首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A stress-driven model for the relation between the collagen morphology and the loading conditions in arterial walls is proposed. We assume that the two families of collagen fibers in arterial walls are aligned along preferred directions, located between the directions of the two maximal principal stresses. For the determination of these directions an iterative finite element based procedure is developed. As an example the remodeling of a section of a human common carotid artery is simulated. We find that the predicted fiber morphology correlates well with experimental observations. Interesting outcomes of the model including local shear minimization and the possibility of axial compressions due to high blood pressure are revealed and discussed. In memory of Zinaida Hariton, 1926–2002  相似文献   

2.
The temperature-dependent dissociation of neutral salt-soluble collagen into its component chains was measured in 0.6–1.6 M urea solutions at pH 7.3. The temperature-dependent association of the same radiocactively labeled collagen into fibers was measured in 0–0.4 M urea solutions, pH 7.3. The effect of urea on the temperature, Tm(G), for half dissociation into chains was small, and the value extrapolated to zero urea concentration was 39°C. In contrast, the effect of urea on the temperature, Tm(F), for half association into fibers was large, and the value at zero urea concentration was 30°C. We conclude that while body temperature provides excellent conditions for the matching of collagen chains to form molecules, the conditions are not optimal for the formation of highly ordered fibers. The large effects of 0.1 M urea suggest that other factors in vivo may help to destabilize mismatched molecular association during fiber growth. Alternately this might be facilitated by parts of the extension peptides of procollagen.  相似文献   

3.
Microarchitectural features of collagen-rich extracellular matrices provide the mechanical foundation for tissue function and exhibit topographical cues that influence cellular behavior including proliferation, migration and protein expression. Preservation of tissue microarchitecture is required for accurate evaluation of tissue characteristics and pathology. It is unclear whether common tissue preservation methods possess equal ability to preserve microarchitecture. We investigated collagen microarchitecture in samples that had been flash frozen, fixed in formalin or preserved in RNAlater®, and which contained both collagen-rich and collagen-sparse regions. Fibrillar collagen organization was characterized using picrosirius red staining and second harmonic generation (SHG) microscopy. Maintenance of collagen fiber characteristics compared to the gold standard of flash freezing depended on both the method of preservation and the local collagen content of the tissue. Both formalin fixation and RNAlater® preserved collagen fiber characteristics similar to flash freezing in collagen-rich areas of the tissue, but not in collagen-sparse regions. Analysis using picrosirius red staining indicated preservation-dependent changes in overall tissue architecture and suprafibrillar organization. Together with considerations of cost, ease of use, storage conditions and ability to use the preserved tissue for RNA or protein analysis, our quantitative characterization of the effects of preservation method on collagen microarchitecture may help investigators select the most appropriate preservation approach for their needs.  相似文献   

4.
5.
6.
Connective tissue aging and diabetes related comorbidity are associated with compromised tissue function, increased susceptibility to injury, and reduced healing capacity. This has been partly attributed to collagen cross-linking by advanced glycation end-products (AGEs) that accumulate with both age and disease. While such cross-links are believed to alter the physical properties of collagen structures and tissue behavior, existing data relating AGEs to tendon mechanics is contradictory. In this study, we utilized a rat tail tendon model to quantify the micro-mechanical repercussion of AGEs at the collagen fiber-level. Individual tendon fascicles were incubated with methylglyoxal (MGO), a naturally occurring metabolite known to form AGEs. After incubation in MGO solution or buffer only, tendons were stretched on the stage of a multiphoton confocal microscope and individual collagen fiber stretch and relative fiber sliding were quantified. Treatment by MGO yielded increased fluorescence and elevated denaturation temperatures as found in normally aged tissue, confirming formation of AGEs and related cross-links. No apparent ultrastructural changes were noted in transmission electron micrographs of cross-linked fibrils. MGO treatment strongly reduced tissue stress relaxation (p < 0.01), with concomitantly increased tissue yield stress (p < 0.01) and ultimate failure stress (p = 0.036). MGO did not affect tangential modulus in the linear part of the stress–strain curve (p = 0.46). Microscopic analysis of collagen fiber kinematics yielded striking results, with MGO treatment drastically reducing fiber-sliding (p < 0.01) with a compensatory increase in fiber-stretch (p < 0.01). We thus conclude that the main mechanical effect of AGEs is a loss of tissue viscoelasticity driven by matrix-level loss of fiber–fiber sliding. This has potentially important implications to tissue damage accumulation, mechanically regulated cell signaling, and matrix remodeling. It further highlights the importance of assessing viscoelasticity – not only elastic response – when considering age-related changes in the tendon matrix and connective tissue in general.  相似文献   

