首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-five islands of different sizes were rapidly surveyed in the Andaman islands for patterns of butterfly distribution and abundance. The surveys were conducted in the dry seasons of 1992 in the South Andaman islands, 1994 in the North Andaman islands and on both these years on the Little Andaman Island. Different habitat types were identified on each island and butterflies were sampled by the line transect method in each habitat type. Sixty-five species of butterflies were recorded from six families. Fifty-one species were less common and contributed to 25 % of the total count. Six species were very common. The overall distribution patterns of the species were nested. This suggests that small islands share their species with the larger islands but not vice versa. Many uncommon species were found exclusively on large islands. The presence of evergreen forest on islands significantly influenced the species encountered. Small and medium sized islands with evergreen forests had significantly more species than those without evergreen forests. Loss of primary forests due to logging and encroachment will result in the loss of many butterfly species. It is recommended that the large patches of primary evergreen forests be protected on a priority basis on large islands.  相似文献   

2.
Invasive species pose significant threats to biodiversity, especially on islands. They cause extinctions and population declines, yet little is known about their consequences on the emergent, metacommunity-level patterns of native species in island assemblages. We investigated differences in species–area relationships, nestedness, and occupancy of 9 species of native land birds between island assemblages with and without invasive Norway rats (Rattus norvegicus) in the Falkland Archipelago. We found that species–area curves, nestedness, and individual species’ occurrences differed between island assemblages with and without rats. Rat-free islands had, on average, 2.1 more land bird species than rat-infested islands of similar size. Passerine bird communities on islands with and without rats were significantly nested, but nestedness was significantly higher on rat-free islands than on rat-infested islands. The presence of rats was associated with differences in the incidence of many, but not all bird species. On rat free islands the occurrence of all species increased with island area. The occurrence of most, albeit not all, bird species was lower on islands with than on islands without rats. Two species of conservation concern, Troglodytes aedon cobbi and Cinclodes antarcticus, were abundant on rat-free islands, but absent or found at very low frequencies on islands with rats. The occurrence of three species was not associated with the presence of rats. The patterns presented here can be used to evaluate the consequences of ongoing rat eradications for passerine diversity, distribution, and abundance.  相似文献   

3.
Metapopulations of moths on islands: a test of two contrasting models   总被引:1,自引:0,他引:1  
1. We describe a generalized mainland-island metapopulation model which includes migration among the island populations. We test model predictions with quantitative data on more than 200 species of moths in two contrasting networks of small islands. The data include a direct measure of migration rate, based on trapping of moths on rocky skerries with no local populations of the vast majority of species.
2. We predicted that moths which are strong fliers but uncommon on the islands have a higher incidence on scattered islands than on islands in a group, because the latter 'compete' for immigrants from the mainland. In contrast, we predicted that weakly flying species with potentially large local populations on the islands occur more frequently on islands in a group due to enhanced colonization rate.
3. Both predicted patterns were observed. Island occupancy increased significantly with the number of individuals caught on the rocky skerries, which is our measure of migration rate from the mainland, supporting the basic assumption that the species occur on the islands in a balance between colonizations and extinctions.
4. These results demonstrate that the moth metapopulations on islands represent a mixture of Levins's and mainland-island metapopulations, and that the mixture is different for different species in the same landscape.  相似文献   

4.
Summary The Hamilton-Rubinoff model of evolution in the avifauna of the Galapagos Islands suggests that speciation occurs on small outlying islands, and that new species invade the central island region, where ecological differentiation takes place. I present an alternative model in which both speciation and ecological differentiation leading to origin of actively colonizing taxa occur on the large islands, with colonization of small and outlying islands being primarily one way. Although forms on outlying islands may differentiate to the level of new species, their fate is postulated to be extinction rather than re-invasion of central islands. Data on species with expanding, differentiating, fragmenting, and relict distributions support this second model. Polytypy and incompleteness of distributions on the large islands indicate that isolation is adequate for differentiation to occur. Distributions of expanding taxa centre on the large islands, and their distributions show sequences leading from large islands to smaller and more outlying islands. Curves of occupancy of large islands versus total islands also agree with the prediction that expansions begin in the large islands.  相似文献   

