首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have recently shown that RyR2 (cardiac ryanodine receptor) is phosphorylated by PKA (protein kinase A/cAMP-dependent protein kinase) at two major sites, Ser-2030 and Ser-2808. In the present study, we examined the properties and physiological relevance of phosphorylation of these two sites. Using site- and phospho-specific antibodies, we demonstrated that Ser-2030 of both recombinant and native RyR2 from a number of species was phosphorylated by PKA, indicating that Ser-2030 is a highly conserved PKA site. Furthermore, we found that the phosphorylation of Ser-2030 responded to isoproterenol (isoprenaline) stimulation in rat cardiac myocytes in a concentration- and time-dependent manner, whereas Ser-2808 was already substantially phosphorylated before beta-adrenergic stimulation, and the extent of the increase in Ser-2808 phosphorylation after beta-adrenergic stimulation was much less than that for Ser-2030. Interestingly, the isoproterenol-induced phosphorylation of Ser-2030, but not of Ser-2808, was markedly inhibited by PKI, a specific inhibitor of PKA. The basal phosphorylation of Ser-2808 was also insensitive to PKA inhibition. Moreover, Ser-2808, but not Ser-2030, was stoichiometrically phosphorylated by PKG (protein kinase G). In addition, we found no significant phosphorylation of RyR2 at the Ser-2030 PKA site in failing rat hearts. Importantly, isoproterenol stimulation markedly increased the phosphorylation of Ser-2030, but not of Ser-2808, in failing rat hearts. Taken together, these observations indicate that Ser-2030, but not Ser-2808, is the major PKA phosphorylation site in RyR2 responding to PKA activation upon beta-adrenergic stimulation in both normal and failing hearts, and that RyR2 is not hyperphosphorylated by PKA in heart failure. Our results also suggest that phosphorylation of RyR2 at Ser-2030 may be an important event associated with altered Ca2+ handling and cardiac arrhythmia that is commonly observed in heart failure upon beta-adrenergic stimulation.  相似文献   

2.
Hypertension is a major risk factor for developing cardiac hypertrophy and heart failure. Previous studies show that hypertrophied and failing hearts display alterations in excitation-contraction (E-C) coupling. However, it is unclear whether remodeling of the E-C coupling system occurs before or after heart disease development. We hypothesized that hypertension might cause changes in the E-C coupling system that, in turn, induce hypertrophy. Here we tested this hypothesis by utilizing the progressive development of hypertensive heart disease in the spontaneously hypertensive rat (SHR) to identify a window period when SHR had just developed hypertension but had not yet developed hypertrophy. We found the following major changes in cardiac E-C coupling during this window period. 1) Using echocardiography and hemodynamics measurements, we found a decrease of left ventricular ejection fraction and cardiac output after the onset of hypertension. 2) Studies in isolated ventricular myocytes showed that myocardial contraction was also enhanced at the same time. 3) The action potential became prolonged. 4) The E-C coupling gain was increased. 5) The systolic Ca(2+) transient was augmented. These data show that profound changes in E-C coupling already occur at the onset of hypertension and precede hypertrophy development. Prolonged action potential and increased E-C coupling gain synergistically increase the Ca(2+) transient. Functionally, augmented Ca(2+) transient causes enhancement of myocardial contraction that can partially compensate for the greater workload to maintain cardiac output. The increased Ca(2+) signaling cascade as a molecular mechanism linking hypertension to cardiac hypertrophy development is also discussed.  相似文献   