7.
8.
9.
This work concerns with the implementation of a new stress-driven remodeling model for simulating the overall structure and mechanical behavior of a human carotid bifurcation. By means of an iterative finite element based procedure collagen fiber direction and maximal principal stresses are computed. We find that the predicted fibers' architecture at the cylindrical branches and at the apex of the bifurcation correlates well with histological observations. Some insights about the mechanical response of the sinus bulb and the bifurcation apex are revealed and discussed. The results are compared with other, isotropic and orthotropic, models available in the literature.  相似文献   

10.
String-shaped reconstitutedsmooth muscle (SM) fibers were prepared in rectangular wells by thermalgelation of a mixed solution of collagen and cultured SM cells derivedfrom guinea pig stomach. The cells in the fiber exhibited an elongatedspindle shape and were aligned along the long axis. The fibercontracted in response to KCl (140 mM), norepinephrine (NE;107 M), epinephrine (107 M), phenylephrine(106 M), serotonin (106 M), and histamine(105 M), but not acetylcholine (105 M).Phentolamine (107 M) produced a parallel rightward shiftof the NE dose-response curve. Moreover, NE-induced contractionwas partially inhibited by nifedipine and completely abolished by theintracellular Ca2+ chelator1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acidacetoxymethyl ester, the myosin light chain kinase inhibitor ML-9, theRho kinase inhibitor Y-27632, and papaverine. A[3H]quinuclidinyl benzilate binding study revealed thatthe loss of response to acetylcholine was due to the loss of muscarinic receptor expression during culture. The expression of contractile proteins in the fibers was similar to that in cultured SM cells. Theseresults suggest that, although the fiber is not a model for fullydifferentiated SM, contractile mechanisms are maintained.

  相似文献   

11.
We employed far-infrared spectroscopy to observe the amount of salt that penetrates into collagen fiber masses. The absorption properties of collagen sheets prepared from tilapia skin, bovine skin, rat tail, and sea cucumber dermis were measured using a transmission Fourier transform spectrometer in a band from approximately 100 to 700 cm−1. We confirmed that the absorbance spectra of the four types of dried collagen sheet show good agreement, even though the amino acid compositions differed. The absorbance peaks observed in the band corresponded to collective vibrations of plural functional groups such as methylene and imino groups in collagen. When salt solution was added to the collagen sheets and then dried, the spectral shapes of the sheets at approximately 166 cm−1 were clearly different from those of the plain collagen sheets. The differential absorbance between wavenumbers 166 cm−1 and 250 cm−1 sensitively reflected the difference between higher-order structures, and the salt diffusion (crystallization) depended on the collagen fiber condition. From these results, we consider that spectral changes can be used for the numerical evaluation of salt penetration into a collagen fiber scaffold.  相似文献   

12.
Understanding collagen fiber remodelling is desired to optimize the mechanical conditioning protocols in tissue-engineering of load-bearing cardiovascular structures. Mathematical models offer strong possibilities to gain insight into the mechanisms and mechanical stimuli involved in these remodelling processes. In this study, a framework is proposed to investigate remodelling of angular collagen fiber distribution in cardiovascular tissues. A structurally based model for collagenous cardiovascular tissues is extended with remodelling laws for the collagen architecture, and the model is subsequently applied to the arterial wall and aortic valve. For the arterial wall, the model predicts the presence of two helically arranged families of collagen fibers. A branching, diverging hammock-type fiber architecture is predicted for the aortic valve. It is expected that the proposed model may be of great potential for the design of improved tissue engineering protocols and may give further insight into the pathophysiology of cardiovascular diseases.  相似文献   

13.
14.
15.
Although the mechanical phenomena associated with preconditioning are well-established, the underlying mechanisms responsible for this behavior are still not fully understood. Using quantitative polarized light imaging, this study assessed whether preconditioning alters the collagen fiber alignment of ligament tissue, and determined whether changes in fiber organization are associated with the reduced force and stiffness observed during loading. Collagen fiber alignment maps of facet capsular ligaments (n?=?8) were generated before and after 30 cycles of cyclic tensile loading, and alignment vectors were correlated between the maps to identify altered fiber organization. The change in peak force and tangent stiffness between the 1st and 30th cycle were determined from the force-displacement response, and the principal strain field of the capsular ligament after preconditioning was calculated from the fiber alignment images. The decreases in peak ligament force and tangent stiffness between the 1st and 30th cycles of preconditioning were significantly correlated (R ≥ 0.976, p?相似文献   