5.
Depending on their faunal content islands can function as important ‘vehicles’ for conservation. In this study, we examine data on 440 butterfly species over 564 European islands in 10 island groups. To determine the status of the butterfly fauna, we have adopted two approaches, island-focused and species-focused, examined using principal components analysis and regression modelling. In the former, we relate species richness, rarity and endemicity to island geography (area, elevation, isolation and location in latitude and longitude); in the latter, species occurrence on islands is examined in relation to distribution, range, range boundaries, and altitudinal limits on the continent as well as species’ ecology (number of host plants) and morphology (wing expanse). Species on islands are also assessed for their status on the continental mainland, their distributional dynamics (extinctions, distribution changes) and conservation status (Red Data Book, European Habitat Directive, Species of European Conservation Concern and Bern Convention listing. Unexpectedly, we find that a large fraction of the European butterfly species is found on the islands (63.4%; 59% on small islands) comprising some 6.2% of the land area of Europe. Although species occurring on the islands tend, on the whole, to have lower conservation status and are not declining over Europe, 45 species are endemics restricted to the islands. Species richness shows only a weak locational pattern and is related as expected to isolation from the continental source and island area; but, both rarity and endemicity have distinctive geographical bias to southern Europe, on islands now under increasing pressure from climate change and increasingly intensive human exploitation. The vulnerability of species on islands is emphasised in the relationship of island occurrence (% occurrence and presence/absence of species on any island) with continental distributions. A large proportion of the variation (84%) is accounted by continental distribution, the southern range limit and lower altitudinal limit. Most species (69%) occur on very few islands (<5%). In view of ongoing species dynamics on islands, migrations and extinctions of species, island repositories of species depend in large part on conservation of butterflies at continental sources. The unique faunas and rare species on islands also depend on appropriate concern being given to the island faunas. Conservation of European islands is thus a two-way process, sustaining sources and conserving island refuges. Residuals from the regressions (islands with more or fewer species, rare and endemic species; species occurring more or less frequently than expected on islands) provide warning signals of regions and islands deserving immediate attention.  相似文献   

6.
浙江海岛鸟兽地理生态学的初步研究   总被引:6,自引:1,他引:5  
对浙江洞头岛及舟山五岛的鸟兽调查表明,海岛动物的种数较相邻大陆为低,但种群密度却高于大陆,岛上的某些种类出现生态位扩展的现象。舟山五岛兽类的种数和岛屿面积呈正相关,其关系式为S=2.12A~(0.29),但种群密度随着岛屿面积的增大而下降。文中据此提出了保护和发展岛屿动物资源的某些措施。  相似文献   

7.
The ant faunas of three remote Polynesian islands were censused using hand collecting techniques Known ant species richnesses were increased by factors of 2 3 3 7, and 4 3 and total species richnesses were estimated with a first-order jackknife estimator The large increase in species numbers is apparently due to inadequate earlier censuses (which missed localized and cryptic species) rather than recent immigrations Tests of species associations revealed more positive than negative interactions among species on both a pairwise and community-wide basis There is no evidence that ant species on these islands exclude each other from islands or from communities within islands, with the exception of three very aggressive species A multiple regression analysis of known ant species richness against sampling effort and area for Polynesian islands which have been differentially censused for ants by various collectors revealed sampling effort was highly significant, while area was not significant in explaining variation in known ant species numbers On Pacific islands that have been surveyed relatively thoroughly for ants multiple regression analyses of known ant species richness on area and distance showed that area was always highly significant, but distance was only marginally significant (depending on the regression model used) Thus remote Polynesian islands appear neither to be as depauperate as previously thought in numbers of ant species present, nor possess an unusual potential for evolutionary increase in species numbers  相似文献   

8.
I. ABBOTT 《Austral ecology》1992,17(3):289-296
Abstract The number of native grass species and exotic grass species present on 129 offshore islands of southwestern Australia is best predicted by island area and island disturbance, respectively. Isolation of islands and gull activity on islands only slightly improved these predictions. Species turnover on a subset of 30 islands indicated that exotic grass species were more prone to local extinction and more likely to immigrate than native grass species. The major conservation implication of this study is that habitat disturbance on these islands should be minimized to reduce establishment of exotic grass species.  相似文献   

