated through suppression of electrical activity and associated Ca(2+) entry. Inhibition of T-type Ca(2+) channels in neurons and cardiac myocytes could contribute significantly to their protective actions.  相似文献   

11.
Highly effective and safe drugs for the treatment of neuropathic pain are urgently required and it was shown that blocking T-type calcium channels can be a promising strategy for drug development for neuropathic pain. We have developed pyrrolidine-based T-type calcium channel inhibitors by structural hybridization and subsequent assessment of in vitro activities against Cav3.1 and Cav3.2 channels. Profiling of in vitro ADME properties of compounds was also carried out. The representative compound 17h showed comparable in vivo efficacy to gabapentin in the SNL model, which indicates T-type calcium channel inhibitors can be developed as effective therapeutics for neuropathic pain.  相似文献   

12.
We studied the peculiarities of permeability with respect to the main extracellular cations, Na+ and Ca2+, of cloned low-threshold calcium channels (LTCCs) of three subtypes, Cav3.1 (α1G), Cav3.2 (α 1H), and Cav3.3 (α1I), functionally expressed in Xenopus oocytes. In a calcium-free solution containing 100 mM Na+ and 5 mM calcium-chelating EGTA buffer (to eliminate residual concentrations of Ca2+) we observed considerable integral currents possessing the kinetics of inactivation typical of LTCCs and characterized by reversion potentials of −10 ± 1, −12 ± 1, and −18 ± 2 mV, respectively, for Cav3.1, Cav3.2, and Cav3.3 channels. The presence of Ca2+ in the extracellular solution exerted an ambiguous effect on the examined currents. On the one hand, Ca2+ effectively blocked the current of monovalent cations through cloned LTCCs (K d = 2, 10, and 18 μM for currents through channels Cav3.1, Cav3.2, and Cav3.3, respectively). On the other hand, at the concentration of 1 to 100 mM, Ca2+ itself functioned as a carrier of the inward current. Despite the fact that the calcium current reached the level of saturation in the presence of 5 mM Ca2+ in the external solution, extracellular Na+ influenced the permeability of these channels even in the presence of 10 mM Ca2+. The Cav3.3 channels were more permeable with respect to Na+ (P Ca/P Na ∼ 21) than Cav3.1 and Cav3.2 (P Ca/P Na ∼ 66). As a whole, our data indicate that cloned LTCCs form multi-ion Ca2+-selective pores, as these ions possess a high affinity for certain binding sites. Monovalent cations present together with Ca2+ in the external solution modulate the calcium permeability of these channels. Among the above-mentioned subtypes, Cav3.3 channels show the minimum selectivity with respect to Ca2+ and are most permeable for monovalent cations. Neirofiziologiya/Neurophysiology, Vol. 38, No. 3, pp. 183–192, May–June, 2006.  相似文献   

13.
The acrosome reaction in mouse is triggered by a long-lasting calcium signaling produced by a chain of openings of several calcium channels, a low-voltage-activated (LVA) calcium channel, an inositol trisphosphate receptor (IP(3)R), and the store-operated calcium channel TRP2. Since mature sperm cells are refractory to patch clamp experiments, we study the functional interactions among those sperm calcium channels in spermatogenic cells. We have studied the role of cytosolic calcium in voltage-dependent facilitation of low voltage-activated calcium channels. Calcium concentration was modified through the inclusion of the calcium buffers, EGTA and BAPTA, in the recording pipette solution, and by addition of calcium modulators like thapsigargin and the calcium ionophore A23187. We demonstrate that lowering calcium concentration below resting level allows to evidence a voltage-dependent facilitation. We also show that LVA calcium channels present strong voltage-dependent inhibition by thapsigargin. This effect is independent of cytosolic calcium elevation secondary to calcium store depletion and to the activation of TRP channels. Our data evidence an interesting functional relationship, in this cell type, between LVA channels and proteins whose activity is related to calcium filling state of the endoplasmic reticulum (presumably TRP channels and inositol triphosphate receptor). These relationships may contribute to the regulation of calcium signaling during acrosome reaction of mature sperm cell.  相似文献   

14.
神经病理痛是临床上常见病症,其发病机制尚不清楚,目前尚无有效的治疗手段,其慢性神经病理痛持续时间长,故其研究成为疼痛领域的热点和重点。近年来发现T型钙通道在神经病理性疼痛中起到了关键性的作用。本文将近年T型钙通道在神经病理性痛模型中介导疼痛的机制研究进展加以综述。  相似文献   