3.
Myocytes from the failing myocardium exhibit depressed and prolonged intracellular Ca(2+) concentration ([Ca(2+)](i)) transients that are, in part, responsible for contractile dysfunction and unstable repolarization. To better understand the molecular basis of the aberrant Ca(2+) handling in heart failure (HF), we studied the rabbit pacing tachycardia HF model. Induction of HF was associated with action potential (AP) duration prolongation that was especially pronounced at low stimulation frequencies. L-type calcium channel current (I(Ca,L)) density (-0.964 +/- 0.172 vs. -0.745 +/- 0.128 pA/pF at +10 mV) and Na(+)/Ca(2+) exchanger (NCX) currents (2.1 +/- 0.8 vs. 2.3 +/- 0.8 pA/pF at +30 mV) were not different in myocytes from control and failing hearts. The amplitude of peak [Ca(2+)](i) was depressed (at +10 mV, 0.72 +/- 0.07 and 0.56 +/- 0.04 microM in normal and failing hearts, respectively; P < 0.05), with slowed rates of decay and reduced Ca(2+) spark amplitudes (P < 0.0001) in myocytes isolated from failing vs. control hearts. Inhibition of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)2a revealed a greater reliance on NCX to remove cytosolic Ca(2+) in myocytes isolated from failing vs. control hearts (P < 0.05). mRNA levels of the alpha(1C)-subunit, ryanodine receptor (RyR), and NCX were unchanged from controls, while SERCA2a and phospholamban (PLB) were significantly downregulated in failing vs. control hearts (P < 0.05). alpha(1C) protein levels were unchanged, RyR, SERCA2a, and PLB were significantly downregulated (P < 0.05), while NCX protein was significantly upregulated (P < 0.05). These results support a prominent role for the sarcoplasmic reticulum (SR) in the pathogenesis of HF, in which abnormal SR Ca(2+) uptake and release synergistically contribute to the depressed [Ca(2+)](i) and the altered AP profile phenotype.  相似文献   

4.
Pulmonary hypertension provokes right heart failure and arrhythmias. Better understanding of the mechanisms underlying these arrhythmias is needed to facilitate new therapeutic approaches for the hypertensive, failing right ventricle (RV). The aim of our study was to identify the mechanisms generating arrhythmias in a model of RV failure induced by pulmonary hypertension. Rats were injected with monocrotaline to induce either RV hypertrophy or failure or with saline (control). ECGs were measured in conscious, unrestrained animals by telemetry. In isolated hearts, electrical activity was measured by optical mapping and myofiber orientation by diffusion tensor-MRI. Sarcoplasmic reticular Ca(2+) handling was studied in single myocytes. Compared with control animals, the T-wave of the ECG was prolonged and in three of seven heart failure animals, prominent T-wave alternans occurred. Discordant action potential (AP) alternans occurred in isolated failing hearts and Ca(2+) transient alternans in failing myocytes. In failing hearts, AP duration and dispersion were increased; conduction velocity and AP restitution were steeper. The latter was intrinsic to failing single myocytes. Failing hearts had greater fiber angle disarray; this correlated with AP duration. Failing myocytes had reduced sarco(endo)plasmic reticular Ca(2+)-ATPase activity, increased sarcoplasmic reticular Ca(2+)-release fraction, and increased Ca(2+) spark leak. In hypertrophied hearts and myocytes, dysfunctional adaptation had begun, but alternans did not develop. We conclude that increased electrical and structural heterogeneity and dysfunctional sarcoplasmic reticular Ca(2+) handling increased the probability of alternans, a proarrhythmic predictor of sudden cardiac death. These mechanisms are potential therapeutic targets for the correction of arrhythmias in hypertensive, failing RVs.  相似文献   

5.
In heart failure (HF), arrhythmogenic spontaneous sarcoplasmic reticulum (SR) Ca(2+) release and afterdepolarizations in cardiac myocytes have been linked to abnormally high activity of ryanodine receptors (RyR2s) associated with enhanced phosphorylation of the channel. However, the specific molecular mechanisms underlying RyR2 hyperphosphorylation in HF remain poorly understood. The objective of the current study was to test the hypothesis that the enhanced expression of muscle-specific microRNAs (miRNAs) underlies the HF-related alterations in RyR2 phosphorylation in ventricular myocytes by targeting phosphatase activity localized to the RyR2. We studied hearts isolated from canines with chronic HF exhibiting increased left ventricular (LV) dimensions and decreased LV contractility. qRT-PCR revealed that the levels of miR-1 and miR-133, the most abundant muscle-specific miRNAs, were significantly increased in HF myocytes compared with controls (2- and 1.6-fold, respectively). Western blot analyses demonstrated that expression levels of the protein phosphatase 2A (PP2A) catalytic and regulatory subunits, which are putative targets of miR-133 and miR-1, were decreased in HF cells. PP2A catalytic subunit mRNAs were validated as targets of miR-133 by using luciferase reporter assays. Pharmacological inhibition of phosphatase activity increased the frequency of diastolic Ca(2+) waves and afterdepolarizations in control myocytes. The decreased PP2A activity observed in HF was accompanied by enhanced Ca(2+)/calmodulin-dependent protein kinase (CaMKII)-mediated phosphorylation of RyR2 at sites Ser-2814 and Ser-2030 and increased frequency of diastolic Ca(2+) waves and afterdepolarizations in HF myocytes compared with controls. In HF myocytes, CaMKII inhibitory peptide normalized the frequency of pro-arrhythmic spontaneous diastolic Ca(2+) waves. These findings suggest that altered levels of major muscle-specific miRNAs contribute to abnormal RyR2 function in HF by depressing phosphatase activity localized to the channel, which in turn, leads to the excessive phosphorylation of RyR2s, abnormal Ca(2+) cycling, and increased propensity to arrhythmogenesis.  相似文献   