9.
Morrison LW 《Oecologia》2003,136(1):51-62
I conducted surveys of the plant species occupying 136 small islands in the Exuma Cays and 58 small islands near Andros, Bahamas. Most species occurred on relatively few islands, and most islands contained relatively few species. Identities of the most common species differed between the two archipelagos. Comparisons with earlier surveys revealed species extinctions and immigrations. Turnover was relatively low on both a per island and a per species basis on both archipelagos, although significant spatial variation in turnover rates between archipelagos was found. Most islands experienced no turnover; islands on which turnover did occur were larger and had higher species richness. Likewise, most species did not turnover, although much variation existed in turnover rates among those that did. Experimental introductions of two species to very small islands naturally devoid of vegetation revealed that these islands could support plant life. One species survived on eight of ten islands for >9 years, including the effects of a moderate (class 2) hurricane. This hurricane caused substantial damage and loss of plant biomass, but resulted in no species extinctions on 30 small islands. Data for the small islands in this region, now spanning almost a decade, reveal that most populations are persistent over periods of years to decades, rarely going extinct or immigrating. Even moderate hurricanes seem to have little impact on species compositions.  相似文献   

10.
To distinguish between the influences of area and isolation on the butterfly faunas of British islands two approaches are adopted. First, species richness is related to island area, isolation and the size of the faunal source. Neither area nor isolation account for much variance in species richness, though area is more important than isolation. In contrast, species richness corresponds closely to the size of the faunal source on nearby islands and to that at proximate locations on adjacent mainlands. The second approach relates the incidence of species on islands to their ecological attributes. A very close relationship is found between species incidence on islands and those ecological variables that measure potential for migration and colonization and that resist extinction. The implications are that the majority of British islands in this survey are insufficiently isolated to prevent intermittent migrations of butterflies to them or so small as to generate frequent extinctions. Independent data indicate the capacity of many resident species to migrate distances in excess of the isolation of most of the islands. Some evidence also exists for the long-term survival of species on islands; important considerations in this respect are that most islands in the survey are large compared to habitat patches sustaining species on mainland Britain and that substantial portions of islands are retained in early seral stages or comprise long-lived stable habitats (e.g. peat mosses) that are particularly suitable for many British species.  相似文献   

11.
The vascular flora on twenty-nine lake islands in Lough Corrib, western Ireland was surveyed in 1992–93. Thirteen of these islands had been surveyed by the author in 1974 (Roden, 1979). Data on species–area curves and species turnover between 1974 and 1992 are presented. Species numbers on each island did not change greatly in the 18-year interval and extinctions were most common on smaller islands. It is known that six of the islands surveyed are less than 150 years old and their flora must have immigrated over open water during that period. It is shown that this group of species has a different log species/log area regression than the remaining flora, with a much shallower slope (low Z value). The proportion of less widespread species was greatest on islands nearest to the mainland. The implication of different slopes in different species groups and the restriction of turnover to rare species is discussed with reference to the island Theory of Biogeography.  相似文献   