16.
陈爽  宋娜  廖学品  石碧 《生物工程学报》2011,27(7):1076-1081
将胶原纤维用三价铁改性后作为载体,通过戊二醛的交联作用将过氧化氢酶固定在该载体上。制备的固定化过氧化氢酶蛋白固载量为16.7 mg/g,酶活收率为35%。研究了固定化酶与自由酶的最适pH、最适温度、热稳定性、贮存稳定性及操作稳定性。结果表明:过氧化氢酶经此法固定化后,最适pH及最适温度与自由酶相同,分别为pH 7.0和25 ℃;但固定化酶的热稳定性显著提高,在75 ℃保存5 h后,仍能保留30%的活力,而自由酶则完全失活;固定化酶在室温下保存12 d后,酶活力仍保持在88%以上,而自由酶在此条件下则完全失  相似文献   

17.
This paper describes the design, evaluation, and application of a new system for quantifying two-dimensional collagen fiber orientation in soft tissue. Series of transmitted polarized light images were collected using a custom-designed macroscope. Combined analysis of pixel brightness, and hue from images collected with a compensator plate, permitted the assignment of each pixel into the appropriate orientation band. Experiments were performed to quantify the linearity and noise of the system. Validation was performed on a specimen composed of strain-birefringent plastic strips at various orientations. Preliminary collagen fiber orientation data is presented from a tendon specimen. This study demonstrates the utility of this approach for studying collagen fiber orientation across large areas.  相似文献   

18.
Y Lanir  E L Salant  A Foux 《Biorheology》1988,25(4):591-603
Simultaneous measurements of load, deformation and diameter were performed on stretched collagen fiber bundle from rat tail tendon using a dynamic, electronically controlled stretch system and a novel computer based electroptical set-up. A parallel analysis of glycosaminoglycan (GAG) concentration in the bathing solution was carried out to determine whether stretching affects GAG exudation from the bundle. Results show that the bundle diameter does change under stretch in a manner which depends on strain and time. The diameter decreases with time under constant axial strain, implying loss of fluid from the structure. Results of GAG analysis showed that stretching accelerate their exucation to the external bath. The data from cyclic stretch tests show that low (0.5%) strain produces monotonically decreasing diameter from cycle to cycle. Yet at higher strain level (4%) under sufficiently long rest periods between cycles, the diameter increases monotonically with cycling to above its original level, implying damage to restraining elements in the bundle which maintain its structural integrity. Simultaneous load and diameter data show mutually different trends, indicating that variation in the bundle's hydration (diameter) in itself does not have a significant effect on the bundle's axial response.  相似文献   

19.
The diaphragmatic central tendon (DCT), a collagenous soft tissue membrane, acts as a mechanical buffer between the costal and crural muscles. Its direction of mechanical anisotropy has been shown to correspond to the collagen fiber preferred directions. These preferred directions were determined by gross histological examination, and were thus qualitative. In this work we quantified the collagen fiber architecture throughout the DCT using small angle light scattering (SALS). Helium-Neon laser light was passed through tendon specimens and the resultant scattered light distribution, which characterized the local collagen fiber architecture, was recorded with a linear array of five photodiodes. Throughout the DCT two distinct collagen fiber populations were consistently found. For each population three parameters were determined: 1) the preferred directions of collagen fibers, 2) the volume fraction (Vf) of fibers, 3) OI, an orientation index, which ranges from 0 percent for a random network to 100 percent for a perfectly oriented network. Vector maps were used to display results from 1) and 2), and showed a primary group (G1) going from the crural to costal muscles and a secondary one (G2) running perpendicular to G1. Comparisons of Vf between G1 and G2 showed that G1 contained about three times as many fibers as G2, a ratio similar to that found for the degree of mechanical anisotropy. OI were found to be about 60 percent, indicating a high degree of orientation, with no significant regional or population differences (p less than 0.05). These quantitative results suggest that throughout the DCT the degree of mechanical anisotropy is controlled exclusively by Vf.  相似文献   

20.
Living tissues show an adaptive response to mechanical loading by changing their internal structure and morphology. Understanding this response is essential for successful tissue engineering of load-bearing structures, such as the aortic valve. In this study, mechanically induced remodeling of the collagen architecture in the aortic valve was investigated. It was hypothesized that, in uniaxially loaded regions, the fibers aligned with the tensile principal stretch direction. For biaxial loading conditions, on the other hand, it was assumed that the collagen fibers aligned with directions situated between the principal stretch directions. This hypothesis has already been applied successfully to study collagen remodeling in arteries. The predicted fiber architecture represented a branching network and resembled the macroscopically visible collagen bundles in the native leaflet. In addition, the complex biaxial mechanical behavior of the native valve could be simulated qualitatively with the predicted fiber directions. The results of the present model might be used to gain further insight into the response of tissue engineered constructs during mechanical conditioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号