6.
Junctin is a transmembrane protein located at the cardiac junctional sarcoplasmic reticulum (SR) and forms a quaternary complex with the Ca(2+) release channel, triadin and calsequestrin. Impaired protein interactions within this complex may alter the Ca(2+) sensitivity of the Ca(2+) release channel and may lead to cardiac dysfunction, including hypertrophy, depressed contractility, and abnormal Ca(2+) transients. To study the expression of junctin and, for comparison, triadin, in heart failure, we measured the levels of these proteins in SR from normal and failing human hearts. Junctin was below our level of detection in SR membranes from failing human hearts, and triadin was downregulated by 22%. To better understand the role of junctin in the regulation of Ca(2+) homeostasis and contraction of cardiac myocytes, we used an adenoviral approach to overexpress junctin in isolated rat cardiac myocytes. A recombinant adenovirus encoding the green fluorescent protein served as a control. Infection of myocytes with the junctin-expressing virus resulted in an increased RNA and protein expression of junctin. Ca(2+) transients showed a decreased maximum Ca(2+) amplitude, and contractility of myocytes was depressed. Our results demonstrate that an increased expression of junctin is associated with an impaired Ca(2+) homeostasis. Downregulation of junctin in human heart failure may thus be a compensatory mechanism.  相似文献   

7.
In heart failure (HF), arrhythmogenic Ca(2+) release and chronic Ca(2+) depletion of the sarcoplasmic reticulum (SR) arise due to altered function of the ryanodine receptor (RyR) SR Ca(2+)-release channel. Dantrolene, a therapeutic agent used to treat malignant hyperthermia associated with mutations of the skeletal muscle type 1 RyR (RyR1), has recently been suggested to have effects on the cardiac type 2 RyR (RyR2). In this investigation, we tested the hypothesis that dantrolene exerts antiarrhythmic and inotropic effects on HF ventricular myocytes by examining multiple aspects of intracellular Ca(2+) handling. In normal rabbit myocytes, dantrolene (1 μM) had no effect on SR Ca(2+) load, postrest decay of SR Ca(2+) content, the threshold for spontaneous Ca(2+) wave initiation (i.e., the SR Ca(2+) content at which spontaneous waves initiate) and Ca(2+) spark frequency. In cardiomyocytes from failing rabbit hearts, SR Ca(2+) load and the wave initiation threshold were decreased compared with normal myocytes, Ca(2+) spark frequency was increased, and the postrest decay was potentiated. Using a novel approach of measuring cytosolic and intra-SR Ca(2+) concentration (using the low-affinity Ca(2+) indicator fluo-5N entrapped within the SR), we showed that treatment of HF cardiomyocytes with dantrolene rescued postrest decay and increased the wave initiation threshold. Additionally, dantrolene decreased Ca(2+) spark frequency while increasing the SR Ca(2+) content in HF myocytes. These data suggest that dantrolene exerts antiarrhythmic effects and preserves inotropy in HF cardiomyocytes by decreasing the incidence of diastolic Ca(2+) sparks, increasing the intra-SR Ca(2+) threshold at which spontaneous Ca(2+) waves occur, and decreasing the loss of Ca(2+) from the SR. Furthermore, the observation that dantrolene reduces arrhythmogenicity while at the same time preserves inotropy suggests that dantrolene is a potentially useful drug in the treatment of arrhythmia associated with HF.  相似文献   