12.
Mammals of Australian islands: factors influencing species richness   总被引:1,自引:0,他引:1  
Distribution patterns of indigenous non-volant terrestrial mammals on 257 Australian islands were examined in relation to environmental parameters and the effects of human-induced disturbance during prehistoric and historic times on island species numbers. Species occurrence for individual species, for taxonomic and trophic groups, and for all species together was related to environmental parameters using regression analysis and the extreme-value function model. Patterns of occurrence were examined separately within three major biogeographic regions derived by pattern analysis. The number of species known to have occurred on these islands during historic times was adequately predicted from area alone. No statistically significant improvement in predicted species number was gained by including island elevation, mean annual rainfall, isolation from the mainland or the number of potentially competing species present on the island. Similarly, no single factor other than area was found to influence consistently the presence of individual species. We conclude that the occurrence of indigenous non-volant terrestrial mammal species on these islands indicates a relictual rather than equilibrial fauna. Visitation by Aboriginal people during prehistoric times did not significantly increase mammal extinctions on islands. Examination of patterns of species richness for a given area on a regional basis showed that islands in and around Bass Strait and Tasmania (Bass Region) were the most species-rich, islands off the northern coasts were slightly less rich, and islands off the south western coasts had fewest species. This is in contrast to the usual latitudinal gradient in species richness patterns. However, islands off the northern and eastern coasts had an overall greater number of different species. When considered in relation to the number of different species of mammals occurring within each region, islands of a given size in Bass Region typically bore a higher proportion of this species pool than other regions. The Bass Region was found to be particularly rich in macropoid herbivores and dasyurid carnivores and insectivores. Analyses indicated that there is a very strong relationship between the presence of exotics as a whole and the local extinction of native mammals. Many mammal species formerly widespread on the Australian mainland are now restricted totally to islands (nine species) or are threatened with extinction on the mainland and have island populations of conservation significance (ten species). In all, thirty-five islands protect eighteen taxa of Australian threatened mammals. The land-use and management of these islands is of considerable importance to nature conservation. The introduction of exotic mammals to these islands should be prevented; any introductions that occur should be eradicated immediately.  相似文献   

13.
Isolation effects on species richness of woody plants were investigated in a system of islands that were created by the filling of the Clarks Hill Reservoir, Georgia. This reservoir was built between 1946–1954. Some islands were logged and cleared of woody plants prior to the filling of the reservoir and others were not logged. The presence of logged versus unlogged islands in the same system allowed us to test whether and how geographical isolation interacts with island history and species-specific dispersal properties in determining patterns of among-island variation in species number. Thirty-six years after the islands were created, logged islands had significantly fewer species of woody plants than unlogged ones. On logged islands, total number of woody species was negatively correlated with distance to the closest mainland (r=–0.95). On unlogged islands, variation in species number was very low (CV=4.9%) and was not correlated with distance to the mainland. These results indicate that the studied system as a whole has not yet reached equilibrium. However, the mean number of species on unlogged islands was very close to the intercept of the regression obtained for logged islands, suggesting that islands close to the mainland have already reached their equilibrium species richness. This conclusion is consistent with predictions of island biogeography theory. When species representing different dispersal properties were analyzed separately, statistically significant distance effects were obtained for bird-dispersed species (r=0.88) and for species with no adaptations to bird or wind dispersal (r=0.81). Wind-dispersed species did not show a decrease in species number with increasing isolation, but their relative frequency was positively and significantly correlated with distance to the mainland (r=0.94). Historical factors, as well as differences among species in dispersal properties, are important in explaining patterns of among-island variation in species number.  相似文献   

14.
Aim Exotic species pose one of the most significant threats to biodiversity, especially on islands. The impacts of exotic species vary in severity among islands, yet little is known about what makes some islands more susceptible than others. Here we determine which characteristics of an island influence how severely exotic species affect its native biota. Location We studied 65 islands and archipelagos from around the world, ranging from latitude 65° N to 54° S. Methods We compiled a global database of 10 island characteristics for 65 islands and determined the relative importance of each characteristic in predicting the impact of exotic species using multivariate modelling and hierarchical partitioning. We defined the impact of exotic species as the number of bird, amphibian and mammal (BAM) species listed by the International Union for Conservation of Nature (IUCN) as threatened by exotics, relative to the total number of BAM species on that island. Results We found that the impact of exotic species is more severe on islands with more exotic species and a greater proportion of native species that are endemic. Unexpectedly, the level of anthropogenic disturbance did not influence an island's susceptibility to the impacts of exotic species. Main conclusions By coupling our results with studies on the introduction and establishment of exotic species, we conclude that colonization pressure, or invasion opportunities, influences all stages of the invasion process. However, species endemism, the other important factor determining the impact of exotic species, is not known to contribute to introduction and establishment success on islands. This demonstrates that different factors correlate with the initial stages of the invasion process and the subsequent impacts of those invaders, highlighting the importance of studying the impacts of exotic species directly. Our study helps identify islands that are at risk of impact by exotics and where investment should focus on preventing further invasions.  相似文献   