15.
Urocortin (UCN), a newly isolated peptide, has been found to play an important role mainly in female reproductive system. In order to investigate the effect of UCN on T-type calcium currents (I(Ca,T)), exploring the mechanisms of UCN's role in male reproductive system, especially in acrosome reaction, we directly measured the I(Ca,T) in mouse spermatogenic cells exposed to UCN using standard whole-cell patch-clamp recording technique. Our results showed that UCN reversibly inhibited the T-type Ca(2+) currents in the cells in a concentration-dependent manner. The current density was inhibited by about 19% after exposure of the cells to UCN (0.1 microM) for 5 min, from the control value of 6.75+/-1.17 to 5.26+/-0.82pA/pF. UCN up-shifted the current-voltage (I-V) curve. Frequency-dependence of UCN's effects on I(Ca,T) was also observed. Moreover, UCN at 0.1 microM did not markedly affect the activation of I(Ca,T) but shifted the inactivation curve of I(Ca,T) to the left. The inhibitory effect of UCN on the T-type Ca(2+) current was not affected by Astressin, the CRF receptor blocker. Since T-type calcium channels are a key component in acrosome reaction, our data suggest that UCN might be a significant factor in male reproductive action and a potential contraceptive agent.  相似文献   

16.
Drugs targeting different calcium channel subtypes have strong therapeutic potential for future drug development for cardiovascular disorders, neuropsychiatric diseases and cancer. This study aims to design and synthesize a new series of C2 substituted dihydropyrimidines to mimic the structure features of third generation long acting dihydropyridine calcium channel blockers and dihydropyrimidines analogues. The target compounds have been evaluated as blockers for CaV1.2 and CaV3.2 utilizing the whole-cell patch clamp technique. Among the tested compounds, compound 7a showed moderate calcium channel blockade activity against CaV3.2. Moreover, the predicted physicochemical properties and pharmacokinetic profiles of the target compounds recommend that they can be considered as drug-like candidates. The results highlight some significant information for the future design of lead compounds as calcium channel blockers.  相似文献   

17.
Low-voltage-gated T-type calcium channels are expressed throughout the nervous system where they play an essential role in shaping neuronal excitability. Defects in T-type channel expression have been linked to various neuronal disorders including neuropathic pain and epilepsy. Currently, little is known about the cellular mechanisms controlling the expression and function of T-type channels. Asparagine-linked glycosylation has recently emerged as an essential signaling pathway by which the cellular environment can control expression of T-type channels. However, the role of N-glycans in the conducting function of T-type channels remains elusive. In the present study, we used human Cav3.2 glycosylation-deficient channels to assess the role of N-glycosylation on the gating of the channel. Patch-clamp recordings of gating currents revealed that N-glycans attached to hCav3.2 channels have a minimal effect on the functioning of the channel voltage-sensor. In contrast, N-glycosylation on specific asparagine residues may have an essential role in the conducting function of the channel by enhancing the channel permeability and / or the pore opening of the channel. Our data suggest that modulation of N-linked glycosylation of hCav3.2 channels may play an important physiological role, and could also support the alteration of T-type currents observed in disease states.  相似文献   

18.
Since 6-prenylnaringenin (6-PNG) was recently identified as a novel T-type calcium channel blocker with the IC50 value around 1?µM, a series of flavanone derivatives were designed, synthesized and subsequently evaluated for T-channel-blocking activity in HEK293 cells transfected with Cav3.2?T-type channels using a patch-clamp technique. As a result, several new flavanones blocked Cav3.2-dependent T-currents more potently than 6-PNG. In the synthesized compounds, 6-(3-ethylpent-2-enyl)-5,7-dihydroxy-2-(2-hydroxyphenyl)chroman-4-one 8j, 6-(3-ethylpent-2-enyl)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one 11b, 6-(2-cyclopentylideneethyl)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one 11d, and 6-(2-Cyclopentylethyl)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one 12c were more potent blocker than 6-PNG with the IC50 value of 0.39, 0.26, 0.46, and 0.50?µM, respectively. Among the above four derivatives, the compound 8j provided the best result in the in vivo experiments; i.e. systemic administration of 8j at the minimum dose completely restored neuropathic pain induced by partial sciatic nerve ligation in mice.  相似文献   

19.
Chemical evolution of a HTS-based fragment hit resulted in the identification of N-(1-adamantyl)-2-[4-(2-tetrahydropyran-4-ylethyl)piperazin-1-yl]acetamide, a novel, selective T-type calcium channel (Ca(v)3.2) inhibitor with in vivo antihypertensive effect in rats.  相似文献   

20.
An efficient asymmetric synthesis of 1,4-dihydropyridine derivatives is described. The key step is the stereoselective Michael addition using t-butyl ester of l-valine as a chiral auxiliary to achieve good ee (>95% for all the tested experiments) and moderate yield. With this method, (+)-4-(3-chlorophenyl)-6-dimethoxymethyl-2-methyl-1,4-dihydropyridine-3,5-dicarboxylic acid cinnamyl ester was obtained and was characterized as a promising N-type calcium channel blocker with improved selectivity over L-type compared to its (−)- and racemic isomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号