8.
The neonatal mammalian skeletal muscle contains both type 1 and type 3 ryanodine receptors (RyR1 and RyR3) located in the sarcoplasmic reticulum membrane. An allosteric interaction between RyR1 and dihydropyridine receptors located in the plasma membrane mediates voltage-induced Ca(2+) release (VICR) from the sarcoplasmic reticulum. RyR3, which disappears in adult muscle, is not involved in VICR, and the role of the transiently expressed RyR3 remains elusive. Here we demonstrate that RyR1 participates in both VICR and Ca(2+)-induced Ca(2+) release (CICR) and that RyR3 amplifies RyR1-mediated CICR in neonatal skeletal muscle. Confocal measurements of intracellular Ca(2+) in primary cultured mouse skeletal myotubes reveal active sites of Ca(2+) release caused by peripheral coupling between dihydropyridine receptors and RyR1. In myotubes lacking RyR3, the peripheral VICR component is unaffected, and RyR1s alone are able to support inward CICR propagation in most cells at an average speed of approximately 190 microm/s. With the co-presence of RyR1 and RyR3 in wild-type cells, unmitigated radial CICR propagates at 2,440 microm/s. Because neonatal skeletal muscle lacks a well developed transverse tubule system, the RyR3 reinforcement of CICR seems to ensure a robust, uniform, and synchronous activation of Ca(2+) release throughout the cell body. Such functional interplay between RyR1 and RyR3 can serve important roles in Ca(2+) signaling of cell differentiation and muscle contraction.  相似文献   

9.
An altered cardiac myofilament response to activating Ca(2+) is a hallmark of human heart failure. Phosphorylation of cardiac troponin I (cTnI) is critical in modulating contractility and Ca(2+) sensitivity of cardiac muscle. cTnI can be phosphorylated by protein kinase A (PKA) at Ser(22/23) and protein kinase C (PKC) at Ser(22/23), Ser(42/44), and Thr(143). Whereas the functional significance of Ser(22/23) phosphorylation is well understood, the role of other cTnI phosphorylation sites in the regulation of cardiac contractility remains a topic of intense debate, in part, due to the lack of evidence of in vivo phosphorylation. In this study, we utilized top-down high resolution mass spectrometry (MS) combined with immunoaffinity chromatography to determine quantitatively the cTnI phosphorylation changes in spontaneously hypertensive rat (SHR) model of hypertensive heart disease and failure. Our data indicate that cTnI is hyperphosphorylated in the failing SHR myocardium compared with age-matched normotensive Wistar-Kyoto rats. The top-down electron capture dissociation MS unambiguously localized augmented phosphorylation sites to Ser(22/23) and Ser(42/44) in SHR. Enhanced Ser(22/23) phosphorylation was verified by immunoblotting with phospho-specific antibodies. Immunoblot analysis also revealed up-regulation of PKC-α and -δ, decreased PKCε, but no changes in PKA or PKC-β levels in the SHR myocardium. This provides direct evidence of in vivo phosphorylation of cTnI-Ser(42/44) (PKC-specific) sites in an animal model of hypertensive heart failure, supporting the hypothesis that PKC phosphorylation of cTnI may be maladaptive and potentially associated with cardiac dysfunction.  相似文献   

10.
Liu W  Yasui K  Opthof T  Ishiki R  Lee JK  Kamiya K  Yokota M  Kodama I 《Life sciences》2002,71(11):1279-1292
Transplant of immature cardiomyocytes is recently attracting a great deal of interest as a new experimental strategy for the treatment of failing hearts. Full understanding of normal cardiomyogenesis is essential to make this regenerative therapy feasible. We analyzed the molecular and functional changes of Ca(2+) handling proteins during development of the mouse heart from early embryo at 9.5 days postcoitum (dpc) through adulthood. From the early to the late (18 dpc) embryonic stage, mRNAs estimated by the real time PCR for ryanodine receptor (type 2, RyR2), sarcoplasmic reticulum (SR) Ca(2+) pump (type 2, SERCA2) and phospholamban (PLB) increased by 3-15 fold in the values normalized to GAPDH mRNA, although Na(+)/Ca(2+) exchanger (type 1, NCX1) mRNA was unchanged. After birth, there was a further increase in the mRNAs for RyR2, SERCA2 and PLB by 18-33 fold, but a 50% decrease in NCX1 mRNA. The protein levels of RyR2, SERCA2, PLB and NCX1, which were normalized to total protein, showed qualitatively parallel developmental changes. L-type Ca(2+) channel currents (I(Ca-L)) were increased during the development (1.3-fold at 18 dpc, 2.2-fold at adult stage, vs. 9.5 dpc). At 9.5 dpc, the Ca(2+) transient was, unlike adulthood, unaffected by the SR blockers, ryanodine (5 microM) and thapsigargin (2 microM), and also by a blocker of the Ca(2+) entry via Na(+)/Ca(2+) exchanger, KB-R 7943 (1 microM). The Ca(2+) transient was abolished after application of nisoldipine (5 microM). These results indicate that activator Ca(2+) for contraction in the early embryonic stage depends almost entirely on I(Ca-L).  相似文献   