15.
Forty-four species of terrestrial reptiles and eight species of frogs were recorded from 60 continental islands of the Wessel and English Company groups off northeastern Arnhem Land, Northern Territory. Two gecko species, Oedura rhombifer and Heteronotia binoei, were present on the most islands (34 and 31, respectively), and occurred on islands < 5 ha. In contrast, agamids, pygopodids and varanids were absent from islands < 18 ha, and snakes and frogs were not reported from islands < 240 ha. Island size explained 82% of the variation in species richness for terrestrial reptiles, and 84% of that for lizards. The relationship was less good for (i) groups with generally uncommon species (notably snakes), for which sampling effort explained more variation, and (ii) groups with species which had relatively specific habitat requirements (notably frogs), for which island size and isolation factors were not especially relevant. For most taxonomic groups considered, isolation factors added little to the relationship between species richness and island size. Across all reptiles, larger species were found on fewer islands, and had larger island size thresholds. This relationship broke down with analysis restricted to the single most species-rich family, Scincidae. Only 6 of the 20 most frequently recorded species showed significant variation in abundance among 8 vegetation types sampled by 226 quadrats across 40 islands. The number of species (alpha-diversity) and total abundance of herpetofauna within quadrats was generally unrelated to island size; however, (with analysis restricted to islands on which they occurred) six individual species were significantly more abundant on smaller islands than on larger islands, with no species showing the opposite pattern. The islands’ herpetofauna is largely a relatively depauperate subset of that of the far more complex sandstone massif and escarpment of western Arnhem Land, especially missing species associated with rugged sandstone gorges, riparian areas, open forests, swamps and clay soils. Patterns in species richness and composition are explained by greater range of environments on larger islands allowing better retention of species since isolation and/or richer tallies at the time of isolation. The evidence suggests that there has been relatively little colonization, although at least two gecko species and one varanid may have moved reasonably frequently.  相似文献   

16.
Two processes are thought to generate positive relationships between species richness and island area. The areaper se hypothesis states that larger islands maintain larger populations, which are less susceptible to extinction. The habitat hypothesis states that larger islands contain more habitats, and therefore a greater number of habitat specialists. However, the importance of each mechanism is debated. I tested the areaper se and habitat hypotheses by comparing relationships between plant abundance, age and island area in five shrub species on islands off the coast of British Columbia, Canada. Results showed that two shrub species increased in both abundance and age with island area. The remaining three species showed no differences in abundance and age with island area. Conifer abundances increased with island area, which generated differences in habitat availability. Smaller islands were dominated by open habitat, while larger islands contained both open and forested habitats. Changes in habitat availability with island area could explain patterns in plant abundance and age. The two species that increased in abundance with island area were commonly found in conifer forest on the mainland, and their distributions were consistent with the distribution forest habitat. Positive relationships between plant age and island area in these two species may result from lower survivorship in the open habitat, which dominated small islands. The three species that showed no relationship between abundance and island area are commonly found in open habitat on the mainland, and their island distributions paralleled the availability of open habitat on islands. Similar plant ages on different sized islands may result from their occurrence in open habitat on both large and small islands. Overall results support the habitat hypothesis and indicate that species distributions result from the interaction between habitat affinities and changes in habitat availability with island area.  相似文献   

17.
We investigate the composition of anuran communities of land-bridge islands off the southeastern coast of Brazil. These islands provide natural long-term experiments on the effects of fragmentation in the Brazilian Atlantic Forest (BAF). We hypothesize that Pleistocene sea-level changes, in combination with other abiotic variables such as area and habitat diversity, has affected anuran species richness and community composition on these islands. Data from the literature and collections databases were used to produce species lists for eight land-bridge islands and for the mainland adjacent to the islands. We assess the effects of area, number of breeding habitats and distance to the mainland upon anuran species richness on land-bridge islands. Additionally we use nestedness analysis to quantify the extent to which the species on smaller and less habitat-diverse islands correspond to subsets of those on larger and more diverse ones. We found that area has both direct and indirect effects on anuran species richness on land-bridge islands, irrespective of distance to the mainland. However, on islands with comparable sizes, differences in species richness can be attributed to the number and quality of breeding habitats. Anuran communities on these islands display a nested pattern, possibly caused by selective extinction related to habitat loss. Common lowland pond-breeders were conspicuous by their absence. In the BAF, the conservation of fragments with a high diversity of breeding habitats could compensate for the generally negative effect of small area upon species richness. We suggest that sea-level changes have an important role in shaping composition of anuran species on coastal communities.  相似文献   