11.
Ni L  Zhou C  Duan Q  Lv J  Fu X  Xia Y  Wang DW 《PloS one》2011,6(11):e27294
BACKGROUND: Long-term β-adrenergic receptor (β-AR) blockade reduces mortality in patients with heart failure. Chronic sympathetic hyperactivity in heart failure causes sustained β-AR activation, and this can deplete Ca(2+) in endoplasmic reticulum (ER) leading to ER stress and subsequent apoptosis. We tested the effect of β-AR blockers on ER stress pathway in experimental model of heart failure. METHODS AND DISCUSSIONS: ER chaperones were markedly increased in failing hearts of patients with end-stage heart failure. In Sprague-Dawley rats, cardiac hypertrophy and heart failure was induced by abdominal aortic constriction or isoproterenol subcutaneous injection. Oral β-AR blockers treatment was performed in therapy groups. Cardiac remodeling and left ventricular function were analyzed in rats failing hearts. After 4 or 8 weeks of banding, rats developed cardiac hypertrophy and failure. Cardiac expression of ER chaperones was significantly increased. Similar to the findings above, sustained isoproterenol infusion for 2 weeks induced cardiac hypertrophy and failure with increased ER chaperones and apoptosis in hearts. β-AR blockers treatment markedly attenuated these pathological changes and reduced ER stress and apoptosis in failing hearts. On the other hand, β-AR agonist isoproterenol induced ER stress and apoptosis in cultured cardiomyocytes. β-AR blockers largely prevented ER stress and protected myocytes against apoptosis. And β-AR blockade significantly suppressed the overactivation of CaMKII in isoproterenol-stimulated cardiomyocytes and failing hearts in rats. CONCLUSIONS: Our results demonstrated that ER stress occurred in failing hearts and this could be reversed by β-AR blockade. Alleviation of ER stress may be an important mechanism underlying the therapeutic effect of β-AR blockers on heart failure.  相似文献   

12.
Reductions in cardiac sarcoplasmic reticulum calcium-ATPase (Serca2a) levels are thought to underlie the prolonged calcium (Ca(2+)) transients and consequent reduced contractile performance seen in human cardiac hypertrophy and heart failure. In freshly isolated cardiac myocytes from rats with monocrotaline-induced right ventricular hypertrophy we found reduced sarcoplasmic reticulum Serca2a expression and prolonged Ca(2+)transients, characteristic of hypertrophic cardiac disease.Modulation of intracellular Ca(2+)levels, Ca(2+) kinetics or Ca(2+)sensitivity is the focus of many current therapeutic approaches to improve contractile performance in the hypertrophic or failing heart. However, the functional effects of increasing Serca2a expression on Ca(2+) handling properties in myocytes from an animal model of cardiac hypertrophy are largely unknown. Here, we describe enhancement of the deficient Ca(2+) handling properties evident in myocytes from hypertrophied hearts following adenoviral-mediated transfer of the human Serca2a gene to these myocytes.These results highlight the importance of Serca2a deficiencies in the hypertrophic phenotype of cardiac muscle and suggest a simple, effective approach for manipulation of normal cardiac function.  相似文献   

13.
Burn trauma causes cardiac dysfunction. However, much of the underlying cellular and molecular mechanisms remain elusive. In the present study, we demonstrate the roles of excessive sarcoplasmic reticulum (SR) Ca(2+) leakage and oxidative stress in burn-associated acute heart failure. In cardiomyocytes from failing rat hearts 12 h after full-thickness cutaneous burn of about 40% of the total body surface area, we found that Ca(2+) transients and contractility were impaired, but the triggering L-type Ca(2+) channel current density was unaltered, giving rise to a significantly reduced gain of excitation-contraction coupling. This deficiency in SR Ca(2+) release was accompanied by a reduction in Ca(2+) content in the SR. Surprisingly, the frequency of spontaneous Ca(2+) sparks was increased by 1.4-fold; Ca(2+) tolerance test (10 mM extracellular Ca(2+)) further showed 2.0- and 1.5-fold more frequent Ca(2+) waves and Ca(2+) sparks, respectively. Myofilament sensitivity to Ca(2+), however, seemed to be unaffected. These results suggest hyperactivity of the ryanodine receptor (RyR) Ca(2+) release channel and a leaky SR in burn. Importantly, pretreatment with antioxidant vitamins C and E seemed to prevent burn-induced RyR hypersensitivity and SR leakage and thereby normalize Ca(2+) transients and contractility. Concomitantly, the in vivo cardiac functions were also more tolerant of traumatic burn. Collectively, our findings suggest that SR leakage due to oxidative stress is likely a major candidate mechanism underlying burn-associated acute heart failure. Antioxidant therapy in burn trauma provides cardioprotection, at least in part, by protecting RyR's from oxidative stress-induced hypersensitivity.  相似文献   

14.
In skeletal muscle, Mg(2+) exerts a dual inhibitory effect on RyR1, by competing with Ca(2+) at the activation site and binding to a low affinity Ca(2+)/Mg(2+) inhibitory site. Pharmacological activators of RyR1 must overcome the inhibitory action of Mg(2+) before Ca(2+) efflux can occur. In normal muscle, where the free [Mg(2+)](i) is approximately 1mM, even prolonged exposure to millimolar levels of volatile anesthetics does not initiate SR Ca(2+) release. However, when the cytosolic [Mg(2+)] is reduced below the physiological range, low levels of volatile anesthetic within the clinically relevant range (1mM) can initiate SR Ca(2+) release, in the form of a propagating Ca(2+) wave. In human muscle fibers from malignant hyperthermia susceptible patients, such Ca(2+) waves occur when 1mM halothane is applied at physiological [Mg(2+)](i). There is increasing evidence to suggest that defective Mg(2+) regulation of RyR1 confers susceptibility to malignant hyperthermia. At the molecular level, interactions between critical RyR1 subdomains may explain the clustering of RyR1 mutations and associated effects on Mg(2+) regulation.  相似文献   

15.
Abnormal release of Ca(2+) from sarcoplasmic reticulum (SR) via the cardiac ryanodine receptor (RyR2) may contribute to contractile dysfunction in heart failure (HF). We previously demonstrated that RyR2 macromolecular complexes from HF rat were significantly more depleted of FK506 binding protein (FKBP12.6). Here we assessed expression of key Ca(2+) handling proteins and measured SR Ca(2+) content in control and HF rat myocytes. Direct measurements of SR Ca(2+) content in permeabilized cardiac myocytes demonstrated that SR luminal [Ca(2+)] is markedly lowered in HF (HF: DeltaF/F(0) = 26.4+/-1.8, n=12; control: DeltaF/F(0) = 49.2+/-2.9, n=10; P<0.01). Furthermore, we demonstrated that the expression of RyR2 associated proteins (including calmodulin, sorcin, calsequestrin, protein phosphatase 1, protein phosphatase 2A), Ca(2+) ATPase (SERCA2a), PLB phosphorylation at Ser16 (PLB-S16), PLB phosphorylation at Thr17 (PLB-T17), L-type Ca(2+) channel (Cav1.2) and Na(+)- Ca(2+) exchanger (NCX) were significantly reduced in rat HF. Our results suggest that systolic SR reduced Ca(2+) release and diastolic SR Ca(2+) leak (due to defective protein-protein interaction between RyR2 and its associated proteins) along with reduced SR Ca(2+) uptake (due to down-regulation of SERCA2a, PLB-S16 and PLB-T17), abnormal Ca(2+) extrusion (due to down-regulation of NCX) and defective Ca(2+) -induced Ca(2+) release (due to down-regulation of Cav1.2) could contribute to HF.  相似文献   