18.
The success of alien species on oceanic islands is considered to be one of the classic observed patterns in ecology. Explanations for this pattern are based on lower species richness on islands and the lower resistance of species‐poor communities to invaders, but this argument needs re‐examination. The important difference between islands and mainland is in the size of species pools, not in local species richness; invasibility of islands should therefore be addressed in terms of differences in species pools. Here I examine whether differences in species pools can affect invasibility in a lottery model with pools of identical native and exotic species. While in a neutral model with all species identical, invasibility does not depend on the species pool, a model with non‐zero variation in population growth rates predicts higher invasibility of communities of smaller pools. This is because of species sampling; drawing species from larger pools increases the probability that an assemblage will include fast growing species. Such assemblages are more likely to exclude random invaders. This constitutes a mechanism through which smaller species pools (such as those of isolated islands) can directly underlie differences in invasibility.  相似文献   

19.
Nested structures of species assemblages have been frequently associated with patch size and isolation, leading to the conclusion that colonization–extinction dynamics drives nestedness. The ‘passive sampling’ model states that the regional abundance of species randomly determines their occurrence in patches. The ‘habitat amount hypothesis’ also challenges patch size and isolation effects, arguing that they occur because of a ‘sample area effect’. Here, we (a) ask whether the structure of the mammal assemblages of fluvial islands shows a nested pattern, (b) test whether species’ regional abundance predicts species’ occurrence on islands, and (c) ask whether habitat amount in the landscape and matrix resistance to biological flow predict the islands’ species composition. We quantified nestedness and tested its significance using null models. We used a regression model to analyze whether a species’ relative regional abundance predicts its incidence on islands. We accessed islands’ species composition by an NMDS ordination and used multiple regression to evaluate how species composition responds to habitat amount and matrix resistance. The degree of nestedness did not differ from that expected by the passive sampling hypothesis. Likewise, species’ regional abundance predicted its occurrence on islands. Habitat amount successfully predicted the species composition on islands, whereas matrix resistance did not. We suggest the application of habitat amount hypothesis for predicting species composition in other patchy systems. Although the island biogeography perspective has dominated the literature, we suggest that the passive sampling perspective is more appropriate for explaining the assemblages’ structure in this and other non‐equilibrium patch systems. Abstract in Portuguese is available with online material.  相似文献   

20.
千岛湖岛屿化对植物多样性的影响初探   总被引:16,自引:3,他引:13  
选取千岛湖典型破碎化区域,研究了水库形成后引起的岛屿化对植物物种多样性的影响.在18个大中小型岛屿和一处陆地对照中设立了26个样方,调查乔木和灌木的种类和数量.乔木物种丰富度的单因素方差分析显示:F=13.0,P=0.000,说明各类岛屿间乔木物种差异极显著.多重比较发现大岛上乔木物种丰富度显著高于小岛和中岛,与对照陆地差别不大;灌木的分析显示:F=1.31,P=0.29,说明小、中、大岛和对照陆地灌木物种丰富度差异不显著.Spearman相关性分析显示乔木物种与岛屿面积显著相关,随岛屿面积增大而增加,而灌木物种相关性不显著.Shannon多样性指数分析表明,无论乔木还是灌木其多样性都是大岛最大,陆地次之,而小岛上灌木多样性指数大于中岛.Simpson优势度和Pielou均匀度分析显示,乔木样地中大岛的物种分布均匀性最好,优势种的优势度最低,而灌木样地中小岛的均匀度最高,优势种的优势度最不明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号