16.
Cardiomyocytes from failing hearts exhibit reduced levels of the sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA) and/or increased activity of the endogenous SERCA inhibitor phospholamban. The resulting reduction in the Ca(2+) affinity of SERCA impairs SR Ca(2+) cycling in this condition. We have previously investigated the physiological impact of increasing the Ca(2+) affinity of SERCA by substituting SERCA2a with the higher affinity SERCA2b pump. When phospholamban was also ablated, these double knockouts (DKO) exhibited a dramatic reduction in total SERCA levels, severe hypertrophy, and diastolic dysfunction. We presently examined the role of cardiomyocyte Ca(2+) homeostasis in both functional and structural remodeling in these hearts. Despite the low SERCA levels in DKO, we observed near-normal Ca(2+) homeostasis with rapid Ca(2+) reuptake even at high Ca(2+) loads and stimulation frequencies. Well-preserved global Ca(2+) homeostasis in DKO was paradoxically associated with marked activation of the Ca(2+)-dependent nuclear factor of activated T-cell-calcineurin pathway known to trigger hypertrophy. No activation of the MAP kinase signaling pathway was detected. These findings suggest that local changes in Ca(2+) homeostasis may play an important signaling role in DKO, perhaps due to reduced microdomain Ca(2+) buffering by SERCA2b. Furthermore, alterations in global Ca(2+) homeostasis can also not explain impaired in vivo diastolic function in DKO. Taken together, our results suggest that normalizing global cardiomyocyte Ca(2+) homeostasis does not necessarily protect against hypertrophy and heart failure development and that excessively increasing SERCA Ca(2+) affinity may be detrimental.  相似文献   

17.
Defective interaction between FKBP12.6 and ryanodine receptors (RyR) is a possible cause of cardiac dysfunction in heart failure (HF). Here, we assess whether the new cardioprotective agent JTV519 can correct it in tachycardia-induced HF. HF was induced in dogs by 4-wk rapid ventricular pacing, and sarcoplasmic reticulum (SR) was isolated from left ventricular muscles. In failing SR, JTV519 increased the rate of Ca(2+) release and [(3)H]ryanodine binding. RyR were then labeled in a site-directed fashion with the fluorescent conformational probe methylcoumarin acetamide. In failing SR, the polylysine induced a rapid change in methylcoumarin acetamide fluorescence, presumably because the channel opening preceding the Ca(2+) release was smaller than in normal SR (consistent with a decreased rate of Ca(2+) release in failing SR), and JTV519 increased it. In conclusion, JTV519, a new 1,4-benzothiazepine derivative, corrected the defective channel gating in RyR (increase in both the rapid conformational change and the subsequent Ca(2+) release rate) in HF.  相似文献   

18.
19.
Modifications in the Ca(2+)-uptake and -release functions of the sarcoplasmic reticulum (SR) may be a major component of the mechanisms underlying thyroid state-dependent alterations in heart rate, myocardial contractility, and metabolism. We investigated the influence of hyperthyroid state on the expression and functional properties of the ryanodine receptor (RyR), a major protein in the junctional SR (JSR), which mediates Ca(2+) release to trigger muscle contraction. Experiments were performed using homogenates and JSR vesicles derived from ventricular myocardium of euthyroid and hyperthyroid rabbits. Hyperthyroidism, with attendant cardiac hypertrophy, was induced by the injection of L-thyroxine (200 microg/kg body wt) daily for 7 days. Western blotting analysis using cardiac RyR-specific antibody revealed a significant increase (>50%) in the relative amount of RyR in the hyperthyroid compared with euthyroid rabbits. Ca(2+)-dependent, high-affinity [(3)H]ryanodine binding was also significantly greater ( approximately 40%) in JSR from hyperthyroid rabbits. The Ca(2+ )sensitivity of [(3)H]ryanodine binding and the dissociation constant for [(3)H]ryanodine did not differ significantly between euthyroid and hyperthyroid hearts. Measurement of Ca(2+)-release rates from passively Ca(2+)-preloaded JSR vesicles and assessment of the effect of RyR-Ca(2+)-release channel (CRC) blockade on active Ca(2+)-uptake rates revealed significantly enhanced (>2-fold) CRC activity in the hyperthyroid, compared with euthyroid, JSR. These results demonstrate overexpression of functional RyR in thyroid hormone-induced cardiac hypertrophy. Relative abundance of RyR may be responsible, in part, for the changes in SR Ca(2+) release, cytosolic Ca(2+) transient, and cardiac systolic function associated with thyroid hormone-induced cardiac hypertrophy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号